Refactor dominance.c: define dom_info as C++ class

gcc/
	* dominance.c (new_zero_array): Define.
	(dom_info): Redefine as class with proper encapsulation.
	(dom_info::m_n_basic_blocks, m_reverse, m_start_block, m_end_block):
	Add new members.
	(dom_info::dom_info, ~dom_info): Define.  Use new/delete for memory
	allocations/deallocations.  Pass function as parameter (instead of
	using cfun).
	(dom_info::get_idom): Define accessor method.
	(dom_info::calc_dfs_tree_nonrec, calc_dfs_tree, compress, eval,
	link_roots, calc_idoms): Redefine as class members.  Do not use cfun.
	(calculate_dominance_info): Adjust to use dom_info class.
	(verify_dominators): Likewise.

From-SVN: r227093
This commit is contained in:
Mikhail Maltsev 2015-08-22 03:20:13 +00:00 committed by Mikhail Maltsev
parent 18e8c3cad5
commit 2321dd914f
2 changed files with 290 additions and 286 deletions

View File

@ -1,3 +1,18 @@
2015-08-22 Mikhail Maltsev <maltsevm@gmail.com>
* dominance.c (new_zero_array): Define.
(dom_info): Redefine as class with proper encapsulation.
(dom_info::m_n_basic_blocks, m_reverse, m_start_block, m_end_block):
Add new members.
(dom_info::dom_info, ~dom_info): Define. Use new/delete for memory
allocations/deallocations. Pass function as parameter (instead of
using cfun).
(dom_info::get_idom): Define accessor method.
(dom_info::calc_dfs_tree_nonrec, calc_dfs_tree, compress, eval,
link_roots, calc_idoms): Redefine as class members. Do not use cfun.
(calculate_dominance_info): Adjust to use dom_info class.
(verify_dominators): Likewise.
2015-08-21 Alexandre Oliva <aoliva@redhat.com>
* print-rtl.c (print_rtx): Check the correct range for

View File

@ -53,222 +53,234 @@
/* Type of Basic Block aka. TBB */
typedef unsigned int TBB;
/* We work in a poor-mans object oriented fashion, and carry an instance of
this structure through all our 'methods'. It holds various arrays
reflecting the (sub)structure of the flowgraph. Most of them are of type
TBB and are also indexed by TBB. */
namespace {
struct dom_info
/* This class holds various arrays reflecting the (sub)structure of the
flowgraph. Most of them are of type TBB and are also indexed by TBB. */
class dom_info
{
public:
dom_info (function *, cdi_direction);
~dom_info ();
void calc_dfs_tree ();
void calc_idoms ();
inline basic_block get_idom (basic_block);
private:
void calc_dfs_tree_nonrec (basic_block);
void compress (TBB);
TBB eval (TBB);
void link_roots (TBB, TBB);
/* The parent of a node in the DFS tree. */
TBB *dfs_parent;
/* For a node x key[x] is roughly the node nearest to the root from which
TBB *m_dfs_parent;
/* For a node x m_key[x] is roughly the node nearest to the root from which
exists a way to x only over nodes behind x. Such a node is also called
semidominator. */
TBB *key;
/* The value in path_min[x] is the node y on the path from x to the root of
the tree x is in with the smallest key[y]. */
TBB *path_min;
/* bucket[x] points to the first node of the set of nodes having x as key. */
TBB *bucket;
/* And next_bucket[x] points to the next node. */
TBB *next_bucket;
/* After the algorithm is done, dom[x] contains the immediate dominator
TBB *m_key;
/* The value in m_path_min[x] is the node y on the path from x to the root of
the tree x is in with the smallest m_key[y]. */
TBB *m_path_min;
/* m_bucket[x] points to the first node of the set of nodes having x as
key. */
TBB *m_bucket;
/* And m_next_bucket[x] points to the next node. */
TBB *m_next_bucket;
/* After the algorithm is done, m_dom[x] contains the immediate dominator
of x. */
TBB *dom;
TBB *m_dom;
/* The following few fields implement the structures needed for disjoint
sets. */
/* set_chain[x] is the next node on the path from x to the representative
of the set containing x. If set_chain[x]==0 then x is a root. */
TBB *set_chain;
/* set_size[x] is the number of elements in the set named by x. */
unsigned int *set_size;
/* set_child[x] is used for balancing the tree representing a set. It can
/* m_set_chain[x] is the next node on the path from x to the representative
of the set containing x. If m_set_chain[x]==0 then x is a root. */
TBB *m_set_chain;
/* m_set_size[x] is the number of elements in the set named by x. */
unsigned int *m_set_size;
/* m_set_child[x] is used for balancing the tree representing a set. It can
be understood as the next sibling of x. */
TBB *set_child;
TBB *m_set_child;
/* If b is the number of a basic block (BB->index), dfs_order[b] is the
/* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
number of that node in DFS order counted from 1. This is an index
into most of the other arrays in this structure. */
TBB *dfs_order;
TBB *m_dfs_order;
/* Points to last element in m_dfs_order array. */
TBB *m_dfs_last;
/* If x is the DFS-index of a node which corresponds with a basic block,
dfs_to_bb[x] is that basic block. Note, that in our structure there are
more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
is true for every basic block bb, but not the opposite. */
basic_block *dfs_to_bb;
m_dfs_to_bb[x] is that basic block. Note, that in our structure there are
more nodes that basic blocks, so only
m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
but not the opposite. */
basic_block *m_dfs_to_bb;
/* This is the next free DFS number when creating the DFS tree. */
unsigned int dfsnum;
/* The number of nodes in the DFS tree (==dfsnum-1). */
unsigned int nodes;
unsigned int m_dfsnum;
/* The number of nodes in the DFS tree (==m_dfsnum-1). */
unsigned int m_nodes;
/* Blocks with bits set here have a fake edge to EXIT. These are used
to turn a DFS forest into a proper tree. */
bitmap fake_exit_edge;
bitmap m_fake_exit_edge;
/* Number of basic blocks in the function being compiled. */
size_t m_n_basic_blocks;
/* True, if we are computing postdominators (rather than dominators). */
bool m_reverse;
/* Start block (the entry block for forward problem, exit block for backward
problem). */
basic_block m_start_block;
/* Ending block. */
basic_block m_end_block;
};
static void init_dom_info (struct dom_info *, enum cdi_direction);
static void free_dom_info (struct dom_info *);
static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
static void calc_dfs_tree (struct dom_info *, bool);
static void compress (struct dom_info *, TBB);
static TBB eval (struct dom_info *, TBB);
static void link_roots (struct dom_info *, TBB, TBB);
static void calc_idoms (struct dom_info *, bool);
void debug_dominance_info (enum cdi_direction);
void debug_dominance_tree (enum cdi_direction, basic_block);
} // anonymous namespace
/* Helper macro for allocating and initializing an array,
for aesthetic reasons. */
#define init_ar(var, type, num, content) \
do \
{ \
unsigned int i = 1; /* Catch content == i. */ \
if (! (content)) \
(var) = XCNEWVEC (type, num); \
else \
{ \
(var) = XNEWVEC (type, (num)); \
for (i = 0; i < num; i++) \
(var)[i] = (content); \
} \
} \
while (0)
void debug_dominance_info (cdi_direction);
void debug_dominance_tree (cdi_direction, basic_block);
/* Allocate all needed memory in a pessimistic fashion (so we round up).
This initializes the contents of DI, which already must be allocated. */
/* Allocate and zero-initialize NUM elements of type T (T must be a
POD-type). Note: after transition to C++11 or later,
`x = new_zero_array <T> (num);' can be replaced with
`x = new T[num] {};'. */
static void
init_dom_info (struct dom_info *di, enum cdi_direction dir)
template<typename T>
inline T *new_zero_array (size_t num)
{
T *result = new T[num];
memset (result, 0, sizeof (T) * num);
return result;
}
/* Allocate all needed memory in a pessimistic fashion (so we round up). */
dom_info::dom_info (function *fn, cdi_direction dir)
{
/* We need memory for n_basic_blocks nodes. */
unsigned int num = n_basic_blocks_for_fn (cfun);
init_ar (di->dfs_parent, TBB, num, 0);
init_ar (di->path_min, TBB, num, i);
init_ar (di->key, TBB, num, i);
init_ar (di->dom, TBB, num, 0);
size_t num = m_n_basic_blocks = n_basic_blocks_for_fn (fn);
m_dfs_parent = new_zero_array <TBB> (num);
m_dom = new_zero_array <TBB> (num);
init_ar (di->bucket, TBB, num, 0);
init_ar (di->next_bucket, TBB, num, 0);
m_path_min = new TBB[num];
m_key = new TBB[num];
m_set_size = new unsigned int[num];
for (size_t i = 0; i < num; i++)
{
m_path_min[i] = m_key[i] = i;
m_set_size[i] = 1;
}
init_ar (di->set_chain, TBB, num, 0);
init_ar (di->set_size, unsigned int, num, 1);
init_ar (di->set_child, TBB, num, 0);
m_bucket = new_zero_array <TBB> (num);
m_next_bucket = new_zero_array <TBB> (num);
init_ar (di->dfs_order, TBB,
(unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
init_ar (di->dfs_to_bb, basic_block, num, 0);
m_set_chain = new_zero_array <TBB> (num);
m_set_child = new_zero_array <TBB> (num);
di->dfsnum = 1;
di->nodes = 0;
unsigned last_bb_index = last_basic_block_for_fn (fn);
m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
m_dfs_last = &m_dfs_order[last_bb_index];
m_dfs_to_bb = new_zero_array <basic_block> (num);
m_dfsnum = 1;
m_nodes = 0;
switch (dir)
{
case CDI_DOMINATORS:
di->fake_exit_edge = NULL;
m_reverse = false;
m_fake_exit_edge = NULL;
m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
break;
case CDI_POST_DOMINATORS:
di->fake_exit_edge = BITMAP_ALLOC (NULL);
m_reverse = true;
m_fake_exit_edge = BITMAP_ALLOC (NULL);
m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
break;
default:
gcc_unreachable ();
break;
}
}
#undef init_ar
inline basic_block
dom_info::get_idom (basic_block bb)
{
TBB d = m_dom[m_dfs_order[bb->index]];
return m_dfs_to_bb[d];
}
/* Map dominance calculation type to array index used for various
dominance information arrays. This version is simple -- it will need
to be modified, obviously, if additional values are added to
cdi_direction. */
static unsigned int
dom_convert_dir_to_idx (enum cdi_direction dir)
static inline unsigned int
dom_convert_dir_to_idx (cdi_direction dir)
{
gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
return dir - 1;
}
/* Free all allocated memory in DI, but not DI itself. */
/* Free all allocated memory in dom_info. */
static void
free_dom_info (struct dom_info *di)
dom_info::~dom_info ()
{
free (di->dfs_parent);
free (di->path_min);
free (di->key);
free (di->dom);
free (di->bucket);
free (di->next_bucket);
free (di->set_chain);
free (di->set_size);
free (di->set_child);
free (di->dfs_order);
free (di->dfs_to_bb);
BITMAP_FREE (di->fake_exit_edge);
delete[] m_dfs_parent;
delete[] m_path_min;
delete[] m_key;
delete[] m_dom;
delete[] m_bucket;
delete[] m_next_bucket;
delete[] m_set_chain;
delete[] m_set_size;
delete[] m_set_child;
delete[] m_dfs_order;
delete[] m_dfs_to_bb;
BITMAP_FREE (m_fake_exit_edge);
}
/* The nonrecursive variant of creating a DFS tree. DI is our working
structure, BB the starting basic block for this tree and REVERSE
is true, if predecessors should be visited instead of successors of a
node. After this is done all nodes reachable from BB were visited, have
assigned their dfs number and are linked together to form a tree. */
/* The nonrecursive variant of creating a DFS tree. BB is the starting basic
block for this tree and m_reverse is true, if predecessors should be visited
instead of successors of a node. After this is done all nodes reachable
from BB were visited, have assigned their dfs number and are linked together
to form a tree. */
static void
calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
void
dom_info::calc_dfs_tree_nonrec (basic_block bb)
{
/* We call this _only_ if bb is not already visited. */
edge e;
TBB child_i, my_i = 0;
edge_iterator *stack;
edge_iterator ei, einext;
int sp;
/* Start block (the entry block for forward problem, exit block for backward
problem). */
basic_block en_block;
/* Ending block. */
basic_block ex_block;
edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
int sp = 0;
stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
sp = 0;
/* Initialize our border blocks, and the first edge. */
if (reverse)
{
ei = ei_start (bb->preds);
en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
}
else
{
ei = ei_start (bb->succs);
en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
}
/* Initialize the first edge. */
edge_iterator ei = m_reverse ? ei_start (bb->preds)
: ei_start (bb->succs);
/* When the stack is empty we break out of this loop. */
while (1)
{
basic_block bn;
edge_iterator einext;
/* This loop traverses edges e in depth first manner, and fills the
stack. */
while (!ei_end_p (ei))
{
e = ei_edge (ei);
edge e = ei_edge (ei);
/* Deduce from E the current and the next block (BB and BN), and the
next edge. */
if (reverse)
if (m_reverse)
{
bn = e->src;
/* If the next node BN is either already visited or a border
block the current edge is useless, and simply overwritten
with the next edge out of the current node. */
if (bn == ex_block || di->dfs_order[bn->index])
if (bn == m_end_block || m_dfs_order[bn->index])
{
ei_next (&ei);
continue;
@ -279,7 +291,7 @@ calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
else
{
bn = e->dest;
if (bn == ex_block || di->dfs_order[bn->index])
if (bn == m_end_block || m_dfs_order[bn->index])
{
ei_next (&ei);
continue;
@ -288,16 +300,17 @@ calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
einext = ei_start (bn->succs);
}
gcc_assert (bn != en_block);
gcc_assert (bn != m_start_block);
/* Fill the DFS tree info calculatable _before_ recursing. */
if (bb != en_block)
my_i = di->dfs_order[bb->index];
TBB my_i;
if (bb != m_start_block)
my_i = m_dfs_order[bb->index];
else
my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
child_i = di->dfs_order[bn->index] = di->dfsnum++;
di->dfs_to_bb[child_i] = bn;
di->dfs_parent[child_i] = my_i;
my_i = *m_dfs_last;
TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
m_dfs_to_bb[child_i] = bn;
m_dfs_parent[child_i] = my_i;
/* Save the current point in the CFG on the stack, and recurse. */
stack[sp++] = ei;
@ -319,27 +332,24 @@ calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
descendants or the tree depth. */
ei_next (&ei);
}
free (stack);
delete[] stack;
}
/* The main entry for calculating the DFS tree or forest. DI is our working
structure and REVERSE is true, if we are interested in the reverse flow
graph. In that case the result is not necessarily a tree but a forest,
because there may be nodes from which the EXIT_BLOCK is unreachable. */
/* The main entry for calculating the DFS tree or forest. m_reverse is true,
if we are interested in the reverse flow graph. In that case the result is
not necessarily a tree but a forest, because there may be nodes from which
the EXIT_BLOCK is unreachable. */
static void
calc_dfs_tree (struct dom_info *di, bool reverse)
void
dom_info::calc_dfs_tree ()
{
/* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
basic_block begin = (reverse
? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
di->dfs_to_bb[di->dfsnum] = begin;
di->dfsnum++;
*m_dfs_last = m_dfsnum;
m_dfs_to_bb[m_dfsnum] = m_start_block;
m_dfsnum++;
calc_dfs_tree_nonrec (di, begin, reverse);
calc_dfs_tree_nonrec (m_start_block);
if (reverse)
if (m_reverse)
{
/* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
They are reverse-unreachable. In the dom-case we disallow such
@ -354,48 +364,45 @@ calc_dfs_tree (struct dom_info *di, bool reverse)
basic_block b;
bool saw_unconnected = false;
FOR_EACH_BB_REVERSE_FN (b, cfun)
FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
{
if (EDGE_COUNT (b->succs) > 0)
{
if (di->dfs_order[b->index] == 0)
if (m_dfs_order[b->index] == 0)
saw_unconnected = true;
continue;
}
bitmap_set_bit (di->fake_exit_edge, b->index);
di->dfs_order[b->index] = di->dfsnum;
di->dfs_to_bb[di->dfsnum] = b;
di->dfs_parent[di->dfsnum] =
di->dfs_order[last_basic_block_for_fn (cfun)];
di->dfsnum++;
calc_dfs_tree_nonrec (di, b, reverse);
bitmap_set_bit (m_fake_exit_edge, b->index);
m_dfs_order[b->index] = m_dfsnum;
m_dfs_to_bb[m_dfsnum] = b;
m_dfs_parent[m_dfsnum] = *m_dfs_last;
m_dfsnum++;
calc_dfs_tree_nonrec (b);
}
if (saw_unconnected)
{
FOR_EACH_BB_REVERSE_FN (b, cfun)
FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
{
basic_block b2;
if (di->dfs_order[b->index])
if (m_dfs_order[b->index])
continue;
b2 = dfs_find_deadend (b);
gcc_checking_assert (di->dfs_order[b2->index] == 0);
bitmap_set_bit (di->fake_exit_edge, b2->index);
di->dfs_order[b2->index] = di->dfsnum;
di->dfs_to_bb[di->dfsnum] = b2;
di->dfs_parent[di->dfsnum] =
di->dfs_order[last_basic_block_for_fn (cfun)];
di->dfsnum++;
calc_dfs_tree_nonrec (di, b2, reverse);
gcc_checking_assert (di->dfs_order[b->index]);
basic_block b2 = dfs_find_deadend (b);
gcc_checking_assert (m_dfs_order[b2->index] == 0);
bitmap_set_bit (m_fake_exit_edge, b2->index);
m_dfs_order[b2->index] = m_dfsnum;
m_dfs_to_bb[m_dfsnum] = b2;
m_dfs_parent[m_dfsnum] = *m_dfs_last;
m_dfsnum++;
calc_dfs_tree_nonrec (b2);
gcc_checking_assert (m_dfs_order[b->index]);
}
}
}
di->nodes = di->dfsnum - 1;
m_nodes = m_dfsnum - 1;
/* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
}
/* Compress the path from V to the root of its set and update path_min at the
@ -403,19 +410,19 @@ calc_dfs_tree (struct dom_info *di, bool reverse)
in and path_min[V] is the node with the smallest key[] value on the path
from V to that root. */
static void
compress (struct dom_info *di, TBB v)
void
dom_info::compress (TBB v)
{
/* Btw. It's not worth to unrecurse compress() as the depth is usually not
greater than 5 even for huge graphs (I've not seen call depth > 4).
Also performance wise compress() ranges _far_ behind eval(). */
TBB parent = di->set_chain[v];
if (di->set_chain[parent])
TBB parent = m_set_chain[v];
if (m_set_chain[parent])
{
compress (di, parent);
if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
di->path_min[v] = di->path_min[parent];
di->set_chain[v] = di->set_chain[parent];
compress (parent);
if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
m_path_min[v] = m_path_min[parent];
m_set_chain[v] = m_set_chain[parent];
}
}
@ -423,28 +430,28 @@ compress (struct dom_info *di, TBB v)
changed since the last call). Returns the node with the smallest key[]
value on the path from V to the root. */
static inline TBB
eval (struct dom_info *di, TBB v)
inline TBB
dom_info::eval (TBB v)
{
/* The representative of the set V is in, also called root (as the set
representation is a tree). */
TBB rep = di->set_chain[v];
TBB rep = m_set_chain[v];
/* V itself is the root. */
if (!rep)
return di->path_min[v];
return m_path_min[v];
/* Compress only if necessary. */
if (di->set_chain[rep])
if (m_set_chain[rep])
{
compress (di, v);
rep = di->set_chain[v];
compress (v);
rep = m_set_chain[v];
}
if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
return di->path_min[v];
if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
return m_path_min[v];
else
return di->path_min[rep];
return m_path_min[rep];
}
/* This essentially merges the two sets of V and W, giving a single set with
@ -452,72 +459,64 @@ eval (struct dom_info *di, TBB v)
balanced tree. Currently link(V,W) is only used with V being the parent
of W. */
static void
link_roots (struct dom_info *di, TBB v, TBB w)
void
dom_info::link_roots (TBB v, TBB w)
{
TBB s = w;
/* Rebalance the tree. */
while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
{
if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
>= 2 * di->set_size[di->set_child[s]])
if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
>= 2 * m_set_size[m_set_child[s]])
{
di->set_chain[di->set_child[s]] = s;
di->set_child[s] = di->set_child[di->set_child[s]];
m_set_chain[m_set_child[s]] = s;
m_set_child[s] = m_set_child[m_set_child[s]];
}
else
{
di->set_size[di->set_child[s]] = di->set_size[s];
s = di->set_chain[s] = di->set_child[s];
m_set_size[m_set_child[s]] = m_set_size[s];
s = m_set_chain[s] = m_set_child[s];
}
}
di->path_min[s] = di->path_min[w];
di->set_size[v] += di->set_size[w];
if (di->set_size[v] < 2 * di->set_size[w])
std::swap (di->set_child[v], s);
m_path_min[s] = m_path_min[w];
m_set_size[v] += m_set_size[w];
if (m_set_size[v] < 2 * m_set_size[w])
std::swap (m_set_child[v], s);
/* Merge all subtrees. */
while (s)
{
di->set_chain[s] = v;
s = di->set_child[s];
m_set_chain[s] = v;
s = m_set_child[s];
}
}
/* This calculates the immediate dominators (or post-dominators if REVERSE is
true). DI is our working structure and should hold the DFS forest.
On return the immediate dominator to node V is in di->dom[V]. */
/* This calculates the immediate dominators (or post-dominators). THIS is our
working structure and should hold the DFS forest.
On return the immediate dominator to node V is in m_dom[V]. */
static void
calc_idoms (struct dom_info *di, bool reverse)
void
dom_info::calc_idoms ()
{
TBB v, w, k, par;
basic_block en_block;
edge_iterator ei, einext;
if (reverse)
en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
else
en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
/* Go backwards in DFS order, to first look at the leafs. */
v = di->nodes;
while (v > 1)
for (TBB v = m_nodes; v > 1; v--)
{
basic_block bb = di->dfs_to_bb[v];
basic_block bb = m_dfs_to_bb[v];
edge e;
par = di->dfs_parent[v];
k = v;
TBB par = m_dfs_parent[v];
TBB k = v;
ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
edge_iterator ei = m_reverse ? ei_start (bb->succs)
: ei_start (bb->preds);
edge_iterator einext;
if (reverse)
if (m_reverse)
{
/* If this block has a fake edge to exit, process that first. */
if (bitmap_bit_p (di->fake_exit_edge, bb->index))
if (bitmap_bit_p (m_fake_exit_edge, bb->index))
{
einext = ei;
einext.index = 0;
@ -531,56 +530,55 @@ calc_idoms (struct dom_info *di, bool reverse)
semidominator. */
while (!ei_end_p (ei))
{
TBB k1;
basic_block b;
TBB k1;
e = ei_edge (ei);
b = (reverse) ? e->dest : e->src;
b = m_reverse ? e->dest : e->src;
einext = ei;
ei_next (&einext);
if (b == en_block)
if (b == m_start_block)
{
do_fake_exit_edge:
k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
k1 = *m_dfs_last;
}
else
k1 = di->dfs_order[b->index];
k1 = m_dfs_order[b->index];
/* Call eval() only if really needed. If k1 is above V in DFS tree,
then we know, that eval(k1) == k1 and key[k1] == k1. */
if (k1 > v)
k1 = di->key[eval (di, k1)];
k1 = m_key[eval (k1)];
if (k1 < k)
k = k1;
ei = einext;
}
di->key[v] = k;
link_roots (di, par, v);
di->next_bucket[v] = di->bucket[k];
di->bucket[k] = v;
m_key[v] = k;
link_roots (par, v);
m_next_bucket[v] = m_bucket[k];
m_bucket[k] = v;
/* Transform semidominators into dominators. */
for (w = di->bucket[par]; w; w = di->next_bucket[w])
for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
{
k = eval (di, w);
if (di->key[k] < di->key[w])
di->dom[w] = k;
k = eval (w);
if (m_key[k] < m_key[w])
m_dom[w] = k;
else
di->dom[w] = par;
m_dom[w] = par;
}
/* We don't need to cleanup next_bucket[]. */
di->bucket[par] = 0;
v--;
m_bucket[par] = 0;
}
/* Explicitly define the dominators. */
di->dom[1] = 0;
for (v = 2; v <= di->nodes; v++)
if (di->dom[v] != di->key[v])
di->dom[v] = di->dom[di->dom[v]];
m_dom[1] = 0;
for (TBB v = 2; v <= m_nodes; v++)
if (m_dom[v] != m_key[v])
m_dom[v] = m_dom[m_dom[v]];
}
/* Assign dfs numbers starting from NUM to NODE and its sons. */
@ -630,12 +628,9 @@ compute_dom_fast_query (enum cdi_direction dir)
we want to compute dominators or postdominators. */
void
calculate_dominance_info (enum cdi_direction dir)
calculate_dominance_info (cdi_direction dir)
{
struct dom_info di;
basic_block b;
unsigned int dir_index = dom_convert_dir_to_idx (dir);
bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
if (dom_computed[dir_index] == DOM_OK)
{
@ -650,25 +645,23 @@ calculate_dominance_info (enum cdi_direction dir)
{
gcc_assert (!n_bbs_in_dom_tree[dir_index]);
basic_block b;
FOR_ALL_BB_FN (b, cfun)
{
b->dom[dir_index] = et_new_tree (b);
}
n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
init_dom_info (&di, dir);
calc_dfs_tree (&di, reverse);
calc_idoms (&di, reverse);
dom_info di (cfun, dir);
di.calc_dfs_tree ();
di.calc_idoms ();
FOR_EACH_BB_FN (b, cfun)
{
TBB d = di.dom[di.dfs_order[b->index]];
if (di.dfs_to_bb[d])
et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
if (basic_block d = di.get_idom (b))
et_set_father (b->dom[dir_index], d->dom[dir_index]);
}
free_dom_info (&di);
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
}
else
@ -1022,38 +1015,34 @@ bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
/* Verify invariants of dominator structure. */
DEBUG_FUNCTION void
verify_dominators (enum cdi_direction dir)
verify_dominators (cdi_direction dir)
{
int err = 0;
basic_block bb, imm_bb, imm_bb_correct;
struct dom_info di;
bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
gcc_assert (dom_info_available_p (dir));
init_dom_info (&di, dir);
calc_dfs_tree (&di, reverse);
calc_idoms (&di, reverse);
dom_info di (cfun, dir);
di.calc_dfs_tree ();
di.calc_idoms ();
bool err = false;
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
imm_bb = get_immediate_dominator (dir, bb);
basic_block imm_bb = get_immediate_dominator (dir, bb);
if (!imm_bb)
{
error ("dominator of %d status unknown", bb->index);
err = 1;
err = true;
}
imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
basic_block imm_bb_correct = di.get_idom (bb);
if (imm_bb != imm_bb_correct)
{
error ("dominator of %d should be %d, not %d",
bb->index, imm_bb_correct->index, imm_bb->index);
err = 1;
err = true;
}
}
free_dom_info (&di);
gcc_assert (!err);
}