Modify gcc/*.[hc] double_int call sites to use the new interface.

This change entailed adding a few new methods to double_int.

The change results in a 0.163% time improvement with a 70% confidence.

Tested on x86_64.


Index: gcc/ChangeLog

2012-09-06  Lawrence Crowl  <crowl@google.com>

	* double-int.h (double_int::operator &=): New.
	(double_int::operator ^=): New.
	(double_int::operator |=): New.
	(double_int::mul_with_sign): Modify overflow parameter to bool*.
	(double_int::add_with_sign): New.
	(double_int::ule): New.
	(double_int::sle): New.
	(binary double_int::operator *): Remove parameter name.
	(binary double_int::operator +): Likewise.
	(binary double_int::operator -): Likewise.
	(binary double_int::operator &): Likewise.
	(double_int::operator |): Likewise.
	(double_int::operator ^): Likewise.
	(double_int::and_not): Likewise.
	(double_int::from_shwi): Tidy formatting.
	(double_int::from_uhwi): Likewise.
	(double_int::from_uhwi): Likewise.
	* double-int.c (double_int::mul_with_sign): Modify overflow parameter
	to bool*.
	(double_int::add_with_sign): New.
	(double_int::ule): New.
	(double_int::sle): New.
	* builtins.c: Modify to use the new double_int interface.
	* cgraph.c: Likewise.
	* combine.c: Likewise.
	* dwarf2out.c: Likewise.
	* emit-rtl.c: Likewise.
	* expmed.c: Likewise.
	* expr.c: Likewise.
	* fixed-value.c: Likewise.
	* fold-const.c: Likewise.
	* gimple-fold.c: Likewise.
	* gimple-ssa-strength-reduction.c: Likewise.
	* gimplify-rtx.c: Likewise.
	* ipa-prop.c: Likewise.
	* loop-iv.c: Likewise.
	* optabs.c: Likewise.
	* stor-layout.c: Likewise.
	* tree-affine.c: Likewise.
	* tree-cfg.c: Likewise.
	* tree-dfa.c: Likewise.
	* tree-flow-inline.h: Likewise.
	* tree-object-size.c: Likewise.
	* tree-predcom.c: Likewise.
	* tree-pretty-print.c: Likewise.
	* tree-sra.c: Likewise.
	* tree-ssa-address.c: Likewise.
	* tree-ssa-alias.c: Likewise.
	* tree-ssa-ccp.c: Likewise.
	* tree-ssa-forwprop.c: Likewise.
	* tree-ssa-loop-ivopts.c: Likewise.
	* tree-ssa-loop-niter.c: Likewise.
	* tree-ssa-phiopt.c: Likewise.
	* tree-ssa-pre.c: Likewise.
	* tree-ssa-sccvn: Likewise.
	* tree-ssa-structalias.c: Likewise.
	* tree-ssa.c: Likewise.
	* tree-switch-conversion.c: Likewise.
	* tree-vect-loop-manip.c: Likewise.
	* tree-vrp.c: Likewise.
	* tree.h: Likewise.
	* tree.c: Likewise.
	* varasm.c: Likewise.

From-SVN: r191047
This commit is contained in:
Lawrence Crowl 2012-09-07 00:06:35 +00:00 committed by Lawrence Crowl
parent 316b938ed7
commit 27bcd47cfa
45 changed files with 891 additions and 924 deletions

View File

@ -1,3 +1,69 @@
2012-09-06 Lawrence Crowl <crowl@google.com>
* double-int.h (double_int::operator &=): New.
(double_int::operator ^=): New.
(double_int::operator |=): New.
(double_int::mul_with_sign): Modify overflow parameter to bool*.
(double_int::add_with_sign): New.
(double_int::ule): New.
(double_int::sle): New.
(binary double_int::operator *): Remove parameter name.
(binary double_int::operator +): Likewise.
(binary double_int::operator -): Likewise.
(binary double_int::operator &): Likewise.
(double_int::operator |): Likewise.
(double_int::operator ^): Likewise.
(double_int::and_not): Likewise.
(double_int::from_shwi): Tidy formatting.
(double_int::from_uhwi): Likewise.
(double_int::from_uhwi): Likewise.
* double-int.c (double_int::mul_with_sign): Modify overflow parameter
to bool*.
(double_int::add_with_sign): New.
(double_int::ule): New.
(double_int::sle): New.
* builtins.c: Modify to use the new double_int interface.
* cgraph.c: Likewise.
* combine.c: Likewise.
* dwarf2out.c: Likewise.
* emit-rtl.c: Likewise.
* expmed.c: Likewise.
* expr.c: Likewise.
* fixed-value.c: Likewise.
* fold-const.c: Likewise.
* gimple-fold.c: Likewise.
* gimple-ssa-strength-reduction.c: Likewise.
* gimplify-rtx.c: Likewise.
* ipa-prop.c: Likewise.
* loop-iv.c: Likewise.
* optabs.c: Likewise.
* stor-layout.c: Likewise.
* tree-affine.c: Likewise.
* tree-cfg.c: Likewise.
* tree-dfa.c: Likewise.
* tree-flow-inline.h: Likewise.
* tree-object-size.c: Likewise.
* tree-predcom.c: Likewise.
* tree-pretty-print.c: Likewise.
* tree-sra.c: Likewise.
* tree-ssa-address.c: Likewise.
* tree-ssa-alias.c: Likewise.
* tree-ssa-ccp.c: Likewise.
* tree-ssa-forwprop.c: Likewise.
* tree-ssa-loop-ivopts.c: Likewise.
* tree-ssa-loop-niter.c: Likewise.
* tree-ssa-phiopt.c: Likewise.
* tree-ssa-pre.c: Likewise.
* tree-ssa-sccvn: Likewise.
* tree-ssa-structalias.c: Likewise.
* tree-ssa.c: Likewise.
* tree-switch-conversion.c: Likewise.
* tree-vect-loop-manip.c: Likewise.
* tree-vrp.c: Likewise.
* tree.h: Likewise.
* tree.c: Likewise.
* varasm.c: Likewise.
2012-09-06 Uros Bizjak <ubizjak@gmail.com>
* configure.ac (hle prefixes): Remove .code64.

View File

@ -4990,7 +4990,7 @@ expand_builtin_signbit (tree exp, rtx target)
if (bitpos < GET_MODE_BITSIZE (rmode))
{
double_int mask = double_int_setbit (double_int_zero, bitpos);
double_int mask = double_int_zero.set_bit (bitpos);
if (GET_MODE_SIZE (imode) > GET_MODE_SIZE (rmode))
temp = gen_lowpart (rmode, temp);
@ -8775,14 +8775,14 @@ fold_builtin_memory_op (location_t loc, tree dest, tree src,
if (! operand_equal_p (TREE_OPERAND (src_base, 0),
TREE_OPERAND (dest_base, 0), 0))
return NULL_TREE;
off = double_int_add (mem_ref_offset (src_base),
shwi_to_double_int (src_offset));
if (!double_int_fits_in_shwi_p (off))
off = mem_ref_offset (src_base) +
double_int::from_shwi (src_offset);
if (!off.fits_shwi ())
return NULL_TREE;
src_offset = off.low;
off = double_int_add (mem_ref_offset (dest_base),
shwi_to_double_int (dest_offset));
if (!double_int_fits_in_shwi_p (off))
off = mem_ref_offset (dest_base) +
double_int::from_shwi (dest_offset);
if (!off.fits_shwi ())
return NULL_TREE;
dest_offset = off.low;
if (ranges_overlap_p (src_offset, maxsize,
@ -12696,7 +12696,7 @@ fold_builtin_object_size (tree ptr, tree ost)
{
bytes = compute_builtin_object_size (ptr, object_size_type);
if (double_int_fits_to_tree_p (size_type_node,
uhwi_to_double_int (bytes)))
double_int::from_uhwi (bytes)))
return build_int_cstu (size_type_node, bytes);
}
else if (TREE_CODE (ptr) == SSA_NAME)
@ -12707,7 +12707,7 @@ fold_builtin_object_size (tree ptr, tree ost)
bytes = compute_builtin_object_size (ptr, object_size_type);
if (bytes != (unsigned HOST_WIDE_INT) (object_size_type < 2 ? -1 : 0)
&& double_int_fits_to_tree_p (size_type_node,
uhwi_to_double_int (bytes)))
double_int::from_uhwi (bytes)))
return build_int_cstu (size_type_node, bytes);
}

View File

@ -484,9 +484,8 @@ cgraph_add_thunk (struct cgraph_node *decl_node ATTRIBUTE_UNUSED,
node = cgraph_create_node (alias);
gcc_checking_assert (!virtual_offset
|| double_int_equal_p
(tree_to_double_int (virtual_offset),
shwi_to_double_int (virtual_value)));
|| tree_to_double_int (virtual_offset) ==
double_int::from_shwi (virtual_value));
node->thunk.fixed_offset = fixed_offset;
node->thunk.this_adjusting = this_adjusting;
node->thunk.virtual_value = virtual_value;

View File

@ -2673,11 +2673,11 @@ try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
o = rtx_to_double_int (outer);
i = rtx_to_double_int (inner);
m = double_int_mask (width);
i = double_int_and (i, m);
m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
o = double_int_ior (double_int_and_not (o, m), i);
m = double_int::mask (width);
i &= m;
m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
o = o.and_not (m) | i;
combine_merges++;
subst_insn = i3;

View File

@ -165,8 +165,7 @@ prefer_and_bit_test (enum machine_mode mode, int bitnum)
/* Fill in the integers. */
XEXP (and_test, 1)
= immed_double_int_const (double_int_setbit (double_int_zero, bitnum),
mode);
= immed_double_int_const (double_int_zero.set_bit (bitnum), mode);
XEXP (XEXP (shift_test, 0), 1) = GEN_INT (bitnum);
speed_p = optimize_insn_for_speed_p ();

View File

@ -606,7 +606,6 @@ div_and_round_double (unsigned code, int uns,
return overflow;
}
/* Returns mask for PREC bits. */
double_int
@ -754,7 +753,7 @@ double_int::operator * (double_int b) const
*OVERFLOW is set to nonzero. */
double_int
double_int::mul_with_sign (double_int b, bool unsigned_p, int *overflow) const
double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
{
const double_int &a = *this;
double_int ret;
@ -774,6 +773,19 @@ double_int::operator + (double_int b) const
return ret;
}
/* Returns A + B. If the operation overflows according to UNSIGNED_P,
*OVERFLOW is set to nonzero. */
double_int
double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
{
const double_int &a = *this;
double_int ret;
*overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
&ret.low, &ret.high, unsigned_p);
return ret;
}
/* Returns A - B. */
double_int
@ -1104,6 +1116,20 @@ double_int::ult (double_int b) const
return false;
}
/* Compares two unsigned values A and B for less-than or equal-to. */
bool
double_int::ule (double_int b) const
{
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
return true;
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
return false;
if (low <= b.low)
return true;
return false;
}
/* Compares two unsigned values A and B for greater-than. */
bool
@ -1132,6 +1158,20 @@ double_int::slt (double_int b) const
return false;
}
/* Compares two signed values A and B for less-than or equal-to. */
bool
double_int::sle (double_int b) const
{
if (high < b.high)
return true;
if (high > b.high)
return false;
if (low <= b.low)
return true;
return false;
}
/* Compares two signed values A and B for greater-than. */
bool

View File

@ -50,9 +50,8 @@ along with GCC; see the file COPYING3. If not see
numbers with precision higher than HOST_WIDE_INT). It might be less
confusing to have them both signed or both unsigned. */
typedef struct double_int
struct double_int
{
public:
/* Normally, we would define constructors to create instances.
Two things prevent us from doing so.
First, defining a constructor makes the class non-POD in C++03,
@ -78,6 +77,9 @@ public:
double_int &operator *= (double_int);
double_int &operator += (double_int);
double_int &operator -= (double_int);
double_int &operator &= (double_int);
double_int &operator ^= (double_int);
double_int &operator |= (double_int);
/* The following functions are non-mutating operations. */
@ -104,17 +106,18 @@ public:
/* Arithmetic operation functions. */
double_int set_bit (unsigned) const;
double_int mul_with_sign (double_int, bool, int *) const;
double_int mul_with_sign (double_int, bool unsigned_p, bool *overflow) const;
double_int add_with_sign (double_int, bool unsigned_p, bool *overflow) const;
double_int operator * (double_int b) const;
double_int operator + (double_int b) const;
double_int operator - (double_int b) const;
double_int operator * (double_int) const;
double_int operator + (double_int) const;
double_int operator - (double_int) const;
double_int operator - () const;
double_int operator ~ () const;
double_int operator & (double_int b) const;
double_int operator | (double_int b) const;
double_int operator ^ (double_int b) const;
double_int and_not (double_int b) const;
double_int operator & (double_int) const;
double_int operator | (double_int) const;
double_int operator ^ (double_int) const;
double_int and_not (double_int) const;
double_int lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const;
double_int rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const;
@ -156,8 +159,10 @@ public:
int scmp (double_int b) const;
bool ult (double_int b) const;
bool ule (double_int b) const;
bool ugt (double_int b) const;
bool slt (double_int b) const;
bool sle (double_int b) const;
bool sgt (double_int b) const;
double_int max (double_int b, bool uns);
@ -176,7 +181,7 @@ public:
unsigned HOST_WIDE_INT low;
HOST_WIDE_INT high;
} double_int;
};
#define HOST_BITS_PER_DOUBLE_INT (2 * HOST_BITS_PER_WIDE_INT)
@ -185,8 +190,8 @@ public:
/* Constructs double_int from integer CST. The bits over the precision of
HOST_WIDE_INT are filled with the sign bit. */
inline
double_int double_int::from_shwi (HOST_WIDE_INT cst)
inline double_int
double_int::from_shwi (HOST_WIDE_INT cst)
{
double_int r;
r.low = (unsigned HOST_WIDE_INT) cst;
@ -215,8 +220,8 @@ shwi_to_double_int (HOST_WIDE_INT cst)
/* Constructs double_int from unsigned integer CST. The bits over the
precision of HOST_WIDE_INT are filled with zeros. */
inline
double_int double_int::from_uhwi (unsigned HOST_WIDE_INT cst)
inline double_int
double_int::from_uhwi (unsigned HOST_WIDE_INT cst)
{
double_int r;
r.low = cst;
@ -266,6 +271,27 @@ double_int::operator -= (double_int b)
return *this;
}
inline double_int &
double_int::operator &= (double_int b)
{
*this = *this & b;
return *this;
}
inline double_int &
double_int::operator ^= (double_int b)
{
*this = *this ^ b;
return *this;
}
inline double_int &
double_int::operator |= (double_int b)
{
*this = *this | b;
return *this;
}
/* Returns value of CST as a signed number. CST must satisfy
double_int::fits_signed. */
@ -346,7 +372,9 @@ inline double_int
double_int_mul_with_sign (double_int a, double_int b,
bool unsigned_p, int *overflow)
{
return a.mul_with_sign (b, unsigned_p, overflow);
bool ovf;
return a.mul_with_sign (b, unsigned_p, &ovf);
*overflow = ovf;
}
/* FIXME(crowl): Remove after converting callers. */

View File

@ -9332,13 +9332,13 @@ static inline double_int
double_int_type_size_in_bits (const_tree type)
{
if (TREE_CODE (type) == ERROR_MARK)
return uhwi_to_double_int (BITS_PER_WORD);
return double_int::from_uhwi (BITS_PER_WORD);
else if (TYPE_SIZE (type) == NULL_TREE)
return double_int_zero;
else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
return tree_to_double_int (TYPE_SIZE (type));
else
return uhwi_to_double_int (TYPE_ALIGN (type));
return double_int::from_uhwi (TYPE_ALIGN (type));
}
/* Given a pointer to a tree node for a subrange type, return a pointer
@ -11758,7 +11758,7 @@ mem_loc_descriptor (rtx rtl, enum machine_mode mode,
mem_loc_result->dw_loc_oprnd2.val_class
= dw_val_class_const_double;
mem_loc_result->dw_loc_oprnd2.v.val_double
= shwi_to_double_int (INTVAL (rtl));
= double_int::from_shwi (INTVAL (rtl));
}
}
break;
@ -12317,7 +12317,7 @@ loc_descriptor (rtx rtl, enum machine_mode mode,
double_int val = rtx_to_double_int (elt);
if (elt_size <= sizeof (HOST_WIDE_INT))
insert_int (double_int_to_shwi (val), elt_size, p);
insert_int (val.to_shwi (), elt_size, p);
else
{
gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
@ -13646,11 +13646,11 @@ simple_decl_align_in_bits (const_tree decl)
static inline double_int
round_up_to_align (double_int t, unsigned int align)
{
double_int alignd = uhwi_to_double_int (align);
t = double_int_add (t, alignd);
t = double_int_add (t, double_int_minus_one);
t = double_int_div (t, alignd, true, TRUNC_DIV_EXPR);
t = double_int_mul (t, alignd);
double_int alignd = double_int::from_uhwi (align);
t += alignd;
t += double_int_minus_one;
t = t.div (alignd, true, TRUNC_DIV_EXPR);
t *= alignd;
return t;
}
@ -13757,23 +13757,21 @@ field_byte_offset (const_tree decl)
/* Figure out the bit-distance from the start of the structure to
the "deepest" bit of the bit-field. */
deepest_bitpos = double_int_add (bitpos_int, field_size_in_bits);
deepest_bitpos = bitpos_int + field_size_in_bits;
/* This is the tricky part. Use some fancy footwork to deduce
where the lowest addressed bit of the containing object must
be. */
object_offset_in_bits
= double_int_sub (deepest_bitpos, type_size_in_bits);
object_offset_in_bits = deepest_bitpos - type_size_in_bits;
/* Round up to type_align by default. This works best for
bitfields. */
object_offset_in_bits
= round_up_to_align (object_offset_in_bits, type_align_in_bits);
if (double_int_ucmp (object_offset_in_bits, bitpos_int) > 0)
if (object_offset_in_bits.ugt (bitpos_int))
{
object_offset_in_bits
= double_int_sub (deepest_bitpos, type_size_in_bits);
object_offset_in_bits = deepest_bitpos - type_size_in_bits;
/* Round up to decl_align instead. */
object_offset_in_bits
@ -13785,10 +13783,9 @@ field_byte_offset (const_tree decl)
object_offset_in_bits = bitpos_int;
object_offset_in_bytes
= double_int_div (object_offset_in_bits,
uhwi_to_double_int (BITS_PER_UNIT), true,
TRUNC_DIV_EXPR);
return double_int_to_shwi (object_offset_in_bytes);
= object_offset_in_bits.div (double_int::from_uhwi (BITS_PER_UNIT),
true, TRUNC_DIV_EXPR);
return object_offset_in_bytes.to_shwi ();
}
/* The following routines define various Dwarf attributes and any data
@ -14064,7 +14061,7 @@ add_const_value_attribute (dw_die_ref die, rtx rtl)
double_int val = rtx_to_double_int (elt);
if (elt_size <= sizeof (HOST_WIDE_INT))
insert_int (double_int_to_shwi (val), elt_size, p);
insert_int (val.to_shwi (), elt_size, p);
else
{
gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));

View File

@ -490,7 +490,7 @@ rtx_to_double_int (const_rtx cst)
double_int r;
if (CONST_INT_P (cst))
r = shwi_to_double_int (INTVAL (cst));
r = double_int::from_shwi (INTVAL (cst));
else if (CONST_DOUBLE_AS_INT_P (cst))
{
r.low = CONST_DOUBLE_LOW (cst);

View File

@ -1985,11 +1985,11 @@ mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
{
double_int mask;
mask = double_int_mask (bitsize);
mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
mask = double_int::mask (bitsize);
mask = mask.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
if (complement)
mask = double_int_not (mask);
mask = ~mask;
return immed_double_int_const (mask, mode);
}
@ -2002,8 +2002,8 @@ lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
{
double_int val;
val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
val = double_int::from_uhwi (INTVAL (value)).zext (bitsize);
val = val.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
return immed_double_int_const (val, mode);
}

View File

@ -727,11 +727,11 @@ convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int uns
&& GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT
&& CONST_INT_P (x) && INTVAL (x) < 0)
{
double_int val = uhwi_to_double_int (INTVAL (x));
double_int val = double_int::from_uhwi (INTVAL (x));
/* We need to zero extend VAL. */
if (oldmode != VOIDmode)
val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
val = val.zext (GET_MODE_BITSIZE (oldmode));
return immed_double_int_const (val, mode);
}
@ -6557,9 +6557,7 @@ get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
switch (TREE_CODE (exp))
{
case BIT_FIELD_REF:
bit_offset
= double_int_add (bit_offset,
tree_to_double_int (TREE_OPERAND (exp, 2)));
bit_offset += tree_to_double_int (TREE_OPERAND (exp, 2));
break;
case COMPONENT_REF:
@ -6574,9 +6572,7 @@ get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
break;
offset = size_binop (PLUS_EXPR, offset, this_offset);
bit_offset = double_int_add (bit_offset,
tree_to_double_int
(DECL_FIELD_BIT_OFFSET (field)));
bit_offset += tree_to_double_int (DECL_FIELD_BIT_OFFSET (field));
/* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
}
@ -6608,8 +6604,7 @@ get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
break;
case IMAGPART_EXPR:
bit_offset = double_int_add (bit_offset,
uhwi_to_double_int (*pbitsize));
bit_offset += double_int::from_uhwi (*pbitsize);
break;
case VIEW_CONVERT_EXPR:
@ -6631,11 +6626,10 @@ get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
if (!integer_zerop (off))
{
double_int boff, coff = mem_ref_offset (exp);
boff = double_int_lshift (coff,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
bit_offset = double_int_add (bit_offset, boff);
boff = coff.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
bit_offset += boff;
}
exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
}
@ -6659,15 +6653,13 @@ get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
if (TREE_CODE (offset) == INTEGER_CST)
{
double_int tem = tree_to_double_int (offset);
tem = double_int_sext (tem, TYPE_PRECISION (sizetype));
tem = double_int_lshift (tem,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
tem = double_int_add (tem, bit_offset);
if (double_int_fits_in_shwi_p (tem))
tem = tem.sext (TYPE_PRECISION (sizetype));
tem = tem.alshift (BITS_PER_UNIT == 8 ? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
tem += bit_offset;
if (tem.fits_shwi ())
{
*pbitpos = double_int_to_shwi (tem);
*pbitpos = tem.to_shwi ();
*poffset = offset = NULL_TREE;
}
}
@ -6676,24 +6668,23 @@ get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
if (offset)
{
/* Avoid returning a negative bitpos as this may wreak havoc later. */
if (double_int_negative_p (bit_offset))
if (bit_offset.is_negative ())
{
double_int mask
= double_int_mask (BITS_PER_UNIT == 8
= double_int::mask (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT));
double_int tem = double_int_and_not (bit_offset, mask);
double_int tem = bit_offset.and_not (mask);
/* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
bit_offset = double_int_sub (bit_offset, tem);
tem = double_int_rshift (tem,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
bit_offset -= tem;
tem = tem.arshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
offset = size_binop (PLUS_EXPR, offset,
double_int_to_tree (sizetype, tem));
}
*pbitpos = double_int_to_shwi (bit_offset);
*pbitpos = bit_offset.to_shwi ();
*poffset = offset;
}
@ -8720,7 +8711,7 @@ expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
if (reduce_bit_field && TYPE_UNSIGNED (type))
temp = expand_binop (mode, xor_optab, op0,
immed_double_int_const
(double_int_mask (TYPE_PRECISION (type)), mode),
(double_int::mask (TYPE_PRECISION (type)), mode),
target, 1, OPTAB_LIB_WIDEN);
else
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
@ -10407,7 +10398,7 @@ reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
}
else if (TYPE_UNSIGNED (type))
{
rtx mask = immed_double_int_const (double_int_mask (prec),
rtx mask = immed_double_int_const (double_int::mask (prec),
GET_MODE (exp));
return expand_and (GET_MODE (exp), exp, mask, target);
}

View File

@ -376,9 +376,8 @@ do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
{
f->data = a->data * b->data;
f->data = f->data.lshift ((-GET_MODE_FBIT (f->mode)),
HOST_BITS_PER_DOUBLE_INT,
!unsigned_p);
f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
}
else
@ -466,9 +465,8 @@ do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
f->data.high = f->data.high | s.high;
s.low = f->data.low;
s.high = f->data.high;
r = r.lshift ((-GET_MODE_FBIT (f->mode)),
HOST_BITS_PER_DOUBLE_INT,
!unsigned_p);
r = r.lshift (-GET_MODE_FBIT (f->mode),
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
}
overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
@ -493,8 +491,7 @@ do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
{
f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
HOST_BITS_PER_DOUBLE_INT,
!unsigned_p);
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
}
@ -612,9 +609,8 @@ do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
{
f->data = a->data.lshift (left_p ? b->data.low : (-b->data.low),
HOST_BITS_PER_DOUBLE_INT,
!unsigned_p);
f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
if (left_p) /* Only left shift saturates. */
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
}
@ -630,8 +626,7 @@ do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
else
{
temp_low = a->data.lshift (b->data.low,
HOST_BITS_PER_DOUBLE_INT,
!unsigned_p);
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
/* Logical shift right to temp_high. */
temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
HOST_BITS_PER_DOUBLE_INT);
@ -801,8 +796,8 @@ fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
double_int temp_high, temp_low;
int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
temp_low = a->data.lshift (amount,
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (a->mode));
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (a->mode));
/* Logical shift right to temp_high. */
temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
HOST_BITS_PER_DOUBLE_INT);
@ -864,8 +859,8 @@ fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
/* Right shift a to temp based on a->mode. */
double_int temp;
temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (a->mode));
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (a->mode));
f->mode = mode;
f->data = temp;
if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==

View File

@ -192,11 +192,10 @@ div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
a signed division. */
uns = TYPE_UNSIGNED (TREE_TYPE (arg2));
quo = double_int_divmod (tree_to_double_int (arg1),
tree_to_double_int (arg2),
uns, code, &rem);
quo = tree_to_double_int (arg1).divmod (tree_to_double_int (arg2),
uns, code, &rem);
if (double_int_zero_p (rem))
if (rem.is_zero ())
return build_int_cst_wide (TREE_TYPE (arg1), quo.low, quo.high);
return NULL_TREE;
@ -948,55 +947,52 @@ int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2,
switch (code)
{
case BIT_IOR_EXPR:
res = double_int_ior (op1, op2);
res = op1 | op2;
break;
case BIT_XOR_EXPR:
res = double_int_xor (op1, op2);
res = op1 ^ op2;
break;
case BIT_AND_EXPR:
res = double_int_and (op1, op2);
res = op1 & op2;
break;
case RSHIFT_EXPR:
res = double_int_rshift (op1, double_int_to_shwi (op2),
TYPE_PRECISION (type), !uns);
res = op1.rshift (op2.to_shwi (), TYPE_PRECISION (type), !uns);
break;
case LSHIFT_EXPR:
/* It's unclear from the C standard whether shifts can overflow.
The following code ignores overflow; perhaps a C standard
interpretation ruling is needed. */
res = double_int_lshift (op1, double_int_to_shwi (op2),
TYPE_PRECISION (type), !uns);
res = op1.lshift (op2.to_shwi (), TYPE_PRECISION (type), !uns);
break;
case RROTATE_EXPR:
res = double_int_rrotate (op1, double_int_to_shwi (op2),
TYPE_PRECISION (type));
res = op1.rrotate (op2.to_shwi (), TYPE_PRECISION (type));
break;
case LROTATE_EXPR:
res = double_int_lrotate (op1, double_int_to_shwi (op2),
TYPE_PRECISION (type));
res = op1.lrotate (op2.to_shwi (), TYPE_PRECISION (type));
break;
case PLUS_EXPR:
overflow = add_double (op1.low, op1.high, op2.low, op2.high,
&res.low, &res.high);
res = op1.add_with_sign (op2, false, &overflow);
break;
case MINUS_EXPR:
/* FIXME(crowl) Remove this code if the replacment works.
neg_double (op2.low, op2.high, &res.low, &res.high);
add_double (op1.low, op1.high, res.low, res.high,
&res.low, &res.high);
overflow = OVERFLOW_SUM_SIGN (res.high, op2.high, op1.high);
*/
res = op1.add_with_sign (-op2, false, &overflow);
break;
case MULT_EXPR:
overflow = mul_double (op1.low, op1.high, op2.low, op2.high,
&res.low, &res.high);
res = op1.mul_with_sign (op2, false, &overflow);
break;
case MULT_HIGHPART_EXPR:
@ -1004,9 +1000,8 @@ int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2,
to the multiply primitive, to handle very large highparts. */
if (TYPE_PRECISION (type) > HOST_BITS_PER_WIDE_INT)
return NULL_TREE;
tmp = double_int_mul (op1, op2);
res = double_int_rshift (tmp, TYPE_PRECISION (type),
TYPE_PRECISION (type), !uns);
tmp = op1 - op2;
res = tmp.rshift (TYPE_PRECISION (type), TYPE_PRECISION (type), !uns);
break;
case TRUNC_DIV_EXPR:
@ -1028,15 +1023,14 @@ int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2,
/* ... fall through ... */
case ROUND_DIV_EXPR:
if (double_int_zero_p (op2))
if (op2.is_zero ())
return NULL_TREE;
if (double_int_one_p (op2))
if (op2.is_one ())
{
res = op1;
break;
}
if (double_int_equal_p (op1, op2)
&& ! double_int_zero_p (op1))
if (op1 == op2 && !op1.is_zero ())
{
res = double_int_one;
break;
@ -1064,7 +1058,7 @@ int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2,
/* ... fall through ... */
case ROUND_MOD_EXPR:
if (double_int_zero_p (op2))
if (op2.is_zero ())
return NULL_TREE;
overflow = div_and_round_double (code, uns,
op1.low, op1.high, op2.low, op2.high,
@ -1073,11 +1067,11 @@ int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2,
break;
case MIN_EXPR:
res = double_int_min (op1, op2, uns);
res = op1.min (op2, uns);
break;
case MAX_EXPR:
res = double_int_max (op1, op2, uns);
res = op1.max (op2, uns);
break;
default:
@ -1602,14 +1596,14 @@ fold_convert_const_int_from_fixed (tree type, const_tree arg1)
mode = TREE_FIXED_CST (arg1).mode;
if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
{
temp = double_int_rshift (temp, GET_MODE_FBIT (mode),
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (mode));
temp = temp.rshift (GET_MODE_FBIT (mode),
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (mode));
/* Left shift temp to temp_trunc by fbit. */
temp_trunc = double_int_lshift (temp, GET_MODE_FBIT (mode),
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (mode));
temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
HOST_BITS_PER_DOUBLE_INT,
SIGNED_FIXED_POINT_MODE_P (mode));
}
else
{
@ -1620,14 +1614,14 @@ fold_convert_const_int_from_fixed (tree type, const_tree arg1)
/* If FIXED_CST is negative, we need to round the value toward 0.
By checking if the fractional bits are not zero to add 1 to temp. */
if (SIGNED_FIXED_POINT_MODE_P (mode)
&& double_int_negative_p (temp_trunc)
&& !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
temp = double_int_add (temp, double_int_one);
&& temp_trunc.is_negative ()
&& TREE_FIXED_CST (arg1).data != temp_trunc)
temp += double_int_one;
/* Given a fixed-point constant, make new constant with new type,
appropriately sign-extended or truncated. */
t = force_fit_type_double (type, temp, -1,
(double_int_negative_p (temp)
(temp.is_negative ()
&& (TYPE_UNSIGNED (type)
< TYPE_UNSIGNED (TREE_TYPE (arg1))))
| TREE_OVERFLOW (arg1));
@ -5890,20 +5884,16 @@ extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
if (tcode == code)
{
double_int mul;
int overflow_p;
mul = double_int_mul_with_sign
(double_int_ext
(tree_to_double_int (op1),
TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
double_int_ext
(tree_to_double_int (c),
TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
false, &overflow_p);
overflow_p = ((!TYPE_UNSIGNED (ctype) && overflow_p)
bool overflow_p;
unsigned prec = TYPE_PRECISION (ctype);
bool uns = TYPE_UNSIGNED (ctype);
double_int diop1 = tree_to_double_int (op1).ext (prec, uns);
double_int dic = tree_to_double_int (c).ext (prec, uns);
mul = diop1.mul_with_sign (dic, false, &overflow_p);
overflow_p = ((!uns && overflow_p)
| TREE_OVERFLOW (c) | TREE_OVERFLOW (op1));
if (!double_int_fits_to_tree_p (ctype, mul)
&& ((TYPE_UNSIGNED (ctype) && tcode != MULT_EXPR)
|| !TYPE_UNSIGNED (ctype)))
&& ((uns && tcode != MULT_EXPR) || !uns))
overflow_p = 1;
if (!overflow_p)
return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
@ -11044,24 +11034,23 @@ fold_binary_loc (location_t loc,
c2 = tree_to_double_int (arg1);
/* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
if (double_int_equal_p (double_int_and (c1, c2), c1))
if ((c1 & c2) == c1)
return omit_one_operand_loc (loc, type, arg1,
TREE_OPERAND (arg0, 0));
msk = double_int_mask (width);
msk = double_int::mask (width);
/* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
if (double_int_zero_p (double_int_and_not (msk,
double_int_ior (c1, c2))))
if (msk.and_not (c1 | c2).is_zero ())
return fold_build2_loc (loc, BIT_IOR_EXPR, type,
TREE_OPERAND (arg0, 0), arg1);
/* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
mode which allows further optimizations. */
c1 = double_int_and (c1, msk);
c2 = double_int_and (c2, msk);
c3 = double_int_and_not (c1, c2);
c1 &= msk;
c2 &= msk;
c3 = c1.and_not (c2);
for (w = BITS_PER_UNIT;
w <= width && w <= HOST_BITS_PER_WIDE_INT;
w <<= 1)
@ -11071,11 +11060,11 @@ fold_binary_loc (location_t loc,
if (((c1.low | c2.low) & mask) == mask
&& (c1.low & ~mask) == 0 && c1.high == 0)
{
c3 = uhwi_to_double_int (mask);
c3 = double_int::from_uhwi (mask);
break;
}
}
if (!double_int_equal_p (c3, c1))
if (c3 != c1)
return fold_build2_loc (loc, BIT_IOR_EXPR, type,
fold_build2_loc (loc, BIT_AND_EXPR, type,
TREE_OPERAND (arg0, 0),
@ -11451,10 +11440,9 @@ fold_binary_loc (location_t loc,
if (TREE_CODE (arg1) == INTEGER_CST)
{
double_int cst1 = tree_to_double_int (arg1);
double_int ncst1 = double_int_ext (double_int_neg (cst1),
TYPE_PRECISION (TREE_TYPE (arg1)),
TYPE_UNSIGNED (TREE_TYPE (arg1)));
if (double_int_equal_p (double_int_and (cst1, ncst1), ncst1)
double_int ncst1 = (-cst1).ext(TYPE_PRECISION (TREE_TYPE (arg1)),
TYPE_UNSIGNED (TREE_TYPE (arg1)));
if ((cst1 & ncst1) == ncst1
&& multiple_of_p (type, arg0,
double_int_to_tree (TREE_TYPE (arg1), ncst1)))
return fold_convert_loc (loc, type, arg0);
@ -11467,18 +11455,18 @@ fold_binary_loc (location_t loc,
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
{
int arg1tz
= double_int_ctz (tree_to_double_int (TREE_OPERAND (arg0, 1)));
= tree_to_double_int (TREE_OPERAND (arg0, 1)).trailing_zeros ();
if (arg1tz > 0)
{
double_int arg1mask, masked;
arg1mask = double_int_not (double_int_mask (arg1tz));
arg1mask = double_int_ext (arg1mask, TYPE_PRECISION (type),
arg1mask = ~double_int::mask (arg1tz);
arg1mask = arg1mask.ext (TYPE_PRECISION (type),
TYPE_UNSIGNED (type));
masked = double_int_and (arg1mask, tree_to_double_int (arg1));
if (double_int_zero_p (masked))
masked = arg1mask & tree_to_double_int (arg1);
if (masked.is_zero ())
return omit_two_operands_loc (loc, type, build_zero_cst (type),
arg0, arg1);
else if (!double_int_equal_p (masked, tree_to_double_int (arg1)))
else if (masked != tree_to_double_int (arg1))
return fold_build2_loc (loc, code, type, op0,
double_int_to_tree (type, masked));
}
@ -16002,7 +15990,7 @@ fold_abs_const (tree arg0, tree type)
/* If the value is unsigned or non-negative, then the absolute value
is the same as the ordinary value. */
if (TYPE_UNSIGNED (type)
|| !double_int_negative_p (val))
|| !val.is_negative ())
t = arg0;
/* If the value is negative, then the absolute value is
@ -16042,7 +16030,7 @@ fold_not_const (const_tree arg0, tree type)
gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
val = double_int_not (tree_to_double_int (arg0));
val = ~tree_to_double_int (arg0);
return force_fit_type_double (type, val, 0, TREE_OVERFLOW (arg0));
}

View File

@ -2807,32 +2807,28 @@ fold_array_ctor_reference (tree type, tree ctor,
be larger than size of array element. */
if (!TYPE_SIZE_UNIT (type)
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
|| double_int_cmp (elt_size,
tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0)
|| elt_size.slt (tree_to_double_int (TYPE_SIZE_UNIT (type))))
return NULL_TREE;
/* Compute the array index we look for. */
access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT),
elt_size, TRUNC_DIV_EXPR);
access_index = double_int_add (access_index, low_bound);
access_index = double_int::from_uhwi (offset / BITS_PER_UNIT)
.udiv (elt_size, TRUNC_DIV_EXPR);
access_index += low_bound;
if (index_type)
access_index = double_int_ext (access_index,
TYPE_PRECISION (index_type),
TYPE_UNSIGNED (index_type));
access_index = access_index.ext (TYPE_PRECISION (index_type),
TYPE_UNSIGNED (index_type));
/* And offset within the access. */
inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT);
inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
/* See if the array field is large enough to span whole access. We do not
care to fold accesses spanning multiple array indexes. */
if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT)
if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT)
return NULL_TREE;
index = double_int_sub (low_bound, double_int_one);
index = low_bound - double_int_one;
if (index_type)
index = double_int_ext (index,
TYPE_PRECISION (index_type),
TYPE_UNSIGNED (index_type));
index = index.ext (TYPE_PRECISION (index_type), TYPE_UNSIGNED (index_type));
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
{
@ -2852,17 +2848,16 @@ fold_array_ctor_reference (tree type, tree ctor,
}
else
{
index = double_int_add (index, double_int_one);
index += double_int_one;
if (index_type)
index = double_int_ext (index,
TYPE_PRECISION (index_type),
TYPE_UNSIGNED (index_type));
index = index.ext (TYPE_PRECISION (index_type),
TYPE_UNSIGNED (index_type));
max_index = index;
}
/* Do we have match? */
if (double_int_cmp (access_index, index, 1) >= 0
&& double_int_cmp (access_index, max_index, 1) <= 0)
if (access_index.cmp (index, 1) >= 0
&& access_index.cmp (max_index, 1) <= 0)
return fold_ctor_reference (type, cval, inner_offset, size,
from_decl);
}
@ -2891,7 +2886,7 @@ fold_nonarray_ctor_reference (tree type, tree ctor,
tree field_size = DECL_SIZE (cfield);
double_int bitoffset;
double_int byte_offset_cst = tree_to_double_int (byte_offset);
double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT);
double_int bits_per_unit_cst = double_int::from_uhwi (BITS_PER_UNIT);
double_int bitoffset_end, access_end;
/* Variable sized objects in static constructors makes no sense,
@ -2903,37 +2898,33 @@ fold_nonarray_ctor_reference (tree type, tree ctor,
: TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
/* Compute bit offset of the field. */
bitoffset = double_int_add (tree_to_double_int (field_offset),
double_int_mul (byte_offset_cst,
bits_per_unit_cst));
bitoffset = tree_to_double_int (field_offset)
+ byte_offset_cst * bits_per_unit_cst;
/* Compute bit offset where the field ends. */
if (field_size != NULL_TREE)
bitoffset_end = double_int_add (bitoffset,
tree_to_double_int (field_size));
bitoffset_end = bitoffset + tree_to_double_int (field_size);
else
bitoffset_end = double_int_zero;
access_end = double_int_add (uhwi_to_double_int (offset),
uhwi_to_double_int (size));
access_end = double_int::from_uhwi (offset)
+ double_int::from_uhwi (size);
/* Is there any overlap between [OFFSET, OFFSET+SIZE) and
[BITOFFSET, BITOFFSET_END)? */
if (double_int_cmp (access_end, bitoffset, 0) > 0
if (access_end.cmp (bitoffset, 0) > 0
&& (field_size == NULL_TREE
|| double_int_cmp (uhwi_to_double_int (offset),
bitoffset_end, 0) < 0))
|| double_int::from_uhwi (offset).slt (bitoffset_end)))
{
double_int inner_offset = double_int_sub (uhwi_to_double_int (offset),
bitoffset);
double_int inner_offset = double_int::from_uhwi (offset) - bitoffset;
/* We do have overlap. Now see if field is large enough to
cover the access. Give up for accesses spanning multiple
fields. */
if (double_int_cmp (access_end, bitoffset_end, 0) > 0)
if (access_end.cmp (bitoffset_end, 0) > 0)
return NULL_TREE;
if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) < 0)
if (double_int::from_uhwi (offset).slt (bitoffset))
return NULL_TREE;
return fold_ctor_reference (type, cval,
double_int_to_uhwi (inner_offset), size,
inner_offset.to_uhwi (), size,
from_decl);
}
}
@ -3028,13 +3019,11 @@ fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
TREE_CODE (low_bound) == INTEGER_CST)
&& (unit_size = array_ref_element_size (t),
host_integerp (unit_size, 1))
&& (doffset = double_int_sext
(double_int_sub (TREE_INT_CST (idx),
TREE_INT_CST (low_bound)),
TYPE_PRECISION (TREE_TYPE (idx))),
double_int_fits_in_shwi_p (doffset)))
&& (doffset = (TREE_INT_CST (idx) - TREE_INT_CST (low_bound))
.sext (TYPE_PRECISION (TREE_TYPE (idx))),
doffset.fits_shwi ()))
{
offset = double_int_to_shwi (doffset);
offset = doffset.to_shwi ();
offset *= TREE_INT_CST_LOW (unit_size);
offset *= BITS_PER_UNIT;

View File

@ -539,7 +539,7 @@ restructure_reference (tree *pbase, tree *poffset, double_int *pindex,
{
tree base = *pbase, offset = *poffset;
double_int index = *pindex;
double_int bpu = uhwi_to_double_int (BITS_PER_UNIT);
double_int bpu = double_int::from_uhwi (BITS_PER_UNIT);
tree mult_op0, mult_op1, t1, t2, type;
double_int c1, c2, c3, c4;
@ -548,7 +548,7 @@ restructure_reference (tree *pbase, tree *poffset, double_int *pindex,
|| TREE_CODE (base) != MEM_REF
|| TREE_CODE (offset) != MULT_EXPR
|| TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
|| !double_int_zero_p (double_int_umod (index, bpu, FLOOR_MOD_EXPR)))
|| !index.umod (bpu, FLOOR_MOD_EXPR).is_zero ())
return false;
t1 = TREE_OPERAND (base, 0);
@ -575,7 +575,7 @@ restructure_reference (tree *pbase, tree *poffset, double_int *pindex,
if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
{
t2 = TREE_OPERAND (mult_op0, 0);
c2 = double_int_neg (tree_to_double_int (TREE_OPERAND (mult_op0, 1)));
c2 = -tree_to_double_int (TREE_OPERAND (mult_op0, 1));
}
else
return false;
@ -586,12 +586,12 @@ restructure_reference (tree *pbase, tree *poffset, double_int *pindex,
c2 = double_int_zero;
}
c4 = double_int_udiv (index, bpu, FLOOR_DIV_EXPR);
c4 = index.udiv (bpu, FLOOR_DIV_EXPR);
*pbase = t1;
*poffset = fold_build2 (MULT_EXPR, sizetype, t2,
double_int_to_tree (sizetype, c3));
*pindex = double_int_add (double_int_add (c1, double_int_mul (c2, c3)), c4);
*pindex = c1 + c2 * c3 + c4;
*ptype = type;
return true;
@ -623,7 +623,7 @@ slsr_process_ref (gimple gs)
base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &volatilep, false);
index = uhwi_to_double_int (bitpos);
index = double_int::from_uhwi (bitpos);
if (!restructure_reference (&base, &offset, &index, &type))
return;
@ -677,8 +677,7 @@ create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
============================
X = B + ((i' * S) * Z) */
base = base_cand->base_expr;
index = double_int_mul (base_cand->index,
tree_to_double_int (base_cand->stride));
index = base_cand->index * tree_to_double_int (base_cand->stride);
stride = stride_in;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
@ -734,8 +733,8 @@ create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
X = (B + i') * (S * c) */
base = base_cand->base_expr;
index = base_cand->index;
temp = double_int_mul (tree_to_double_int (base_cand->stride),
tree_to_double_int (stride_in));
temp = tree_to_double_int (base_cand->stride)
* tree_to_double_int (stride_in);
stride = double_int_to_tree (TREE_TYPE (stride_in), temp);
ctype = base_cand->cand_type;
if (has_single_use (base_in))
@ -758,7 +757,7 @@ create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
+ stmt_cost (base_cand->cand_stmt, speed));
}
else if (base_cand->kind == CAND_ADD
&& double_int_one_p (base_cand->index)
&& base_cand->index.is_one ()
&& TREE_CODE (base_cand->stride) == INTEGER_CST)
{
/* Y = B + (1 * S), S constant
@ -859,7 +858,7 @@ create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
while (addend_cand && !base)
{
if (addend_cand->kind == CAND_MULT
&& double_int_zero_p (addend_cand->index)
&& addend_cand->index.is_zero ()
&& TREE_CODE (addend_cand->stride) == INTEGER_CST)
{
/* Z = (B + 0) * S, S constant
@ -869,7 +868,7 @@ create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
base = base_in;
index = tree_to_double_int (addend_cand->stride);
if (subtract_p)
index = double_int_neg (index);
index = -index;
stride = addend_cand->base_expr;
ctype = TREE_TYPE (base_in);
if (has_single_use (addend_in))
@ -886,7 +885,7 @@ create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
while (base_cand && !base)
{
if (base_cand->kind == CAND_ADD
&& (double_int_zero_p (base_cand->index)
&& (base_cand->index.is_zero ()
|| operand_equal_p (base_cand->stride,
integer_zero_node, 0)))
{
@ -909,7 +908,7 @@ create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
while (subtrahend_cand && !base)
{
if (subtrahend_cand->kind == CAND_MULT
&& double_int_zero_p (subtrahend_cand->index)
&& subtrahend_cand->index.is_zero ()
&& TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
{
/* Z = (B + 0) * S, S constant
@ -918,7 +917,7 @@ create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
Value: X = Y + ((-1 * S) * B) */
base = base_in;
index = tree_to_double_int (subtrahend_cand->stride);
index = double_int_neg (index);
index = -index;
stride = subtrahend_cand->base_expr;
ctype = TREE_TYPE (base_in);
if (has_single_use (addend_in))
@ -973,10 +972,8 @@ create_add_imm_cand (gimple gs, tree base_in, double_int index_in, bool speed)
bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (base_cand->stride));
if (TREE_CODE (base_cand->stride) == INTEGER_CST
&& double_int_multiple_of (index_in,
tree_to_double_int (base_cand->stride),
unsigned_p,
&multiple))
&& index_in.multiple_of (tree_to_double_int (base_cand->stride),
unsigned_p, &multiple))
{
/* Y = (B + i') * S, S constant, c = kS for some integer k
X = Y + c
@ -989,7 +986,7 @@ create_add_imm_cand (gimple gs, tree base_in, double_int index_in, bool speed)
X = (B + (i'+ k)) * S */
kind = base_cand->kind;
base = base_cand->base_expr;
index = double_int_add (base_cand->index, multiple);
index = base_cand->index + multiple;
stride = base_cand->stride;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
@ -1066,7 +1063,7 @@ slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
/* Record an interpretation for the add-immediate. */
index = tree_to_double_int (rhs2);
if (subtract_p)
index = double_int_neg (index);
index = -index;
c = create_add_imm_cand (gs, rhs1, index, speed);
@ -1581,7 +1578,7 @@ cand_increment (slsr_cand_t c)
basis = lookup_cand (c->basis);
gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
return double_int_sub (c->index, basis->index);
return c->index - basis->index;
}
/* Calculate the increment required for candidate C relative to
@ -1594,8 +1591,8 @@ cand_abs_increment (slsr_cand_t c)
{
double_int increment = cand_increment (c);
if (!address_arithmetic_p && double_int_negative_p (increment))
increment = double_int_neg (increment);
if (!address_arithmetic_p && increment.is_negative ())
increment = -increment;
return increment;
}
@ -1626,7 +1623,7 @@ static void
replace_dependent (slsr_cand_t c, enum tree_code cand_code)
{
double_int stride = tree_to_double_int (c->stride);
double_int bump = double_int_mul (cand_increment (c), stride);
double_int bump = cand_increment (c) * stride;
gimple stmt_to_print = NULL;
slsr_cand_t basis;
tree basis_name, incr_type, bump_tree;
@ -1637,7 +1634,7 @@ replace_dependent (slsr_cand_t c, enum tree_code cand_code)
in this case. Restriction to signed HWI is conservative
for unsigned types but allows for safe negation without
twisted logic. */
if (!double_int_fits_in_shwi_p (bump))
if (!bump.fits_shwi ())
return;
basis = lookup_cand (c->basis);
@ -1645,10 +1642,10 @@ replace_dependent (slsr_cand_t c, enum tree_code cand_code)
incr_type = TREE_TYPE (gimple_assign_rhs1 (c->cand_stmt));
code = PLUS_EXPR;
if (double_int_negative_p (bump))
if (bump.is_negative ())
{
code = MINUS_EXPR;
bump = double_int_neg (bump);
bump = -bump;
}
bump_tree = double_int_to_tree (incr_type, bump);
@ -1659,7 +1656,7 @@ replace_dependent (slsr_cand_t c, enum tree_code cand_code)
print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
}
if (double_int_zero_p (bump))
if (bump.is_zero ())
{
tree lhs = gimple_assign_lhs (c->cand_stmt);
gimple copy_stmt = gimple_build_assign (lhs, basis_name);
@ -1739,9 +1736,7 @@ incr_vec_index (double_int increment)
{
unsigned i;
for (i = 0;
i < incr_vec_len && !double_int_equal_p (increment, incr_vec[i].incr);
i++)
for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
;
gcc_assert (i < incr_vec_len);
@ -1778,12 +1773,12 @@ record_increment (slsr_cand_t c, double_int increment)
/* Treat increments that differ only in sign as identical so as to
share initializers, unless we are generating pointer arithmetic. */
if (!address_arithmetic_p && double_int_negative_p (increment))
increment = double_int_neg (increment);
if (!address_arithmetic_p && increment.is_negative ())
increment = -increment;
for (i = 0; i < incr_vec_len; i++)
{
if (double_int_equal_p (incr_vec[i].incr, increment))
if (incr_vec[i].incr == increment)
{
incr_vec[i].count++;
found = true;
@ -1819,9 +1814,9 @@ record_increment (slsr_cand_t c, double_int increment)
opinion later if it doesn't dominate all other occurrences.
Exception: increments of -1, 0, 1 never need initializers. */
if (c->kind == CAND_ADD
&& double_int_equal_p (c->index, increment)
&& (double_int_scmp (increment, double_int_one) > 0
|| double_int_scmp (increment, double_int_minus_one) < 0))
&& c->index == increment
&& (increment.sgt (double_int_one)
|| increment.slt (double_int_minus_one)))
{
tree t0;
tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
@ -1923,7 +1918,7 @@ lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c, double_int incr)
if (cand_already_replaced (c))
local_cost = cost_in;
else if (double_int_equal_p (incr, cand_incr))
else if (incr == cand_incr)
local_cost = cost_in - repl_savings - c->dead_savings;
else
local_cost = cost_in - c->dead_savings;
@ -1954,8 +1949,7 @@ total_savings (int repl_savings, slsr_cand_t c, double_int incr)
int savings = 0;
double_int cand_incr = cand_abs_increment (c);
if (double_int_equal_p (incr, cand_incr)
&& !cand_already_replaced (c))
if (incr == cand_incr && !cand_already_replaced (c))
savings += repl_savings + c->dead_savings;
if (c->dependent)
@ -1984,13 +1978,12 @@ analyze_increments (slsr_cand_t first_dep, enum machine_mode mode, bool speed)
for (i = 0; i < incr_vec_len; i++)
{
HOST_WIDE_INT incr = double_int_to_shwi (incr_vec[i].incr);
HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
/* If somehow this increment is bigger than a HWI, we won't
be optimizing candidates that use it. And if the increment
has a count of zero, nothing will be done with it. */
if (!double_int_fits_in_shwi_p (incr_vec[i].incr)
|| !incr_vec[i].count)
if (!incr_vec[i].incr.fits_shwi () || !incr_vec[i].count)
incr_vec[i].cost = COST_INFINITE;
/* Increments of 0, 1, and -1 are always profitable to replace,
@ -2168,7 +2161,7 @@ nearest_common_dominator_for_cands (slsr_cand_t c, double_int incr,
in, then the result depends only on siblings and dependents. */
cand_incr = cand_abs_increment (c);
if (!double_int_equal_p (cand_incr, incr) || cand_already_replaced (c))
if (cand_incr != incr || cand_already_replaced (c))
{
*where = new_where;
return ncd;
@ -2213,10 +2206,10 @@ insert_initializers (slsr_cand_t c)
double_int incr = incr_vec[i].incr;
if (!profitable_increment_p (i)
|| double_int_one_p (incr)
|| (double_int_minus_one_p (incr)
|| incr.is_one ()
|| (incr.is_minus_one ()
&& gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
|| double_int_zero_p (incr))
|| incr.is_zero ())
continue;
/* We may have already identified an existing initializer that
@ -2384,7 +2377,7 @@ replace_one_candidate (slsr_cand_t c, unsigned i, tree *new_var,
incr_vec[i].initializer,
new_var);
if (!double_int_equal_p (incr_vec[i].incr, cand_incr))
if (incr_vec[i].incr != cand_incr)
{
gcc_assert (repl_code == PLUS_EXPR);
repl_code = MINUS_EXPR;
@ -2400,7 +2393,7 @@ replace_one_candidate (slsr_cand_t c, unsigned i, tree *new_var,
from the basis name, or an add of the stride to the basis
name, respectively. It may be necessary to introduce a
cast (or reuse an existing cast). */
else if (double_int_one_p (cand_incr))
else if (cand_incr.is_one ())
{
tree stride_type = TREE_TYPE (c->stride);
tree orig_type = TREE_TYPE (orig_rhs2);
@ -2415,7 +2408,7 @@ replace_one_candidate (slsr_cand_t c, unsigned i, tree *new_var,
c);
}
else if (double_int_minus_one_p (cand_incr))
else if (cand_incr.is_minus_one ())
{
tree stride_type = TREE_TYPE (c->stride);
tree orig_type = TREE_TYPE (orig_rhs2);
@ -2441,7 +2434,7 @@ replace_one_candidate (slsr_cand_t c, unsigned i, tree *new_var,
fputs (" (duplicate, not actually replacing)\n", dump_file);
}
else if (double_int_zero_p (cand_incr))
else if (cand_incr.is_zero ())
{
tree lhs = gimple_assign_lhs (c->cand_stmt);
tree lhs_type = TREE_TYPE (lhs);

View File

@ -2887,8 +2887,8 @@ ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
unsigned HOST_WIDE_INT misalign;
get_pointer_alignment_1 (base, &align, &misalign);
misalign += (double_int_sext (tree_to_double_int (off),
TYPE_PRECISION (TREE_TYPE (off))).low
misalign += (tree_to_double_int (off)
.sext (TYPE_PRECISION (TREE_TYPE (off))).low
* BITS_PER_UNIT);
misalign = misalign & (align - 1);
if (misalign != 0)

View File

@ -2295,7 +2295,7 @@ iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
desc->niter_expr = NULL_RTX;
desc->niter_max = 0;
if (loop->any_upper_bound
&& double_int_fits_in_uhwi_p (loop->nb_iterations_upper_bound))
&& loop->nb_iterations_upper_bound.fits_uhwi ())
desc->niter_max = loop->nb_iterations_upper_bound.low;
cond = GET_CODE (condition);

View File

@ -2908,9 +2908,9 @@ expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
}
mask = double_int_setbit (double_int_zero, bitpos);
mask = double_int_zero.set_bit (bitpos);
if (code == ABS)
mask = double_int_not (mask);
mask = ~mask;
if (target == 0
|| target == op0
@ -3569,7 +3569,7 @@ expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
op1 = operand_subword_force (op1, word, mode);
}
mask = double_int_setbit (double_int_zero, bitpos);
mask = double_int_zero.set_bit (bitpos);
sign = expand_binop (imode, and_optab, op1,
immed_double_int_const (mask, imode),
@ -3640,7 +3640,7 @@ expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
}
mask = double_int_setbit (double_int_zero, bitpos);
mask = double_int_zero.set_bit (bitpos);
if (target == 0
|| target == op0
@ -3662,8 +3662,7 @@ expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
if (!op0_is_abs)
op0_piece
= expand_binop (imode, and_optab, op0_piece,
immed_double_int_const (double_int_not (mask),
imode),
immed_double_int_const (~mask, imode),
NULL_RTX, 1, OPTAB_LIB_WIDEN);
op1 = expand_binop (imode, and_optab,
@ -3694,8 +3693,7 @@ expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
op0 = gen_lowpart (imode, op0);
if (!op0_is_abs)
op0 = expand_binop (imode, and_optab, op0,
immed_double_int_const (double_int_not (mask),
imode),
immed_double_int_const (~mask, imode),
NULL_RTX, 1, OPTAB_LIB_WIDEN);
temp = expand_binop (imode, ior_optab, op0, op1,

View File

@ -1986,7 +1986,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
else if (GET_CODE (lhs) == MULT
&& CONST_INT_P (XEXP (lhs, 1)))
{
coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
coeff0 = double_int::from_shwi (INTVAL (XEXP (lhs, 1)));
lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == ASHIFT
@ -1994,8 +1994,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff0 = double_int_setbit (double_int_zero,
INTVAL (XEXP (lhs, 1)));
coeff0 = double_int_zero.set_bit (INTVAL (XEXP (lhs, 1)));
lhs = XEXP (lhs, 0);
}
@ -2007,7 +2006,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
else if (GET_CODE (rhs) == MULT
&& CONST_INT_P (XEXP (rhs, 1)))
{
coeff1 = shwi_to_double_int (INTVAL (XEXP (rhs, 1)));
coeff1 = double_int::from_shwi (INTVAL (XEXP (rhs, 1)));
rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == ASHIFT
@ -2015,8 +2014,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff1 = double_int_setbit (double_int_zero,
INTVAL (XEXP (rhs, 1)));
coeff1 = double_int_zero.set_bit (INTVAL (XEXP (rhs, 1)));
rhs = XEXP (rhs, 0);
}
@ -2027,7 +2025,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
double_int val;
bool speed = optimize_function_for_speed_p (cfun);
val = double_int_add (coeff0, coeff1);
val = coeff0 + coeff1;
coeff = immed_double_int_const (val, mode);
tem = simplify_gen_binary (MULT, mode, lhs, coeff);
@ -2165,7 +2163,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
else if (GET_CODE (lhs) == MULT
&& CONST_INT_P (XEXP (lhs, 1)))
{
coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
coeff0 = double_int::from_shwi (INTVAL (XEXP (lhs, 1)));
lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == ASHIFT
@ -2173,8 +2171,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff0 = double_int_setbit (double_int_zero,
INTVAL (XEXP (lhs, 1)));
coeff0 = double_int_zero.set_bit (INTVAL (XEXP (lhs, 1)));
lhs = XEXP (lhs, 0);
}
@ -2186,7 +2183,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
else if (GET_CODE (rhs) == MULT
&& CONST_INT_P (XEXP (rhs, 1)))
{
negcoeff1 = shwi_to_double_int (-INTVAL (XEXP (rhs, 1)));
negcoeff1 = double_int::from_shwi (-INTVAL (XEXP (rhs, 1)));
rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == ASHIFT
@ -2194,9 +2191,8 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
negcoeff1 = double_int_setbit (double_int_zero,
INTVAL (XEXP (rhs, 1)));
negcoeff1 = double_int_neg (negcoeff1);
negcoeff1 = double_int_zero.set_bit (INTVAL (XEXP (rhs, 1)));
negcoeff1 = -negcoeff1;
rhs = XEXP (rhs, 0);
}
@ -2207,7 +2203,7 @@ simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
double_int val;
bool speed = optimize_function_for_speed_p (cfun);
val = double_int_add (coeff0, negcoeff1);
val = coeff0 + negcoeff1;
coeff = immed_double_int_const (val, mode);
tem = simplify_gen_binary (MULT, mode, lhs, coeff);
@ -3590,16 +3586,16 @@ simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
{
case MINUS:
/* A - B == A + (-B). */
o1 = double_int_neg (o1);
o1 = -o1;
/* Fall through.... */
case PLUS:
res = double_int_add (o0, o1);
res = o0 + o1;
break;
case MULT:
res = double_int_mul (o0, o1);
res = o0 * o1;
break;
case DIV:
@ -3635,31 +3631,31 @@ simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
break;
case AND:
res = double_int_and (o0, o1);
res = o0 & o1;
break;
case IOR:
res = double_int_ior (o0, o1);
res = o0 | o1;
break;
case XOR:
res = double_int_xor (o0, o1);
res = o0 ^ o1;
break;
case SMIN:
res = double_int_smin (o0, o1);
res = o0.smin (o1);
break;
case SMAX:
res = double_int_smax (o0, o1);
res = o0.smax (o1);
break;
case UMIN:
res = double_int_umin (o0, o1);
res = o0.umin (o1);
break;
case UMAX:
res = double_int_umax (o0, o1);
res = o0.umax (o1);
break;
case LSHIFTRT: case ASHIFTRT:
@ -3674,22 +3670,21 @@ simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
o1.low &= GET_MODE_PRECISION (mode) - 1;
}
if (!double_int_fits_in_uhwi_p (o1)
|| double_int_to_uhwi (o1) >= GET_MODE_PRECISION (mode))
if (!o1.fits_uhwi ()
|| o1.to_uhwi () >= GET_MODE_PRECISION (mode))
return 0;
cnt = double_int_to_uhwi (o1);
cnt = o1.to_uhwi ();
unsigned short prec = GET_MODE_PRECISION (mode);
if (code == LSHIFTRT || code == ASHIFTRT)
res = double_int_rshift (o0, cnt, GET_MODE_PRECISION (mode),
code == ASHIFTRT);
res = o0.rshift (cnt, prec, code == ASHIFTRT);
else if (code == ASHIFT)
res = double_int_lshift (o0, cnt, GET_MODE_PRECISION (mode),
true);
res = o0.alshift (cnt, prec);
else if (code == ROTATE)
res = double_int_lrotate (o0, cnt, GET_MODE_PRECISION (mode));
res = o0.lrotate (cnt, prec);
else /* code == ROTATERT */
res = double_int_rrotate (o0, cnt, GET_MODE_PRECISION (mode));
res = o0.rrotate (cnt, prec);
}
break;

View File

@ -2218,14 +2218,13 @@ layout_type (tree type)
&& TYPE_UNSIGNED (TREE_TYPE (lb))
&& tree_int_cst_lt (ub, lb))
{
unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
lb = double_int_to_tree
(ssizetype,
double_int_sext (tree_to_double_int (lb),
TYPE_PRECISION (TREE_TYPE (lb))));
tree_to_double_int (lb).sext (prec));
ub = double_int_to_tree
(ssizetype,
double_int_sext (tree_to_double_int (ub),
TYPE_PRECISION (TREE_TYPE (ub))));
tree_to_double_int (ub).sext (prec));
}
length
= fold_convert (sizetype,

View File

@ -33,7 +33,7 @@ along with GCC; see the file COPYING3. If not see
double_int
double_int_ext_for_comb (double_int cst, aff_tree *comb)
{
return double_int_sext (cst, TYPE_PRECISION (comb->type));
return cst.sext (TYPE_PRECISION (comb->type));
}
/* Initializes affine combination COMB so that its value is zero in TYPE. */
@ -76,27 +76,26 @@ aff_combination_scale (aff_tree *comb, double_int scale)
unsigned i, j;
scale = double_int_ext_for_comb (scale, comb);
if (double_int_one_p (scale))
if (scale.is_one ())
return;
if (double_int_zero_p (scale))
if (scale.is_zero ())
{
aff_combination_zero (comb, comb->type);
return;
}
comb->offset
= double_int_ext_for_comb (double_int_mul (scale, comb->offset), comb);
= double_int_ext_for_comb (scale * comb->offset, comb);
for (i = 0, j = 0; i < comb->n; i++)
{
double_int new_coef;
new_coef
= double_int_ext_for_comb (double_int_mul (scale, comb->elts[i].coef),
comb);
= double_int_ext_for_comb (scale * comb->elts[i].coef, comb);
/* A coefficient may become zero due to overflow. Remove the zero
elements. */
if (double_int_zero_p (new_coef))
if (new_coef.is_zero ())
continue;
comb->elts[j].coef = new_coef;
comb->elts[j].val = comb->elts[i].val;
@ -131,7 +130,7 @@ aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
tree type;
scale = double_int_ext_for_comb (scale, comb);
if (double_int_zero_p (scale))
if (scale.is_zero ())
return;
for (i = 0; i < comb->n; i++)
@ -139,9 +138,9 @@ aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
{
double_int new_coef;
new_coef = double_int_add (comb->elts[i].coef, scale);
new_coef = comb->elts[i].coef + scale;
new_coef = double_int_ext_for_comb (new_coef, comb);
if (!double_int_zero_p (new_coef))
if (!new_coef.is_zero ())
{
comb->elts[i].coef = new_coef;
return;
@ -172,7 +171,7 @@ aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
if (POINTER_TYPE_P (type))
type = sizetype;
if (double_int_one_p (scale))
if (scale.is_one ())
elt = fold_convert (type, elt);
else
elt = fold_build2 (MULT_EXPR, type,
@ -191,7 +190,7 @@ aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
static void
aff_combination_add_cst (aff_tree *c, double_int cst)
{
c->offset = double_int_ext_for_comb (double_int_add (c->offset, cst), c);
c->offset = double_int_ext_for_comb (c->offset + cst, c);
}
/* Adds COMB2 to COMB1. */
@ -234,7 +233,7 @@ aff_combination_convert (aff_tree *comb, tree type)
for (i = j = 0; i < comb->n; i++)
{
double_int new_coef = double_int_ext_for_comb (comb->elts[i].coef, comb);
if (double_int_zero_p (new_coef))
if (new_coef.is_zero ())
continue;
comb->elts[j].coef = new_coef;
comb->elts[j].val = fold_convert (type, comb->elts[i].val);
@ -323,7 +322,7 @@ tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
if (bitpos % BITS_PER_UNIT != 0)
break;
aff_combination_const (comb, type,
uhwi_to_double_int (bitpos / BITS_PER_UNIT));
double_int::from_uhwi (bitpos / BITS_PER_UNIT));
core = build_fold_addr_expr (core);
if (TREE_CODE (core) == ADDR_EXPR)
aff_combination_add_elt (comb, core, double_int_one);
@ -380,7 +379,7 @@ add_elt_to_tree (tree expr, tree type, tree elt, double_int scale,
scale = double_int_ext_for_comb (scale, comb);
elt = fold_convert (type1, elt);
if (double_int_one_p (scale))
if (scale.is_one ())
{
if (!expr)
return fold_convert (type, elt);
@ -390,7 +389,7 @@ add_elt_to_tree (tree expr, tree type, tree elt, double_int scale,
return fold_build2 (PLUS_EXPR, type, expr, elt);
}
if (double_int_minus_one_p (scale))
if (scale.is_minus_one ())
{
if (!expr)
return fold_convert (type, fold_build1 (NEGATE_EXPR, type1, elt));
@ -408,10 +407,10 @@ add_elt_to_tree (tree expr, tree type, tree elt, double_int scale,
fold_build2 (MULT_EXPR, type1, elt,
double_int_to_tree (type1, scale)));
if (double_int_negative_p (scale))
if (scale.is_negative ())
{
code = MINUS_EXPR;
scale = double_int_neg (scale);
scale = -scale;
}
else
code = PLUS_EXPR;
@ -451,9 +450,9 @@ aff_combination_to_tree (aff_tree *comb)
/* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
unsigned. */
if (double_int_negative_p (comb->offset))
if (comb->offset.is_negative ())
{
off = double_int_neg (comb->offset);
off = -comb->offset;
sgn = double_int_minus_one;
}
else
@ -516,8 +515,7 @@ aff_combination_add_product (aff_tree *c, double_int coef, tree val,
fold_convert (type, val));
}
aff_combination_add_elt (r, aval,
double_int_mul (coef, c->elts[i].coef));
aff_combination_add_elt (r, aval, coef * c->elts[i].coef);
}
if (c->rest)
@ -534,10 +532,9 @@ aff_combination_add_product (aff_tree *c, double_int coef, tree val,
}
if (val)
aff_combination_add_elt (r, val,
double_int_mul (coef, c->offset));
aff_combination_add_elt (r, val, coef * c->offset);
else
aff_combination_add_cst (r, double_int_mul (coef, c->offset));
aff_combination_add_cst (r, coef * c->offset);
}
/* Multiplies C1 by C2, storing the result to R */
@ -685,7 +682,7 @@ aff_combination_expand (aff_tree *comb ATTRIBUTE_UNUSED,
it from COMB. */
scale = comb->elts[i].coef;
aff_combination_zero (&curre, comb->type);
aff_combination_add_elt (&curre, e, double_int_neg (scale));
aff_combination_add_elt (&curre, e, -scale);
aff_combination_scale (&current, scale);
aff_combination_add (&to_add, &current);
aff_combination_add (&to_add, &curre);
@ -751,17 +748,17 @@ double_int_constant_multiple_p (double_int val, double_int div,
{
double_int rem, cst;
if (double_int_zero_p (val))
if (val.is_zero ())
return true;
if (double_int_zero_p (div))
if (div.is_zero ())
return false;
cst = double_int_sdivmod (val, div, FLOOR_DIV_EXPR, &rem);
if (!double_int_zero_p (rem))
cst = val.sdivmod (div, FLOOR_DIV_EXPR, &rem);
if (!rem.is_zero ())
return false;
if (*mult_set && !double_int_equal_p (*mult, cst))
if (*mult_set && *mult != cst)
return false;
*mult_set = true;
@ -779,7 +776,7 @@ aff_combination_constant_multiple_p (aff_tree *val, aff_tree *div,
bool mult_set = false;
unsigned i;
if (val->n == 0 && double_int_zero_p (val->offset))
if (val->n == 0 && val->offset.is_zero ())
{
*mult = double_int_zero;
return true;
@ -880,10 +877,10 @@ get_inner_reference_aff (tree ref, aff_tree *addr, double_int *size)
}
aff_combination_const (&tmp, sizetype,
shwi_to_double_int (bitpos / BITS_PER_UNIT));
double_int::from_shwi (bitpos / BITS_PER_UNIT));
aff_combination_add (addr, &tmp);
*size = shwi_to_double_int ((bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
*size = double_int::from_shwi ((bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
}
/* Returns true if a region of size SIZE1 at position 0 and a region of
@ -899,17 +896,17 @@ aff_comb_cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2)
return false;
d = diff->offset;
if (double_int_negative_p (d))
if (d.is_negative ())
{
/* The second object is before the first one, we succeed if the last
element of the second object is before the start of the first one. */
bound = double_int_add (d, double_int_add (size2, double_int_minus_one));
return double_int_negative_p (bound);
bound = d + size2 + double_int_minus_one;
return bound.is_negative ();
}
else
{
/* We succeed if the second object starts after the first one ends. */
return double_int_scmp (size1, d) <= 0;
return size1.sle (d);
}
}

View File

@ -1371,14 +1371,12 @@ group_case_labels_stmt (gimple stmt)
{
tree merge_case = gimple_switch_label (stmt, i);
basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
double_int bhp1 = double_int_add (tree_to_double_int (base_high),
double_int_one);
double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
/* Merge the cases if they jump to the same place,
and their ranges are consecutive. */
if (merge_bb == base_bb
&& double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
bhp1))
&& tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
{
base_high = CASE_HIGH (merge_case) ?
CASE_HIGH (merge_case) : CASE_LOW (merge_case);

View File

@ -423,9 +423,7 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
switch (TREE_CODE (exp))
{
case BIT_FIELD_REF:
bit_offset
= double_int_add (bit_offset,
tree_to_double_int (TREE_OPERAND (exp, 2)));
bit_offset += tree_to_double_int (TREE_OPERAND (exp, 2));
break;
case COMPONENT_REF:
@ -436,14 +434,11 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
if (this_offset && TREE_CODE (this_offset) == INTEGER_CST)
{
double_int doffset = tree_to_double_int (this_offset);
doffset = double_int_lshift (doffset,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
doffset = double_int_add (doffset,
tree_to_double_int
(DECL_FIELD_BIT_OFFSET (field)));
bit_offset = double_int_add (bit_offset, doffset);
doffset = doffset.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
doffset += tree_to_double_int (DECL_FIELD_BIT_OFFSET (field));
bit_offset = bit_offset + doffset;
/* If we had seen a variable array ref already and we just
referenced the last field of a struct or a union member
@ -462,11 +457,11 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
tree ssize = TYPE_SIZE_UNIT (stype);
if (host_integerp (fsize, 0)
&& host_integerp (ssize, 0)
&& double_int_fits_in_shwi_p (doffset))
&& doffset.fits_shwi ())
maxsize += ((TREE_INT_CST_LOW (ssize)
- TREE_INT_CST_LOW (fsize))
* BITS_PER_UNIT
- double_int_to_shwi (doffset));
- doffset.to_shwi ());
else
maxsize = -1;
}
@ -481,9 +476,9 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
if (maxsize != -1
&& csize
&& host_integerp (csize, 1)
&& double_int_fits_in_shwi_p (bit_offset))
&& bit_offset.fits_shwi ())
maxsize = TREE_INT_CST_LOW (csize)
- double_int_to_shwi (bit_offset);
- bit_offset.to_shwi ();
else
maxsize = -1;
}
@ -504,17 +499,13 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
TREE_CODE (unit_size) == INTEGER_CST))
{
double_int doffset
= double_int_sext
(double_int_sub (TREE_INT_CST (index),
TREE_INT_CST (low_bound)),
TYPE_PRECISION (TREE_TYPE (index)));
doffset = double_int_mul (doffset,
tree_to_double_int (unit_size));
doffset = double_int_lshift (doffset,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
bit_offset = double_int_add (bit_offset, doffset);
= (TREE_INT_CST (index) - TREE_INT_CST (low_bound))
.sext (TYPE_PRECISION (TREE_TYPE (index)));
doffset *= tree_to_double_int (unit_size);
doffset = doffset.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
bit_offset = bit_offset + doffset;
/* An array ref with a constant index up in the structure
hierarchy will constrain the size of any variable array ref
@ -530,9 +521,9 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
if (maxsize != -1
&& asize
&& host_integerp (asize, 1)
&& double_int_fits_in_shwi_p (bit_offset))
&& bit_offset.fits_shwi ())
maxsize = TREE_INT_CST_LOW (asize)
- double_int_to_shwi (bit_offset);
- bit_offset.to_shwi ();
else
maxsize = -1;
@ -547,8 +538,7 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
break;
case IMAGPART_EXPR:
bit_offset
= double_int_add (bit_offset, uhwi_to_double_int (bitsize));
bit_offset += double_int::from_uhwi (bitsize);
break;
case VIEW_CONVERT_EXPR:
@ -563,12 +553,11 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
else
{
double_int off = mem_ref_offset (exp);
off = double_int_lshift (off,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
off = double_int_add (off, bit_offset);
if (double_int_fits_in_shwi_p (off))
off = off.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
off = off + bit_offset;
if (off.fits_shwi ())
{
bit_offset = off;
exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
@ -595,12 +584,11 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
else
{
double_int off = mem_ref_offset (exp);
off = double_int_lshift (off,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
off = double_int_add (off, bit_offset);
if (double_int_fits_in_shwi_p (off))
off = off.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
off += bit_offset;
if (off.fits_shwi ())
{
bit_offset = off;
exp = TREE_OPERAND (TMR_BASE (exp), 0);
@ -617,7 +605,7 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
}
done:
if (!double_int_fits_in_shwi_p (bit_offset))
if (!bit_offset.fits_shwi ())
{
*poffset = 0;
*psize = bitsize;
@ -626,7 +614,7 @@ get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
return exp;
}
hbit_offset = double_int_to_shwi (bit_offset);
hbit_offset = bit_offset.to_shwi ();
/* We need to deal with variable arrays ending structures such as
struct { int length; int a[1]; } x; x.a[d]

View File

@ -1271,7 +1271,7 @@ get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
{
double_int off = mem_ref_offset (exp);
gcc_assert (off.high == -1 || off.high == 0);
byte_offset += double_int_to_shwi (off);
byte_offset += off.to_shwi ();
}
exp = TREE_OPERAND (base, 0);
}
@ -1294,7 +1294,7 @@ get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
{
double_int off = mem_ref_offset (exp);
gcc_assert (off.high == -1 || off.high == 0);
byte_offset += double_int_to_shwi (off);
byte_offset += off.to_shwi ();
}
exp = TREE_OPERAND (base, 0);
}

View File

@ -192,12 +192,11 @@ addr_object_size (struct object_size_info *osi, const_tree ptr,
}
if (sz != unknown[object_size_type])
{
double_int dsz = double_int_sub (uhwi_to_double_int (sz),
mem_ref_offset (pt_var));
if (double_int_negative_p (dsz))
double_int dsz = double_int::from_uhwi (sz) - mem_ref_offset (pt_var);
if (dsz.is_negative ())
sz = 0;
else if (double_int_fits_in_uhwi_p (dsz))
sz = double_int_to_uhwi (dsz);
else if (dsz.fits_uhwi ())
sz = dsz.to_uhwi ();
else
sz = unknown[object_size_type];
}

View File

@ -901,7 +901,7 @@ order_drefs (const void *a, const void *b)
{
const dref *const da = (const dref *) a;
const dref *const db = (const dref *) b;
int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
int offcmp = (*da)->offset.scmp ((*db)->offset);
if (offcmp != 0)
return offcmp;
@ -925,18 +925,18 @@ add_ref_to_chain (chain_p chain, dref ref)
dref root = get_chain_root (chain);
double_int dist;
gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
dist = double_int_sub (ref->offset, root->offset);
if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
gcc_assert (root->offset.sle (ref->offset));
dist = ref->offset - root->offset;
if (double_int::from_uhwi (MAX_DISTANCE).ule (dist))
{
free (ref);
return;
}
gcc_assert (double_int_fits_in_uhwi_p (dist));
gcc_assert (dist.fits_uhwi ());
VEC_safe_push (dref, heap, chain->refs, ref);
ref->distance = double_int_to_uhwi (dist);
ref->distance = dist.to_uhwi ();
if (ref->distance >= chain->length)
{
@ -1055,7 +1055,7 @@ valid_initializer_p (struct data_reference *ref,
if (!aff_combination_constant_multiple_p (&diff, &step, &off))
return false;
if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
if (off != double_int::from_uhwi (distance))
return false;
return true;
@ -1198,8 +1198,7 @@ determine_roots_comp (struct loop *loop,
FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
{
if (!chain || DR_IS_WRITE (a->ref)
|| double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
double_int_sub (a->offset, last_ofs)) <= 0)
|| double_int::from_uhwi (MAX_DISTANCE).ule (a->offset - last_ofs))
{
if (nontrivial_chain_p (chain))
{

View File

@ -1330,8 +1330,7 @@ dump_generic_node (pretty_printer *buffer, tree node, int spc, int flags,
}
else if (is_array_init
&& (TREE_CODE (field) != INTEGER_CST
|| !double_int_equal_p (tree_to_double_int (field),
curidx)))
|| tree_to_double_int (field) != curidx))
{
pp_character (buffer, '[');
if (TREE_CODE (field) == RANGE_EXPR)
@ -1352,7 +1351,7 @@ dump_generic_node (pretty_printer *buffer, tree node, int spc, int flags,
}
}
if (is_array_init)
curidx = double_int_add (curidx, double_int_one);
curidx += double_int_one;
if (val && TREE_CODE (val) == ADDR_EXPR)
if (TREE_CODE (TREE_OPERAND (val, 0)) == FUNCTION_DECL)
val = TREE_OPERAND (val, 0);

View File

@ -1488,8 +1488,8 @@ build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
|| TREE_CODE (prev_base) == TARGET_MEM_REF)
align = TYPE_ALIGN (TREE_TYPE (prev_base));
}
misalign += (double_int_sext (tree_to_double_int (off),
TYPE_PRECISION (TREE_TYPE (off))).low
misalign += (tree_to_double_int (off)
.sext (TYPE_PRECISION (TREE_TYPE (off))).low
* BITS_PER_UNIT);
misalign = misalign & (align - 1);
if (misalign != 0)

View File

@ -198,8 +198,8 @@ addr_for_mem_ref (struct mem_address *addr, addr_space_t as,
if (addr->offset && !integer_zerop (addr->offset))
off = immed_double_int_const
(double_int_sext (tree_to_double_int (addr->offset),
TYPE_PRECISION (TREE_TYPE (addr->offset))),
(tree_to_double_int (addr->offset)
.sext (TYPE_PRECISION (TREE_TYPE (addr->offset))),
pointer_mode);
else
off = NULL_RTX;
@ -400,7 +400,7 @@ move_fixed_address_to_symbol (struct mem_address *parts, aff_tree *addr)
for (i = 0; i < addr->n; i++)
{
if (!double_int_one_p (addr->elts[i].coef))
if (!addr->elts[i].coef.is_one ())
continue;
val = addr->elts[i].val;
@ -428,7 +428,7 @@ move_hint_to_base (tree type, struct mem_address *parts, tree base_hint,
for (i = 0; i < addr->n; i++)
{
if (!double_int_one_p (addr->elts[i].coef))
if (!addr->elts[i].coef.is_one ())
continue;
val = addr->elts[i].val;
@ -460,7 +460,7 @@ move_pointer_to_base (struct mem_address *parts, aff_tree *addr)
for (i = 0; i < addr->n; i++)
{
if (!double_int_one_p (addr->elts[i].coef))
if (!addr->elts[i].coef.is_one ())
continue;
val = addr->elts[i].val;
@ -548,10 +548,10 @@ most_expensive_mult_to_index (tree type, struct mem_address *parts,
best_mult = double_int_zero;
for (i = 0; i < addr->n; i++)
{
if (!double_int_fits_in_shwi_p (addr->elts[i].coef))
if (!addr->elts[i].coef.fits_shwi ())
continue;
coef = double_int_to_shwi (addr->elts[i].coef);
coef = addr->elts[i].coef.to_shwi ();
if (coef == 1
|| !multiplier_allowed_in_address_p (coef, TYPE_MODE (type), as))
continue;
@ -572,11 +572,11 @@ most_expensive_mult_to_index (tree type, struct mem_address *parts,
for (i = j = 0; i < addr->n; i++)
{
amult = addr->elts[i].coef;
amult_neg = double_int_ext_for_comb (double_int_neg (amult), addr);
amult_neg = double_int_ext_for_comb (-amult, addr);
if (double_int_equal_p (amult, best_mult))
if (amult == best_mult)
op_code = PLUS_EXPR;
else if (double_int_equal_p (amult_neg, best_mult))
else if (amult_neg == best_mult)
op_code = MINUS_EXPR;
else
{
@ -624,7 +624,7 @@ addr_to_parts (tree type, aff_tree *addr, tree iv_cand,
parts->index = NULL_TREE;
parts->step = NULL_TREE;
if (!double_int_zero_p (addr->offset))
if (!addr->offset.is_zero ())
parts->offset = double_int_to_tree (sizetype, addr->offset);
else
parts->offset = NULL_TREE;
@ -656,7 +656,7 @@ addr_to_parts (tree type, aff_tree *addr, tree iv_cand,
for (i = 0; i < addr->n; i++)
{
part = fold_convert (sizetype, addr->elts[i].val);
if (!double_int_one_p (addr->elts[i].coef))
if (!addr->elts[i].coef.is_one ())
part = fold_build2 (MULT_EXPR, sizetype, part,
double_int_to_tree (sizetype, addr->elts[i].coef));
add_to_parts (parts, part);
@ -876,8 +876,8 @@ copy_ref_info (tree new_ref, tree old_ref)
&& (TREE_INT_CST_LOW (TMR_STEP (new_ref))
< align)))))
{
unsigned int inc = double_int_sub (mem_ref_offset (old_ref),
mem_ref_offset (new_ref)).low;
unsigned int inc = (mem_ref_offset (old_ref)
- mem_ref_offset (new_ref)).low;
adjust_ptr_info_misalignment (new_pi, inc);
}
else

View File

@ -756,12 +756,11 @@ indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
/* The offset embedded in MEM_REFs can be negative. Bias them
so that the resulting offset adjustment is positive. */
moff = mem_ref_offset (base1);
moff = double_int_lshift (moff,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
if (double_int_negative_p (moff))
offset2p += double_int_neg (moff).low;
moff = moff.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
if (moff.is_negative ())
offset2p += (-moff).low;
else
offset1p += moff.low;
@ -835,12 +834,11 @@ indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
|| TREE_CODE (dbase2) == TARGET_MEM_REF)
{
double_int moff = mem_ref_offset (dbase2);
moff = double_int_lshift (moff,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
if (double_int_negative_p (moff))
doffset1 -= double_int_neg (moff).low;
moff = moff.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
if (moff.is_negative ())
doffset1 -= (-moff).low;
else
doffset2 -= moff.low;
}
@ -932,21 +930,19 @@ indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
/* The offset embedded in MEM_REFs can be negative. Bias them
so that the resulting offset adjustment is positive. */
moff = mem_ref_offset (base1);
moff = double_int_lshift (moff,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
if (double_int_negative_p (moff))
offset2 += double_int_neg (moff).low;
moff = moff.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
if (moff.is_negative ())
offset2 += (-moff).low;
else
offset1 += moff.low;
moff = mem_ref_offset (base2);
moff = double_int_lshift (moff,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
if (double_int_negative_p (moff))
offset1 += double_int_neg (moff).low;
moff = moff.alshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
if (moff.is_negative ())
offset1 += (-moff).low;
else
offset2 += moff.low;
return ranges_overlap_p (offset1, max_size1, offset2, max_size2);

View File

@ -186,12 +186,11 @@ dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
case CONSTANT:
fprintf (outf, "%sCONSTANT ", prefix);
if (TREE_CODE (val.value) != INTEGER_CST
|| double_int_zero_p (val.mask))
|| val.mask.is_zero ())
print_generic_expr (outf, val.value, dump_flags);
else
{
double_int cval = double_int_and_not (tree_to_double_int (val.value),
val.mask);
double_int cval = tree_to_double_int (val.value).and_not (val.mask);
fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
prefix, cval.high, cval.low);
fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
@ -323,7 +322,7 @@ get_constant_value (tree var)
if (val
&& val->lattice_val == CONSTANT
&& (TREE_CODE (val->value) != INTEGER_CST
|| double_int_zero_p (val->mask)))
|| val->mask.is_zero ()))
return val->value;
return NULL_TREE;
}
@ -414,11 +413,8 @@ valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
/* Bit-lattices have to agree in the still valid bits. */
if (TREE_CODE (old_val.value) == INTEGER_CST
&& TREE_CODE (new_val.value) == INTEGER_CST)
return double_int_equal_p
(double_int_and_not (tree_to_double_int (old_val.value),
new_val.mask),
double_int_and_not (tree_to_double_int (new_val.value),
new_val.mask));
return tree_to_double_int (old_val.value).and_not (new_val.mask)
== tree_to_double_int (new_val.value).and_not (new_val.mask);
/* Otherwise constant values have to agree. */
return operand_equal_p (old_val.value, new_val.value, 0);
@ -444,10 +440,9 @@ set_lattice_value (tree var, prop_value_t new_val)
&& TREE_CODE (old_val->value) == INTEGER_CST)
{
double_int diff;
diff = double_int_xor (tree_to_double_int (new_val.value),
tree_to_double_int (old_val->value));
new_val.mask = double_int_ior (new_val.mask,
double_int_ior (old_val->mask, diff));
diff = tree_to_double_int (new_val.value)
^ tree_to_double_int (old_val->value);
new_val.mask = new_val.mask | old_val->mask | diff;
}
gcc_assert (valid_lattice_transition (*old_val, new_val));
@ -458,7 +453,7 @@ set_lattice_value (tree var, prop_value_t new_val)
|| (new_val.lattice_val == CONSTANT
&& TREE_CODE (new_val.value) == INTEGER_CST
&& (TREE_CODE (old_val->value) != INTEGER_CST
|| !double_int_equal_p (new_val.mask, old_val->mask))))
|| new_val.mask != old_val->mask)))
{
/* ??? We would like to delay creation of INTEGER_CSTs from
partially constants here. */
@ -511,15 +506,15 @@ get_value_from_alignment (tree expr)
gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
get_pointer_alignment_1 (expr, &align, &bitpos);
val.mask
= double_int_and_not (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
? double_int_mask (TYPE_PRECISION (type))
: double_int_minus_one,
uhwi_to_double_int (align / BITS_PER_UNIT - 1));
val.lattice_val = double_int_minus_one_p (val.mask) ? VARYING : CONSTANT;
val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
? double_int::mask (TYPE_PRECISION (type))
: double_int_minus_one)
.and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
if (val.lattice_val == CONSTANT)
val.value
= double_int_to_tree (type, uhwi_to_double_int (bitpos / BITS_PER_UNIT));
= double_int_to_tree (type,
double_int::from_uhwi (bitpos / BITS_PER_UNIT));
else
val.value = NULL_TREE;
@ -880,12 +875,10 @@ ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
For INTEGER_CSTs mask unequal bits. If no equal bits remain,
drop to varying. */
val1->mask
= double_int_ior (double_int_ior (val1->mask,
val2->mask),
double_int_xor (tree_to_double_int (val1->value),
tree_to_double_int (val2->value)));
if (double_int_minus_one_p (val1->mask))
val1->mask = val1->mask | val2->mask
| (tree_to_double_int (val1->value)
^ tree_to_double_int (val2->value));
if (val1->mask.is_minus_one ())
{
val1->lattice_val = VARYING;
val1->value = NULL_TREE;
@ -1080,7 +1073,7 @@ bit_value_unop_1 (enum tree_code code, tree type,
{
case BIT_NOT_EXPR:
*mask = rmask;
*val = double_int_not (rval);
*val = ~rval;
break;
case NEGATE_EXPR:
@ -1100,13 +1093,13 @@ bit_value_unop_1 (enum tree_code code, tree type,
/* First extend mask and value according to the original type. */
uns = TYPE_UNSIGNED (rtype);
*mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
*val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
*mask = rmask.ext (TYPE_PRECISION (rtype), uns);
*val = rval.ext (TYPE_PRECISION (rtype), uns);
/* Then extend mask and value according to the target type. */
uns = TYPE_UNSIGNED (type);
*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
*val = double_int_ext (*val, TYPE_PRECISION (type), uns);
*mask = (*mask).ext (TYPE_PRECISION (type), uns);
*val = (*val).ext (TYPE_PRECISION (type), uns);
break;
}
@ -1135,37 +1128,33 @@ bit_value_binop_1 (enum tree_code code, tree type,
case BIT_AND_EXPR:
/* The mask is constant where there is a known not
set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
*mask = double_int_and (double_int_ior (r1mask, r2mask),
double_int_and (double_int_ior (r1val, r1mask),
double_int_ior (r2val, r2mask)));
*val = double_int_and (r1val, r2val);
*mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
*val = r1val & r2val;
break;
case BIT_IOR_EXPR:
/* The mask is constant where there is a known
set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
*mask = double_int_and_not
(double_int_ior (r1mask, r2mask),
double_int_ior (double_int_and_not (r1val, r1mask),
double_int_and_not (r2val, r2mask)));
*val = double_int_ior (r1val, r2val);
*mask = (r1mask | r2mask)
.and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
*val = r1val | r2val;
break;
case BIT_XOR_EXPR:
/* m1 | m2 */
*mask = double_int_ior (r1mask, r2mask);
*val = double_int_xor (r1val, r2val);
*mask = r1mask | r2mask;
*val = r1val ^ r2val;
break;
case LROTATE_EXPR:
case RROTATE_EXPR:
if (double_int_zero_p (r2mask))
if (r2mask.is_zero ())
{
HOST_WIDE_INT shift = r2val.low;
if (code == RROTATE_EXPR)
shift = -shift;
*mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
*val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
*mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
*val = r1val.lrotate (shift, TYPE_PRECISION (type));
}
break;
@ -1174,7 +1163,7 @@ bit_value_binop_1 (enum tree_code code, tree type,
/* ??? We can handle partially known shift counts if we know
its sign. That way we can tell that (x << (y | 8)) & 255
is zero. */
if (double_int_zero_p (r2mask))
if (r2mask.is_zero ())
{
HOST_WIDE_INT shift = r2val.low;
if (code == RSHIFT_EXPR)
@ -1186,18 +1175,14 @@ bit_value_binop_1 (enum tree_code code, tree type,
the sign bit was varying. */
if (shift > 0)
{
*mask = double_int_lshift (r1mask, shift,
TYPE_PRECISION (type), false);
*val = double_int_lshift (r1val, shift,
TYPE_PRECISION (type), false);
*mask = r1mask.llshift (shift, TYPE_PRECISION (type));
*val = r1val.llshift (shift, TYPE_PRECISION (type));
}
else if (shift < 0)
{
shift = -shift;
*mask = double_int_rshift (r1mask, shift,
TYPE_PRECISION (type), !uns);
*val = double_int_rshift (r1val, shift,
TYPE_PRECISION (type), !uns);
*mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
*val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
}
else
{
@ -1213,21 +1198,18 @@ bit_value_binop_1 (enum tree_code code, tree type,
double_int lo, hi;
/* Do the addition with unknown bits set to zero, to give carry-ins of
zero wherever possible. */
lo = double_int_add (double_int_and_not (r1val, r1mask),
double_int_and_not (r2val, r2mask));
lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
lo = lo.ext (TYPE_PRECISION (type), uns);
/* Do the addition with unknown bits set to one, to give carry-ins of
one wherever possible. */
hi = double_int_add (double_int_ior (r1val, r1mask),
double_int_ior (r2val, r2mask));
hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
hi = (r1val | r1mask) + (r2val | r2mask);
hi = hi.ext (TYPE_PRECISION (type), uns);
/* Each bit in the result is known if (a) the corresponding bits in
both inputs are known, and (b) the carry-in to that bit position
is known. We can check condition (b) by seeing if we got the same
result with minimised carries as with maximised carries. */
*mask = double_int_ior (double_int_ior (r1mask, r2mask),
double_int_xor (lo, hi));
*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
*mask = r1mask | r2mask | (lo ^ hi);
*mask = (*mask).ext (TYPE_PRECISION (type), uns);
/* It shouldn't matter whether we choose lo or hi here. */
*val = lo;
break;
@ -1248,8 +1230,8 @@ bit_value_binop_1 (enum tree_code code, tree type,
{
/* Just track trailing zeros in both operands and transfer
them to the other. */
int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
int r1tz = (r1val | r1mask).trailing_zeros ();
int r2tz = (r2val | r2mask).trailing_zeros ();
if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
{
*mask = double_int_zero;
@ -1257,8 +1239,8 @@ bit_value_binop_1 (enum tree_code code, tree type,
}
else if (r1tz + r2tz > 0)
{
*mask = double_int_not (double_int_mask (r1tz + r2tz));
*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
*mask = ~double_int::mask (r1tz + r2tz);
*mask = (*mask).ext (TYPE_PRECISION (type), uns);
*val = double_int_zero;
}
break;
@ -1267,9 +1249,8 @@ bit_value_binop_1 (enum tree_code code, tree type,
case EQ_EXPR:
case NE_EXPR:
{
double_int m = double_int_ior (r1mask, r2mask);
if (!double_int_equal_p (double_int_and_not (r1val, m),
double_int_and_not (r2val, m)))
double_int m = r1mask | r2mask;
if (r1val.and_not (m) != r2val.and_not (m))
{
*mask = double_int_zero;
*val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
@ -1300,7 +1281,7 @@ bit_value_binop_1 (enum tree_code code, tree type,
{
int minmax, maxmin;
/* If the most significant bits are not known we know nothing. */
if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
if (r1mask.is_negative () || r2mask.is_negative ())
break;
/* For comparisons the signedness is in the comparison operands. */
@ -1309,10 +1290,8 @@ bit_value_binop_1 (enum tree_code code, tree type,
/* If we know the most significant bits we know the values
value ranges by means of treating varying bits as zero
or one. Do a cross comparison of the max/min pairs. */
maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
double_int_and_not (r2val, r2mask), uns);
minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
double_int_ior (r2val, r2mask), uns);
maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
if (maxmin < 0) /* r1 is less than r2. */
{
*mask = double_int_zero;
@ -1358,10 +1337,10 @@ bit_value_unop (enum tree_code code, tree type, tree rhs)
gcc_assert ((rval.lattice_val == CONSTANT
&& TREE_CODE (rval.value) == INTEGER_CST)
|| double_int_minus_one_p (rval.mask));
|| rval.mask.is_minus_one ());
bit_value_unop_1 (code, type, &value, &mask,
TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
if (!double_int_minus_one_p (mask))
if (!mask.is_minus_one ())
{
val.lattice_val = CONSTANT;
val.mask = mask;
@ -1399,14 +1378,14 @@ bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
gcc_assert ((r1val.lattice_val == CONSTANT
&& TREE_CODE (r1val.value) == INTEGER_CST)
|| double_int_minus_one_p (r1val.mask));
|| r1val.mask.is_minus_one ());
gcc_assert ((r2val.lattice_val == CONSTANT
&& TREE_CODE (r2val.value) == INTEGER_CST)
|| double_int_minus_one_p (r2val.mask));
|| r2val.mask.is_minus_one ());
bit_value_binop_1 (code, type, &value, &mask,
TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
if (!double_int_minus_one_p (mask))
if (!mask.is_minus_one ())
{
val.lattice_val = CONSTANT;
val.mask = mask;
@ -1439,7 +1418,7 @@ bit_value_assume_aligned (gimple stmt)
return ptrval;
gcc_assert ((ptrval.lattice_val == CONSTANT
&& TREE_CODE (ptrval.value) == INTEGER_CST)
|| double_int_minus_one_p (ptrval.mask));
|| ptrval.mask.is_minus_one ());
align = gimple_call_arg (stmt, 1);
if (!host_integerp (align, 1))
return ptrval;
@ -1461,7 +1440,7 @@ bit_value_assume_aligned (gimple stmt)
bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
type, value_to_double_int (ptrval), ptrval.mask,
type, value_to_double_int (alignval), alignval.mask);
if (!double_int_minus_one_p (mask))
if (!mask.is_minus_one ())
{
val.lattice_val = CONSTANT;
val.mask = mask;
@ -1625,7 +1604,7 @@ evaluate_stmt (gimple stmt)
case BUILT_IN_STRNDUP:
val.lattice_val = CONSTANT;
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
val.mask = shwi_to_double_int
val.mask = double_int::from_shwi
(~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
/ BITS_PER_UNIT - 1));
break;
@ -1637,9 +1616,8 @@ evaluate_stmt (gimple stmt)
: BIGGEST_ALIGNMENT);
val.lattice_val = CONSTANT;
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
val.mask = shwi_to_double_int
(~(((HOST_WIDE_INT) align)
/ BITS_PER_UNIT - 1));
val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
/ BITS_PER_UNIT - 1));
break;
/* These builtins return their first argument, unmodified. */
@ -1857,7 +1835,7 @@ ccp_fold_stmt (gimple_stmt_iterator *gsi)
fold more conditionals here. */
val = evaluate_stmt (stmt);
if (val.lattice_val != CONSTANT
|| !double_int_zero_p (val.mask))
|| !val.mask.is_zero ())
return false;
if (dump_file)
@ -2037,7 +2015,7 @@ visit_cond_stmt (gimple stmt, edge *taken_edge_p)
block = gimple_bb (stmt);
val = evaluate_stmt (stmt);
if (val.lattice_val != CONSTANT
|| !double_int_zero_p (val.mask))
|| !val.mask.is_zero ())
return SSA_PROP_VARYING;
/* Find which edge out of the conditional block will be taken and add it

View File

@ -813,11 +813,10 @@ forward_propagate_addr_expr_1 (tree name, tree def_rhs,
{
double_int off = mem_ref_offset (lhs);
tree new_ptr;
off = double_int_add (off,
shwi_to_double_int (def_rhs_offset));
off += double_int::from_shwi (def_rhs_offset);
if (TREE_CODE (def_rhs_base) == MEM_REF)
{
off = double_int_add (off, mem_ref_offset (def_rhs_base));
off += mem_ref_offset (def_rhs_base);
new_ptr = TREE_OPERAND (def_rhs_base, 0);
}
else
@ -898,11 +897,10 @@ forward_propagate_addr_expr_1 (tree name, tree def_rhs,
{
double_int off = mem_ref_offset (rhs);
tree new_ptr;
off = double_int_add (off,
shwi_to_double_int (def_rhs_offset));
off += double_int::from_shwi (def_rhs_offset);
if (TREE_CODE (def_rhs_base) == MEM_REF)
{
off = double_int_add (off, mem_ref_offset (def_rhs_base));
off += mem_ref_offset (def_rhs_base);
new_ptr = TREE_OPERAND (def_rhs_base, 0);
}
else
@ -2373,8 +2371,7 @@ associate_pointerplus (gimple_stmt_iterator *gsi)
if (gimple_assign_rhs1 (def_stmt) != ptr)
return false;
algn = double_int_to_tree (TREE_TYPE (ptr),
double_int_not (tree_to_double_int (algn)));
algn = double_int_to_tree (TREE_TYPE (ptr), ~tree_to_double_int (algn));
gimple_assign_set_rhs_with_ops (gsi, BIT_AND_EXPR, ptr, algn);
fold_stmt_inplace (gsi);
update_stmt (stmt);
@ -2537,7 +2534,7 @@ combine_conversions (gimple_stmt_iterator *gsi)
tem = fold_build2 (BIT_AND_EXPR, inside_type,
defop0,
double_int_to_tree
(inside_type, double_int_mask (inter_prec)));
(inside_type, double_int::mask (inter_prec)));
if (!useless_type_conversion_p (type, inside_type))
{
tem = force_gimple_operand_gsi (gsi, tem, true, NULL_TREE, true,

View File

@ -1571,8 +1571,7 @@ constant_multiple_of (tree top, tree bot, double_int *mul)
if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
return false;
*mul = double_int_sext (double_int_mul (res, tree_to_double_int (mby)),
precision);
*mul = (res * tree_to_double_int (mby)).sext (precision);
return true;
case PLUS_EXPR:
@ -1582,21 +1581,20 @@ constant_multiple_of (tree top, tree bot, double_int *mul)
return false;
if (code == MINUS_EXPR)
p1 = double_int_neg (p1);
*mul = double_int_sext (double_int_add (p0, p1), precision);
p1 = -p1;
*mul = (p0 + p1).sext (precision);
return true;
case INTEGER_CST:
if (TREE_CODE (bot) != INTEGER_CST)
return false;
p0 = double_int_sext (tree_to_double_int (top), precision);
p1 = double_int_sext (tree_to_double_int (bot), precision);
if (double_int_zero_p (p1))
p0 = tree_to_double_int (top).sext (precision);
p1 = tree_to_double_int (bot).sext (precision);
if (p1.is_zero ())
return false;
*mul = double_int_sext (double_int_sdivmod (p0, p1, FLOOR_DIV_EXPR, &res),
precision);
return double_int_zero_p (res);
*mul = p0.sdivmod (p1, FLOOR_DIV_EXPR, &res).sext (precision);
return res.is_zero ();
default:
return false;
@ -3000,7 +2998,7 @@ get_computation_aff (struct loop *loop,
aff_combination_add (&cbase_aff, &cstep_aff);
}
aff_combination_scale (&cbase_aff, double_int_neg (rat));
aff_combination_scale (&cbase_aff, -rat);
aff_combination_add (aff, &cbase_aff);
if (common_type != uutype)
aff_combination_convert (aff, uutype);
@ -3777,7 +3775,7 @@ compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
for (i = 0; i < aff1->n; i++)
{
if (double_int_cmp (aff1->elts[i].coef, aff2->elts[i].coef, 0) != 0)
if (aff1->elts[i].coef != aff2->elts[i].coef)
return false;
if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
@ -3904,7 +3902,7 @@ get_loop_invariant_expr_id (struct ivopts_data *data, tree ubase,
tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
aff_combination_scale (&cbase_aff, shwi_to_double_int (-1 * ratio));
aff_combination_scale (&cbase_aff, double_int::from_shwi (-1 * ratio));
aff_combination_add (&ubase_aff, &cbase_aff);
expr = aff_combination_to_tree (&ubase_aff);
return get_expr_id (data, expr);
@ -3990,8 +3988,8 @@ get_computation_cost_at (struct ivopts_data *data,
if (!constant_multiple_of (ustep, cstep, &rat))
return infinite_cost;
if (double_int_fits_in_shwi_p (rat))
ratio = double_int_to_shwi (rat);
if (rat.fits_shwi ())
ratio = rat.to_shwi ();
else
return infinite_cost;
@ -4504,7 +4502,7 @@ iv_elimination_compare_lt (struct ivopts_data *data,
aff_combination_scale (&tmpa, double_int_minus_one);
aff_combination_add (&tmpb, &tmpa);
aff_combination_add (&tmpb, &nit);
if (tmpb.n != 0 || !double_int_equal_p (tmpb.offset, double_int_one))
if (tmpb.n != 0 || tmpb.offset != double_int_one)
return false;
/* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
@ -4594,9 +4592,9 @@ may_eliminate_iv (struct ivopts_data *data,
max_niter = desc->max;
if (stmt_after_increment (loop, cand, use->stmt))
max_niter = double_int_add (max_niter, double_int_one);
max_niter += double_int_one;
period_value = tree_to_double_int (period);
if (double_int_ucmp (max_niter, period_value) > 0)
if (max_niter.ugt (period_value))
{
/* See if we can take advantage of inferred loop bound information. */
if (data->loop_single_exit_p)
@ -4604,7 +4602,7 @@ may_eliminate_iv (struct ivopts_data *data,
if (!max_loop_iterations (loop, &max_niter))
return false;
/* The loop bound is already adjusted by adding 1. */
if (double_int_ucmp (max_niter, period_value) > 0)
if (max_niter.ugt (period_value))
return false;
}
else

View File

@ -91,7 +91,7 @@ split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
*var = op0;
/* Always sign extend the offset. */
off = tree_to_double_int (op1);
off = double_int_sext (off, TYPE_PRECISION (type));
off = off.sext (TYPE_PRECISION (type));
mpz_set_double_int (offset, off, false);
if (negate)
mpz_neg (offset, offset);
@ -170,7 +170,7 @@ bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
}
mpz_init (m);
mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
mpz_set_double_int (m, double_int::mask (TYPE_PRECISION (type)), true);
mpz_add_ui (m, m, 1);
mpz_sub (bnds->up, x, y);
mpz_set (bnds->below, bnds->up);
@ -457,7 +457,7 @@ bounds_add (bounds *bnds, double_int delta, tree type)
mpz_set_double_int (mdelta, delta, false);
mpz_init (max);
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
mpz_add (bnds->up, bnds->up, mdelta);
mpz_add (bnds->below, bnds->below, mdelta);
@ -573,7 +573,7 @@ number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
the whole # of iterations analysis will fail). */
if (!no_overflow)
{
max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
max = double_int::mask (TYPE_PRECISION (TREE_TYPE (c))
- tree_low_cst (num_ending_zeros (s), 1));
mpz_set_double_int (bnd, max, true);
return;
@ -581,7 +581,7 @@ number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
/* Now we know that the induction variable does not overflow, so the loop
iterates at most (range of type / S) times. */
mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
mpz_set_double_int (bnd, double_int::mask (TYPE_PRECISION (TREE_TYPE (c))),
true);
/* If the induction variable is guaranteed to reach the value of C before
@ -922,9 +922,8 @@ assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
dstep = tree_to_double_int (iv0->step);
else
{
dstep = double_int_sext (tree_to_double_int (iv1->step),
TYPE_PRECISION (type));
dstep = double_int_neg (dstep);
dstep = tree_to_double_int (iv1->step).sext (TYPE_PRECISION (type));
dstep = -dstep;
}
mpz_init (mstep);
@ -935,7 +934,7 @@ assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
mpz_init (max);
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
mpz_add (max, max, mstep);
no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
/* For pointers, only values lying inside a single object
@ -2394,7 +2393,7 @@ derive_constant_upper_bound_ops (tree type, tree op0,
/* If the bound does not fit in TYPE, max. value of TYPE could be
attained. */
if (double_int_ucmp (max, bnd) < 0)
if (max.ult (bnd))
return max;
return bnd;
@ -2410,27 +2409,27 @@ derive_constant_upper_bound_ops (tree type, tree op0,
choose the most logical way how to treat this constant regardless
of the signedness of the type. */
cst = tree_to_double_int (op1);
cst = double_int_sext (cst, TYPE_PRECISION (type));
cst = cst.sext (TYPE_PRECISION (type));
if (code != MINUS_EXPR)
cst = double_int_neg (cst);
cst = -cst;
bnd = derive_constant_upper_bound (op0);
if (double_int_negative_p (cst))
if (cst.is_negative ())
{
cst = double_int_neg (cst);
cst = -cst;
/* Avoid CST == 0x80000... */
if (double_int_negative_p (cst))
if (cst.is_negative ())
return max;;
/* OP0 + CST. We need to check that
BND <= MAX (type) - CST. */
mmax = double_int_sub (max, cst);
if (double_int_ucmp (bnd, mmax) > 0)
mmax -= cst;
if (bnd.ugt (mmax))
return max;
return double_int_add (bnd, cst);
return bnd + cst;
}
else
{
@ -2447,7 +2446,7 @@ derive_constant_upper_bound_ops (tree type, tree op0,
/* This should only happen if the type is unsigned; however, for
buggy programs that use overflowing signed arithmetics even with
-fno-wrapv, this condition may also be true for signed values. */
if (double_int_ucmp (bnd, cst) < 0)
if (bnd.ult (cst))
return max;
if (TYPE_UNSIGNED (type))
@ -2458,7 +2457,7 @@ derive_constant_upper_bound_ops (tree type, tree op0,
return max;
}
bnd = double_int_sub (bnd, cst);
bnd -= cst;
}
return bnd;
@ -2470,7 +2469,7 @@ derive_constant_upper_bound_ops (tree type, tree op0,
return max;
bnd = derive_constant_upper_bound (op0);
return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
return bnd.udiv (tree_to_double_int (op1), FLOOR_DIV_EXPR);
case BIT_AND_EXPR:
if (TREE_CODE (op1) != INTEGER_CST
@ -2503,14 +2502,14 @@ record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
current estimation is smaller. */
if (upper
&& (!loop->any_upper_bound
|| double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
|| i_bound.ult (loop->nb_iterations_upper_bound)))
{
loop->any_upper_bound = true;
loop->nb_iterations_upper_bound = i_bound;
}
if (realistic
&& (!loop->any_estimate
|| double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
|| i_bound.ult (loop->nb_iterations_estimate)))
{
loop->any_estimate = true;
loop->nb_iterations_estimate = i_bound;
@ -2520,8 +2519,7 @@ record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
number of iterations, use the upper bound instead. */
if (loop->any_upper_bound
&& loop->any_estimate
&& double_int_ucmp (loop->nb_iterations_upper_bound,
loop->nb_iterations_estimate) < 0)
&& loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
}
@ -2583,10 +2581,10 @@ record_estimate (struct loop *loop, tree bound, double_int i_bound,
delta = double_int_zero;
else
delta = double_int_one;
i_bound = double_int_add (i_bound, delta);
i_bound += delta;
/* If an overflow occurred, ignore the result. */
if (double_int_ucmp (i_bound, delta) < 0)
if (i_bound.ult (delta))
return;
record_niter_bound (loop, i_bound, realistic, upper);
@ -3050,9 +3048,9 @@ estimated_loop_iterations_int (struct loop *loop)
if (!estimated_loop_iterations (loop, &nit))
return -1;
if (!double_int_fits_in_shwi_p (nit))
if (!nit.fits_shwi ())
return -1;
hwi_nit = double_int_to_shwi (nit);
hwi_nit = nit.to_shwi ();
return hwi_nit < 0 ? -1 : hwi_nit;
}
@ -3070,9 +3068,9 @@ max_loop_iterations_int (struct loop *loop)
if (!max_loop_iterations (loop, &nit))
return -1;
if (!double_int_fits_in_shwi_p (nit))
if (!nit.fits_shwi ())
return -1;
hwi_nit = double_int_to_shwi (nit);
hwi_nit = nit.to_shwi ();
return hwi_nit < 0 ? -1 : hwi_nit;
}
@ -3129,9 +3127,9 @@ max_stmt_executions (struct loop *loop, double_int *nit)
nit_minus_one = *nit;
*nit = double_int_add (*nit, double_int_one);
*nit += double_int_one;
return double_int_ucmp (*nit, nit_minus_one) > 0;
return (*nit).ugt (nit_minus_one);
}
/* Sets NIT to the estimated number of executions of the latch of the
@ -3148,9 +3146,9 @@ estimated_stmt_executions (struct loop *loop, double_int *nit)
nit_minus_one = *nit;
*nit = double_int_add (*nit, double_int_one);
*nit += double_int_one;
return double_int_ucmp (*nit, nit_minus_one) > 0;
return (*nit).ugt (nit_minus_one);
}
/* Records estimates on numbers of iterations of loops. */
@ -3255,8 +3253,8 @@ n_of_executions_at_most (gimple stmt,
|| (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
&& !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
{
bound = double_int_add (bound, double_int_one);
if (double_int_zero_p (bound)
bound += double_int_one;
if (bound.is_zero ()
|| !double_int_fits_to_tree_p (nit_type, bound))
return false;
}

View File

@ -720,9 +720,7 @@ jump_function_from_stmt (tree *arg, gimple stmt)
&offset);
if (tem
&& TREE_CODE (tem) == MEM_REF
&& double_int_zero_p
(double_int_add (mem_ref_offset (tem),
shwi_to_double_int (offset))))
&& (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
{
*arg = TREE_OPERAND (tem, 0);
return true;

View File

@ -1600,11 +1600,9 @@ phi_translate_1 (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
&& TREE_CODE (op[2]) == INTEGER_CST)
{
double_int off = tree_to_double_int (op[0]);
off = double_int_add (off,
double_int_neg
(tree_to_double_int (op[1])));
off = double_int_mul (off, tree_to_double_int (op[2]));
if (double_int_fits_in_shwi_p (off))
off += -tree_to_double_int (op[1]);
off *= tree_to_double_int (op[2]);
if (off.fits_shwi ())
newop.off = off.low;
}
VEC_replace (vn_reference_op_s, newoperands, j, newop);

View File

@ -656,13 +656,12 @@ copy_reference_ops_from_ref (tree ref, VEC(vn_reference_op_s, heap) **result)
if (TREE_INT_CST_LOW (bit_offset) % BITS_PER_UNIT == 0)
{
double_int off
= double_int_add (tree_to_double_int (this_offset),
double_int_rshift
(tree_to_double_int (bit_offset),
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true));
if (double_int_fits_in_shwi_p (off))
= tree_to_double_int (this_offset)
+ tree_to_double_int (bit_offset)
.arshift (BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT);
if (off.fits_shwi ())
temp.off = off.low;
}
}
@ -680,11 +679,9 @@ copy_reference_ops_from_ref (tree ref, VEC(vn_reference_op_s, heap) **result)
&& TREE_CODE (temp.op2) == INTEGER_CST)
{
double_int off = tree_to_double_int (temp.op0);
off = double_int_add (off,
double_int_neg
(tree_to_double_int (temp.op1)));
off = double_int_mul (off, tree_to_double_int (temp.op2));
if (double_int_fits_in_shwi_p (off))
off += -tree_to_double_int (temp.op1);
off *= tree_to_double_int (temp.op2);
if (off.fits_shwi ())
temp.off = off.low;
}
break;
@ -1018,8 +1015,8 @@ vn_reference_fold_indirect (VEC (vn_reference_op_s, heap) **ops,
if (addr_base != op->op0)
{
double_int off = tree_to_double_int (mem_op->op0);
off = double_int_sext (off, TYPE_PRECISION (TREE_TYPE (mem_op->op0)));
off = double_int_add (off, shwi_to_double_int (addr_offset));
off = off.sext (TYPE_PRECISION (TREE_TYPE (mem_op->op0)));
off += double_int::from_shwi (addr_offset);
mem_op->op0 = double_int_to_tree (TREE_TYPE (mem_op->op0), off);
op->op0 = build_fold_addr_expr (addr_base);
if (host_integerp (mem_op->op0, 0))
@ -1052,7 +1049,7 @@ vn_reference_maybe_forwprop_address (VEC (vn_reference_op_s, heap) **ops,
return;
off = tree_to_double_int (mem_op->op0);
off = double_int_sext (off, TYPE_PRECISION (TREE_TYPE (mem_op->op0)));
off = off.sext (TYPE_PRECISION (TREE_TYPE (mem_op->op0)));
/* The only thing we have to do is from &OBJ.foo.bar add the offset
from .foo.bar to the preceding MEM_REF offset and replace the
@ -1069,8 +1066,8 @@ vn_reference_maybe_forwprop_address (VEC (vn_reference_op_s, heap) **ops,
|| TREE_CODE (addr_base) != MEM_REF)
return;
off = double_int_add (off, shwi_to_double_int (addr_offset));
off = double_int_add (off, mem_ref_offset (addr_base));
off += double_int::from_shwi (addr_offset);
off += mem_ref_offset (addr_base);
op->op0 = TREE_OPERAND (addr_base, 0);
}
else
@ -1082,7 +1079,7 @@ vn_reference_maybe_forwprop_address (VEC (vn_reference_op_s, heap) **ops,
|| TREE_CODE (ptroff) != INTEGER_CST)
return;
off = double_int_add (off, tree_to_double_int (ptroff));
off += tree_to_double_int (ptroff);
op->op0 = ptr;
}
@ -1242,11 +1239,9 @@ valueize_refs_1 (VEC (vn_reference_op_s, heap) *orig, bool *valueized_anything)
&& TREE_CODE (vro->op2) == INTEGER_CST)
{
double_int off = tree_to_double_int (vro->op0);
off = double_int_add (off,
double_int_neg
(tree_to_double_int (vro->op1)));
off = double_int_mul (off, tree_to_double_int (vro->op2));
if (double_int_fits_in_shwi_p (off))
off += -tree_to_double_int (vro->op1);
off *= tree_to_double_int (vro->op2);
if (off.fits_shwi ())
vro->off = off.low;
}
}

View File

@ -2902,10 +2902,9 @@ get_constraint_for_ptr_offset (tree ptr, tree offset,
else
{
/* Sign-extend the offset. */
double_int soffset
= double_int_sext (tree_to_double_int (offset),
TYPE_PRECISION (TREE_TYPE (offset)));
if (!double_int_fits_in_shwi_p (soffset))
double_int soffset = tree_to_double_int (offset)
.sext (TYPE_PRECISION (TREE_TYPE (offset)));
if (!soffset.fits_shwi ())
rhsoffset = UNKNOWN_OFFSET;
else
{

View File

@ -1833,10 +1833,9 @@ non_rewritable_mem_ref_base (tree ref)
|| TREE_CODE (TREE_TYPE (decl)) == COMPLEX_TYPE)
&& useless_type_conversion_p (TREE_TYPE (base),
TREE_TYPE (TREE_TYPE (decl)))
&& double_int_fits_in_uhwi_p (mem_ref_offset (base))
&& double_int_ucmp
(tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (decl))),
mem_ref_offset (base)) == 1
&& mem_ref_offset (base).fits_uhwi ()
&& tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
.ugt (mem_ref_offset (base))
&& multiple_of_p (sizetype, TREE_OPERAND (base, 1),
TYPE_SIZE_UNIT (TREE_TYPE (base))))
return NULL_TREE;

View File

@ -970,17 +970,14 @@ array_value_type (gimple swtch, tree type, int num,
if (prec > HOST_BITS_PER_WIDE_INT)
return type;
if (sign >= 0
&& double_int_equal_p (cst, double_int_zext (cst, prec)))
if (sign >= 0 && cst == cst.zext (prec))
{
if (sign == 0
&& double_int_equal_p (cst, double_int_sext (cst, prec)))
if (sign == 0 && cst == cst.sext (prec))
break;
sign = 1;
break;
}
if (sign <= 0
&& double_int_equal_p (cst, double_int_sext (cst, prec)))
if (sign <= 0 && cst == cst.sext (prec))
{
sign = -1;
break;

View File

@ -1908,7 +1908,7 @@ vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
if (check_profitability)
max_iter = MAX (max_iter, (int) th);
record_niter_bound (new_loop, shwi_to_double_int (max_iter), false, true);
record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Setting upper bound of nb iterations for epilogue "
"loop to %d\n", max_iter);
@ -2130,7 +2130,7 @@ vect_do_peeling_for_alignment (loop_vec_info loop_vinfo,
max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
if (check_profitability)
max_iter = MAX (max_iter, (int) th);
record_niter_bound (new_loop, shwi_to_double_int (max_iter), false, true);
record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Setting upper bound of nb iterations for prologue "
"loop to %d\n", max_iter);

View File

@ -1961,9 +1961,9 @@ zero_nonzero_bits_from_vr (value_range_t *vr,
{
double_int dmin = tree_to_double_int (vr->min);
double_int dmax = tree_to_double_int (vr->max);
double_int xor_mask = double_int_xor (dmin, dmax);
*may_be_nonzero = double_int_ior (dmin, dmax);
*must_be_nonzero = double_int_and (dmin, dmax);
double_int xor_mask = dmin ^ dmax;
*may_be_nonzero = dmin | dmax;
*must_be_nonzero = dmin & dmax;
if (xor_mask.high != 0)
{
unsigned HOST_WIDE_INT mask
@ -2014,16 +2014,14 @@ ranges_from_anti_range (value_range_t *ar,
vr0->min = vrp_val_min (type);
vr0->max
= double_int_to_tree (type,
double_int_sub (tree_to_double_int (ar->min),
double_int_one));
tree_to_double_int (ar->min) - double_int_one);
}
if (!vrp_val_is_max (ar->max))
{
vr1->type = VR_RANGE;
vr1->min
= double_int_to_tree (type,
double_int_add (tree_to_double_int (ar->max),
double_int_one));
tree_to_double_int (ar->max) + double_int_one);
vr1->max = vrp_val_max (type);
}
if (vr0->type == VR_UNDEFINED)
@ -2193,9 +2191,9 @@ static int
quad_int_cmp (double_int l0, double_int h0,
double_int l1, double_int h1, bool uns)
{
int c = double_int_cmp (h0, h1, uns);
int c = h0.cmp (h1, uns);
if (c != 0) return c;
return double_int_ucmp (l0, l1);
return l0.ucmp (l1);
}
static void
@ -2389,37 +2387,33 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
double_int max1 = tree_to_double_int (vr1.max);
bool uns = TYPE_UNSIGNED (expr_type);
double_int type_min
= double_int_min_value (TYPE_PRECISION (expr_type), uns);
= double_int::min_value (TYPE_PRECISION (expr_type), uns);
double_int type_max
= double_int_max_value (TYPE_PRECISION (expr_type), uns);
= double_int::max_value (TYPE_PRECISION (expr_type), uns);
double_int dmin, dmax;
int min_ovf = 0;
int max_ovf = 0;
if (code == PLUS_EXPR)
{
dmin = double_int_add (min0, min1);
dmax = double_int_add (max0, max1);
dmin = min0 + min1;
dmax = max0 + max1;
/* Check for overflow in double_int. */
if (double_int_cmp (min1, double_int_zero, uns)
!= double_int_cmp (dmin, min0, uns))
min_ovf = double_int_cmp (min0, dmin, uns);
if (double_int_cmp (max1, double_int_zero, uns)
!= double_int_cmp (dmax, max0, uns))
max_ovf = double_int_cmp (max0, dmax, uns);
if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
min_ovf = min0.cmp (dmin, uns);
if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
max_ovf = max0.cmp (dmax, uns);
}
else /* if (code == MINUS_EXPR) */
{
dmin = double_int_sub (min0, max1);
dmax = double_int_sub (max0, min1);
dmin = min0 - max1;
dmax = max0 - min1;
if (double_int_cmp (double_int_zero, max1, uns)
!= double_int_cmp (dmin, min0, uns))
min_ovf = double_int_cmp (min0, max1, uns);
if (double_int_cmp (double_int_zero, min1, uns)
!= double_int_cmp (dmax, max0, uns))
max_ovf = double_int_cmp (max0, min1, uns);
if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
min_ovf = min0.cmp (max1, uns);
if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
max_ovf = max0.cmp (min1, uns);
}
/* For non-wrapping arithmetic look at possibly smaller
@ -2435,16 +2429,16 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
/* Check for type overflow. */
if (min_ovf == 0)
{
if (double_int_cmp (dmin, type_min, uns) == -1)
if (dmin.cmp (type_min, uns) == -1)
min_ovf = -1;
else if (double_int_cmp (dmin, type_max, uns) == 1)
else if (dmin.cmp (type_max, uns) == 1)
min_ovf = 1;
}
if (max_ovf == 0)
{
if (double_int_cmp (dmax, type_min, uns) == -1)
if (dmax.cmp (type_min, uns) == -1)
max_ovf = -1;
else if (double_int_cmp (dmax, type_max, uns) == 1)
else if (dmax.cmp (type_max, uns) == 1)
max_ovf = 1;
}
@ -2453,9 +2447,9 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
/* If overflow wraps, truncate the values and adjust the
range kind and bounds appropriately. */
double_int tmin
= double_int_ext (dmin, TYPE_PRECISION (expr_type), uns);
= dmin.ext (TYPE_PRECISION (expr_type), uns);
double_int tmax
= double_int_ext (dmax, TYPE_PRECISION (expr_type), uns);
= dmax.ext (TYPE_PRECISION (expr_type), uns);
if (min_ovf == max_ovf)
{
/* No overflow or both overflow or underflow. The
@ -2479,16 +2473,16 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
gcc_assert ((min_ovf == -1 && max_ovf == 0)
|| (max_ovf == 1 && min_ovf == 0));
type = VR_ANTI_RANGE;
tmin = double_int_add (tmax, double_int_one);
if (double_int_cmp (tmin, tmax, uns) < 0)
tmin = tmax + double_int_one;
if (tmin.cmp (tmax, uns) < 0)
covers = true;
tmax = double_int_add (tem, double_int_minus_one);
tmax = tem + double_int_minus_one;
if (double_int_cmp (tmax, tem, uns) > 0)
covers = true;
/* If the anti-range would cover nothing, drop to varying.
Likewise if the anti-range bounds are outside of the
types values. */
if (covers || double_int_cmp (tmin, tmax, uns) > 0)
if (covers || tmin.cmp (tmax, uns) > 0)
{
set_value_range_to_varying (vr);
return;
@ -2605,8 +2599,8 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
prod2l, prod2h, prod3l, prod3h;
bool uns0, uns1, uns;
sizem1 = double_int_max_value (TYPE_PRECISION (expr_type), true);
size = double_int_add (sizem1, double_int_one);
sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
size = sizem1 + double_int_one;
min0 = tree_to_double_int (vr0.min);
max0 = tree_to_double_int (vr0.max);
@ -2619,19 +2613,19 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
/* Canonicalize the intervals. */
if (TYPE_UNSIGNED (expr_type))
{
double_int min2 = double_int_sub (size, min0);
if (double_int_cmp (min2, max0, true) < 0)
double_int min2 = size - min0;
if (min2.cmp (max0, true) < 0)
{
min0 = double_int_neg (min2);
max0 = double_int_sub (max0, size);
min0 = -min2;
max0 -= size;
uns0 = false;
}
min2 = double_int_sub (size, min1);
if (double_int_cmp (min2, max1, true) < 0)
min2 = size - min1;
if (min2.cmp (max1, true) < 0)
{
min1 = double_int_neg (min2);
max1 = double_int_sub (max1, size);
min1 = -min2;
max1 -= size;
uns1 = false;
}
}
@ -2641,37 +2635,37 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
min1.low, min1.high,
&prod0l.low, &prod0l.high,
&prod0h.low, &prod0h.high, true);
if (!uns0 && double_int_negative_p (min0))
prod0h = double_int_sub (prod0h, min1);
if (!uns1 && double_int_negative_p (min1))
prod0h = double_int_sub (prod0h, min0);
if (!uns0 && min0.is_negative ())
prod0h -= min1;
if (!uns1 && min1.is_negative ())
prod0h -= min0;
mul_double_wide_with_sign (min0.low, min0.high,
max1.low, max1.high,
&prod1l.low, &prod1l.high,
&prod1h.low, &prod1h.high, true);
if (!uns0 && double_int_negative_p (min0))
prod1h = double_int_sub (prod1h, max1);
if (!uns1 && double_int_negative_p (max1))
prod1h = double_int_sub (prod1h, min0);
if (!uns0 && min0.is_negative ())
prod1h -= max1;
if (!uns1 && max1.is_negative ())
prod1h -= min0;
mul_double_wide_with_sign (max0.low, max0.high,
min1.low, min1.high,
&prod2l.low, &prod2l.high,
&prod2h.low, &prod2h.high, true);
if (!uns0 && double_int_negative_p (max0))
prod2h = double_int_sub (prod2h, min1);
if (!uns1 && double_int_negative_p (min1))
prod2h = double_int_sub (prod2h, max0);
if (!uns0 && max0.is_negative ())
prod2h -= min1;
if (!uns1 && min1.is_negative ())
prod2h -= max0;
mul_double_wide_with_sign (max0.low, max0.high,
max1.low, max1.high,
&prod3l.low, &prod3l.high,
&prod3h.low, &prod3h.high, true);
if (!uns0 && double_int_negative_p (max0))
prod3h = double_int_sub (prod3h, max1);
if (!uns1 && double_int_negative_p (max1))
prod3h = double_int_sub (prod3h, max0);
if (!uns0 && max0.is_negative ())
prod3h -= max1;
if (!uns1 && max1.is_negative ())
prod3h -= max0;
/* Sort the 4 products. */
quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
@ -2680,23 +2674,23 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
/* Max - min. */
if (double_int_zero_p (prod0l))
if (prod0l.is_zero ())
{
prod1l = double_int_zero;
prod1h = double_int_neg (prod0h);
prod1h = -prod0h;
}
else
{
prod1l = double_int_neg (prod0l);
prod1h = double_int_not (prod0h);
prod1l = -prod0l;
prod1h = ~prod0h;
}
prod2l = double_int_add (prod3l, prod1l);
prod2h = double_int_add (prod3h, prod1h);
if (double_int_ucmp (prod2l, prod3l) < 0)
prod2h = double_int_add (prod2h, double_int_one); /* carry */
prod2l = prod3l + prod1l;
prod2h = prod3h + prod1h;
if (prod2l.ult (prod3l))
prod2h += double_int_one; /* carry */
if (!double_int_zero_p (prod2h)
|| double_int_cmp (prod2l, sizem1, true) >= 0)
if (!prod2h.is_zero ()
|| prod2l.cmp (sizem1, true) >= 0)
{
/* the range covers all values. */
set_value_range_to_varying (vr);
@ -2755,11 +2749,9 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
vr1p.type = VR_RANGE;
vr1p.min
= double_int_to_tree (expr_type,
double_int_lshift
(double_int_one,
TREE_INT_CST_LOW (vr1.min),
TYPE_PRECISION (expr_type),
false));
double_int_one
.llshift (TREE_INT_CST_LOW (vr1.min),
TYPE_PRECISION (expr_type)));
vr1p.max = vr1p.min;
/* We have to use a wrapping multiply though as signed overflow
on lshifts is implementation defined in C89. */
@ -2903,9 +2895,8 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
{
double_int dmax;
min = double_int_to_tree (expr_type,
double_int_and (must_be_nonzero0,
must_be_nonzero1));
dmax = double_int_and (may_be_nonzero0, may_be_nonzero1);
must_be_nonzero0 & must_be_nonzero1);
dmax = may_be_nonzero0 & may_be_nonzero1;
/* If both input ranges contain only negative values we can
truncate the result range maximum to the minimum of the
input range maxima. */
@ -2913,19 +2904,19 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
&& tree_int_cst_sgn (vr0.max) < 0
&& tree_int_cst_sgn (vr1.max) < 0)
{
dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
dmax = dmax.min (tree_to_double_int (vr0.max),
TYPE_UNSIGNED (expr_type));
dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
dmax = dmax.min (tree_to_double_int (vr1.max),
TYPE_UNSIGNED (expr_type));
}
/* If either input range contains only non-negative values
we can truncate the result range maximum to the respective
maximum of the input range. */
if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
dmax = dmax.min (tree_to_double_int (vr0.max),
TYPE_UNSIGNED (expr_type));
if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
dmax = dmax.min (tree_to_double_int (vr1.max),
TYPE_UNSIGNED (expr_type));
max = double_int_to_tree (expr_type, dmax);
}
@ -2933,9 +2924,8 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
{
double_int dmin;
max = double_int_to_tree (expr_type,
double_int_ior (may_be_nonzero0,
may_be_nonzero1));
dmin = double_int_ior (must_be_nonzero0, must_be_nonzero1);
may_be_nonzero0 | may_be_nonzero1);
dmin = must_be_nonzero0 | must_be_nonzero1;
/* If the input ranges contain only positive values we can
truncate the minimum of the result range to the maximum
of the input range minima. */
@ -2943,40 +2933,30 @@ extract_range_from_binary_expr_1 (value_range_t *vr,
&& tree_int_cst_sgn (vr0.min) >= 0
&& tree_int_cst_sgn (vr1.min) >= 0)
{
dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
TYPE_UNSIGNED (expr_type));
dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
TYPE_UNSIGNED (expr_type));
dmin = dmin.max (tree_to_double_int (vr0.min),
TYPE_UNSIGNED (expr_type));
dmin = dmin.max (tree_to_double_int (vr1.min),
TYPE_UNSIGNED (expr_type));
}
/* If either input range contains only negative values
we can truncate the minimum of the result range to the
respective minimum range. */
if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
TYPE_UNSIGNED (expr_type));
dmin = dmin.max (tree_to_double_int (vr0.min),
TYPE_UNSIGNED (expr_type));
if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
TYPE_UNSIGNED (expr_type));
dmin = dmin.max (tree_to_double_int (vr1.min),
TYPE_UNSIGNED (expr_type));
min = double_int_to_tree (expr_type, dmin);
}
else if (code == BIT_XOR_EXPR)
{
double_int result_zero_bits, result_one_bits;
result_zero_bits
= double_int_ior (double_int_and (must_be_nonzero0,
must_be_nonzero1),
double_int_not
(double_int_ior (may_be_nonzero0,
may_be_nonzero1)));
result_one_bits
= double_int_ior (double_int_and
(must_be_nonzero0,
double_int_not (may_be_nonzero1)),
double_int_and
(must_be_nonzero1,
double_int_not (may_be_nonzero0)));
max = double_int_to_tree (expr_type,
double_int_not (result_zero_bits));
result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
| ~(may_be_nonzero0 | may_be_nonzero1);
result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
| must_be_nonzero1.and_not (may_be_nonzero0);
max = double_int_to_tree (expr_type, ~result_zero_bits);
min = double_int_to_tree (expr_type, result_one_bits);
/* If the range has all positive or all negative values the
result is better than VARYING. */
@ -3606,10 +3586,10 @@ adjust_range_with_scev (value_range_t *vr, struct loop *loop,
value_range_t maxvr = VR_INITIALIZER;
double_int dtmp;
bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
int overflow = 0;
bool overflow = false;
dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
unsigned_p, &overflow);
dtmp = tree_to_double_int (step)
.mul_with_sign (nit, unsigned_p, &overflow);
/* If the multiplication overflowed we can't do a meaningful
adjustment. Likewise if the result doesn't fit in the type
of the induction variable. For a signed type we have to
@ -4519,19 +4499,19 @@ masked_increment (double_int val, double_int mask, double_int sgnbit,
double_int bit = double_int_one, res;
unsigned int i;
val = double_int_xor (val, sgnbit);
for (i = 0; i < prec; i++, bit = double_int_add (bit, bit))
val ^= sgnbit;
for (i = 0; i < prec; i++, bit += bit)
{
res = mask;
if (double_int_zero_p (double_int_and (res, bit)))
if ((res & bit).is_zero ())
continue;
res = double_int_sub (bit, double_int_one);
res = double_int_and_not (double_int_add (val, bit), res);
res = double_int_and (res, mask);
if (double_int_ucmp (res, val) > 0)
return double_int_xor (res, sgnbit);
res = bit - double_int_one;
res = (val + bit).and_not (res);
res &= mask;
if (res.ugt (val))
return res ^ sgnbit;
}
return double_int_xor (val, sgnbit);
return val ^ sgnbit;
}
/* Try to register an edge assertion for SSA name NAME on edge E for
@ -4735,7 +4715,7 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
&& live_on_edge (e, name2)
&& !has_single_use (name2))
{
mask = double_int_mask (tree_low_cst (cst2, 1));
mask = double_int::mask (tree_low_cst (cst2, 1));
val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
}
}
@ -4766,9 +4746,9 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
else
{
double_int maxval
= double_int_max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
mask = double_int_ior (tree_to_double_int (val2), mask);
if (double_int_equal_p (mask, maxval))
= double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
mask |= tree_to_double_int (val2);
if (mask == maxval)
new_val = NULL_TREE;
else
new_val = double_int_to_tree (TREE_TYPE (val2), mask);
@ -4835,12 +4815,12 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
bool valid_p = false, valn = false, cst2n = false;
enum tree_code ccode = comp_code;
valv = double_int_zext (tree_to_double_int (val), prec);
cst2v = double_int_zext (tree_to_double_int (cst2), prec);
valv = tree_to_double_int (val).zext (prec);
cst2v = tree_to_double_int (cst2).zext (prec);
if (!TYPE_UNSIGNED (TREE_TYPE (val)))
{
valn = double_int_negative_p (double_int_sext (valv, prec));
cst2n = double_int_negative_p (double_int_sext (cst2v, prec));
valn = valv.sext (prec).is_negative ();
cst2n = cst2v.sext (prec).is_negative ();
}
/* If CST2 doesn't have most significant bit set,
but VAL is negative, we have comparison like
@ -4848,12 +4828,10 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
if (!cst2n && valn)
ccode = ERROR_MARK;
if (cst2n)
sgnbit = double_int_zext (double_int_lshift (double_int_one,
prec - 1, prec,
false), prec);
sgnbit = double_int_one.llshift (prec - 1, prec).zext (prec);
else
sgnbit = double_int_zero;
minv = double_int_and (valv, cst2v);
minv = valv & cst2v;
switch (ccode)
{
case EQ_EXPR:
@ -4861,15 +4839,15 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
(should be equal to VAL, otherwise we probably should
have folded the comparison into false) and
maximum unsigned value is VAL | ~CST2. */
maxv = double_int_ior (valv, double_int_not (cst2v));
maxv = double_int_zext (maxv, prec);
maxv = valv | ~cst2v;
maxv = maxv.zext (prec);
valid_p = true;
break;
case NE_EXPR:
tem = double_int_ior (valv, double_int_not (cst2v));
tem = double_int_zext (tem, prec);
tem = valv | ~cst2v;
tem = tem.zext (prec);
/* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
if (double_int_zero_p (valv))
if (valv.is_zero ())
{
cst2n = false;
sgnbit = double_int_zero;
@ -4877,7 +4855,7 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
}
/* If (VAL | ~CST2) is all ones, handle it as
(X & CST2) < VAL. */
if (double_int_equal_p (tem, double_int_mask (prec)))
if (tem == double_int::mask (prec))
{
cst2n = false;
valn = false;
@ -4885,19 +4863,17 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
goto lt_expr;
}
if (!cst2n
&& double_int_negative_p (double_int_sext (cst2v, prec)))
sgnbit = double_int_zext (double_int_lshift (double_int_one,
prec - 1, prec,
false), prec);
if (!double_int_zero_p (sgnbit))
&& cst2v.sext (prec).is_negative ())
sgnbit = double_int_one.llshift (prec - 1, prec).zext (prec);
if (!sgnbit.is_zero ())
{
if (double_int_equal_p (valv, sgnbit))
if (valv == sgnbit)
{
cst2n = true;
valn = true;
goto gt_expr;
}
if (double_int_equal_p (tem, double_int_mask (prec - 1)))
if (tem == double_int::mask (prec - 1))
{
cst2n = true;
goto lt_expr;
@ -4912,15 +4888,15 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
comparison, if CST2 doesn't have most significant bit
set, handle it similarly. If CST2 has MSB set,
the minimum is the same, and maximum is ~0U/2. */
if (!double_int_equal_p (minv, valv))
if (minv != valv)
{
/* If (VAL & CST2) != VAL, X & CST2 can't be equal to
VAL. */
minv = masked_increment (valv, cst2v, sgnbit, prec);
if (double_int_equal_p (minv, valv))
if (minv == valv)
break;
}
maxv = double_int_mask (prec - (cst2n ? 1 : 0));
maxv = double_int::mask (prec - (cst2n ? 1 : 0));
valid_p = true;
break;
case GT_EXPR:
@ -4929,9 +4905,9 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
&& (MINV & CST2) == MINV, if any. If VAL is signed and
CST2 has MSB set, compute it biased by 1 << (prec - 1). */
minv = masked_increment (valv, cst2v, sgnbit, prec);
if (double_int_equal_p (minv, valv))
if (minv == valv)
break;
maxv = double_int_mask (prec - (cst2n ? 1 : 0));
maxv = double_int::mask (prec - (cst2n ? 1 : 0));
valid_p = true;
break;
case LE_EXPR:
@ -4943,17 +4919,17 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
For signed comparison, if CST2 doesn't have most
significant bit set, handle it similarly. If CST2 has
MSB set, the maximum is the same and minimum is INT_MIN. */
if (double_int_equal_p (minv, valv))
if (minv == valv)
maxv = valv;
else
{
maxv = masked_increment (valv, cst2v, sgnbit, prec);
if (double_int_equal_p (maxv, valv))
if (maxv == valv)
break;
maxv = double_int_sub (maxv, double_int_one);
maxv -= double_int_one;
}
maxv = double_int_ior (maxv, double_int_not (cst2v));
maxv = double_int_zext (maxv, prec);
maxv |= ~cst2v;
maxv = maxv.zext (prec);
minv = sgnbit;
valid_p = true;
break;
@ -4967,21 +4943,21 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
For signed comparison, if CST2 doesn't have most
significant bit set, handle it similarly. If CST2 has
MSB set, the maximum is the same and minimum is INT_MIN. */
if (double_int_equal_p (minv, valv))
if (minv == valv)
{
if (double_int_equal_p (valv, sgnbit))
if (valv == sgnbit)
break;
maxv = valv;
}
else
{
maxv = masked_increment (valv, cst2v, sgnbit, prec);
if (double_int_equal_p (maxv, valv))
if (maxv == valv)
break;
}
maxv = double_int_sub (maxv, double_int_one);
maxv = double_int_ior (maxv, double_int_not (cst2v));
maxv = double_int_zext (maxv, prec);
maxv -= double_int_one;
maxv |= ~cst2v;
maxv = maxv.zext (prec);
minv = sgnbit;
valid_p = true;
break;
@ -4989,10 +4965,7 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
break;
}
if (valid_p
&& !double_int_equal_p (double_int_zext (double_int_sub (maxv,
minv),
prec),
double_int_mask (prec)))
&& (maxv - minv).zext (prec) != double_int::mask (prec))
{
tree tmp, new_val, type;
int i;
@ -5008,12 +4981,11 @@ register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
type = build_nonstandard_integer_type (prec, 1);
tmp = build1 (NOP_EXPR, type, names[i]);
}
if (!double_int_zero_p (minv))
if (!minv.is_zero ())
{
tmp = build2 (PLUS_EXPR, type, tmp,
double_int_to_tree (type,
double_int_neg (minv)));
maxv2 = double_int_sub (maxv, minv);
double_int_to_tree (type, -minv));
maxv2 = maxv - minv;
}
new_val = double_int_to_tree (type, maxv2);
@ -5947,20 +5919,16 @@ search_for_addr_array (tree t, location_t location)
return;
idx = mem_ref_offset (t);
idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
if (double_int_scmp (idx, double_int_zero) < 0)
idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
if (idx.slt (double_int_zero))
{
warning_at (location, OPT_Warray_bounds,
"array subscript is below array bounds");
TREE_NO_WARNING (t) = 1;
}
else if (double_int_scmp (idx,
double_int_add
(double_int_add
(tree_to_double_int (up_bound),
double_int_neg
(tree_to_double_int (low_bound))),
double_int_one)) > 0)
else if (idx.sgt (tree_to_double_int (up_bound)
- tree_to_double_int (low_bound)
+ double_int_one))
{
warning_at (location, OPT_Warray_bounds,
"array subscript is above array bounds");
@ -8221,28 +8189,28 @@ simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
switch (gimple_assign_rhs_code (stmt))
{
case BIT_AND_EXPR:
mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
if (double_int_zero_p (mask))
mask = may_be_nonzero0.and_not (must_be_nonzero1);
if (mask.is_zero ())
{
op = op0;
break;
}
mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
if (double_int_zero_p (mask))
mask = may_be_nonzero1.and_not (must_be_nonzero0);
if (mask.is_zero ())
{
op = op1;
break;
}
break;
case BIT_IOR_EXPR:
mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
if (double_int_zero_p (mask))
mask = may_be_nonzero0.and_not (must_be_nonzero1);
if (mask.is_zero ())
{
op = op1;
break;
}
mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
if (double_int_zero_p (mask))
mask = may_be_nonzero1.and_not (must_be_nonzero0);
if (mask.is_zero ())
{
op = op0;
break;
@ -8549,42 +8517,34 @@ simplify_conversion_using_ranges (gimple stmt)
/* If the first conversion is not injective, the second must not
be widening. */
if (double_int_cmp (double_int_sub (innermax, innermin),
double_int_mask (middle_prec), true) > 0
if ((innermax - innermin).ugt (double_int::mask (middle_prec))
&& middle_prec < final_prec)
return false;
/* We also want a medium value so that we can track the effect that
narrowing conversions with sign change have. */
inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
if (inner_unsigned_p)
innermed = double_int_rshift (double_int_mask (inner_prec),
1, inner_prec, false);
innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
else
innermed = double_int_zero;
if (double_int_cmp (innermin, innermed, inner_unsigned_p) >= 0
|| double_int_cmp (innermed, innermax, inner_unsigned_p) >= 0)
if (innermin.cmp (innermed, inner_unsigned_p) >= 0
|| innermed.cmp (innermax, inner_unsigned_p) >= 0)
innermed = innermin;
middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
middlemin = double_int_ext (innermin, middle_prec, middle_unsigned_p);
middlemed = double_int_ext (innermed, middle_prec, middle_unsigned_p);
middlemax = double_int_ext (innermax, middle_prec, middle_unsigned_p);
middlemin = innermin.ext (middle_prec, middle_unsigned_p);
middlemed = innermed.ext (middle_prec, middle_unsigned_p);
middlemax = innermax.ext (middle_prec, middle_unsigned_p);
/* Require that the final conversion applied to both the original
and the intermediate range produces the same result. */
final_unsigned_p = TYPE_UNSIGNED (finaltype);
if (!double_int_equal_p (double_int_ext (middlemin,
final_prec, final_unsigned_p),
double_int_ext (innermin,
final_prec, final_unsigned_p))
|| !double_int_equal_p (double_int_ext (middlemed,
final_prec, final_unsigned_p),
double_int_ext (innermed,
final_prec, final_unsigned_p))
|| !double_int_equal_p (double_int_ext (middlemax,
final_prec, final_unsigned_p),
double_int_ext (innermax,
final_prec, final_unsigned_p)))
if (middlemin.ext (final_prec, final_unsigned_p)
!= innermin.ext (final_prec, final_unsigned_p)
|| middlemed.ext (final_prec, final_unsigned_p)
!= innermed.ext (final_prec, final_unsigned_p)
|| middlemax.ext (final_prec, final_unsigned_p)
!= innermax.ext (final_prec, final_unsigned_p))
return false;
gimple_assign_set_rhs1 (stmt, innerop);
@ -8629,11 +8589,11 @@ range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
/* Then we can perform the conversion on both ends and compare
the result for equality. */
tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
if (tree_to_double_int (vr->min) != tem)
return false;
tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
if (tree_to_double_int (vr->max) != tem)
return false;
return true;

View File

@ -1041,7 +1041,7 @@ build_int_cst (tree type, HOST_WIDE_INT low)
if (!type)
type = integer_type_node;
return double_int_to_tree (type, shwi_to_double_int (low));
return double_int_to_tree (type, double_int::from_shwi (low));
}
/* Create an INT_CST node with a LOW value sign extended to TYPE. */
@ -1051,7 +1051,7 @@ build_int_cst_type (tree type, HOST_WIDE_INT low)
{
gcc_assert (type);
return double_int_to_tree (type, shwi_to_double_int (low));
return double_int_to_tree (type, double_int::from_shwi (low));
}
/* Constructs tree in type TYPE from with value given by CST. Signedness
@ -1062,7 +1062,7 @@ double_int_to_tree (tree type, double_int cst)
{
bool sign_extended_type = !TYPE_UNSIGNED (type);
cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
return build_int_cst_wide (type, cst.low, cst.high);
}
@ -1077,9 +1077,9 @@ double_int_fits_to_tree_p (const_tree type, double_int cst)
bool sign_extended_type = !TYPE_UNSIGNED (type);
double_int ext
= double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
= cst.ext (TYPE_PRECISION (type), !sign_extended_type);
return double_int_equal_p (cst, ext);
return cst == ext;
}
/* We force the double_int CST to the range of the type TYPE by sign or
@ -1114,7 +1114,7 @@ force_fit_type_double (tree type, double_int cst, int overflowable,
|| (overflowable > 0 && sign_extended_type))
{
tree t = make_node (INTEGER_CST);
TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
TREE_INT_CST (t) = cst.ext (TYPE_PRECISION (type),
!sign_extended_type);
TREE_TYPE (t) = type;
TREE_OVERFLOW (t) = 1;
@ -1285,7 +1285,7 @@ build_low_bits_mask (tree type, unsigned bits)
/* Sign extended all-ones mask. */
mask = double_int_minus_one;
else
mask = double_int_mask (bits);
mask = double_int::mask (bits);
return build_int_cst_wide (type, mask.low, mask.high);
}
@ -1910,7 +1910,7 @@ int
fixed_zerop (const_tree expr)
{
return (TREE_CODE (expr) == FIXED_CST
&& double_int_zero_p (TREE_FIXED_CST (expr).data));
&& TREE_FIXED_CST (expr).data.is_zero ());
}
/* Return the power of two represented by a tree node known to be a
@ -3998,8 +3998,7 @@ double_int
mem_ref_offset (const_tree t)
{
tree toff = TREE_OPERAND (t, 1);
return double_int_sext (tree_to_double_int (toff),
TYPE_PRECISION (TREE_TYPE (toff)));
return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
}
/* Return the pointer-type relevant for TBAA purposes from the
@ -6557,7 +6556,7 @@ HOST_WIDE_INT
size_low_cst (const_tree t)
{
double_int d = tree_to_double_int (t);
return double_int_sext (d, TYPE_PRECISION (TREE_TYPE (t))).low;
return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
}
/* Return the most significant (sign) bit of T. */
@ -8295,15 +8294,15 @@ retry:
dd = tree_to_double_int (type_low_bound);
if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
{
int c_neg = (!unsc && double_int_negative_p (dc));
int t_neg = (unsc && double_int_negative_p (dd));
int c_neg = (!unsc && dc.is_negative ());
int t_neg = (unsc && dd.is_negative ());
if (c_neg && !t_neg)
return false;
if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
if ((c_neg || !t_neg) && dc.ult (dd))
return false;
}
else if (double_int_cmp (dc, dd, unsc) < 0)
else if (dc.cmp (dd, unsc) < 0)
return false;
ok_for_low_bound = true;
}
@ -8316,15 +8315,15 @@ retry:
dd = tree_to_double_int (type_high_bound);
if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
{
int c_neg = (!unsc && double_int_negative_p (dc));
int t_neg = (unsc && double_int_negative_p (dd));
int c_neg = (!unsc && dc.is_negative ());
int t_neg = (unsc && dd.is_negative ());
if (t_neg && !c_neg)
return false;
if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
if ((t_neg || !c_neg) && dc.ugt (dd))
return false;
}
else if (double_int_cmp (dc, dd, unsc) > 0)
else if (dc.cmp (dd, unsc) > 0)
return false;
ok_for_high_bound = true;
}
@ -8338,7 +8337,7 @@ retry:
/* Perform some generic filtering which may allow making a decision
even if the bounds are not constant. First, negative integers
never fit in unsigned types, */
if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
return false;
/* Second, narrower types always fit in wider ones. */
@ -8393,9 +8392,8 @@ get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
else
{
double_int mn;
mn = double_int_mask (TYPE_PRECISION (type) - 1);
mn = double_int_sext (double_int_add (mn, double_int_one),
TYPE_PRECISION (type));
mn = double_int::mask (TYPE_PRECISION (type) - 1);
mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
mpz_set_double_int (min, mn, false);
}
}
@ -8407,10 +8405,10 @@ get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
else
{
if (TYPE_UNSIGNED (type))
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
true);
else
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
true);
}
}

View File

@ -4718,7 +4718,7 @@ extern tree force_fit_type_double (tree, double_int, int, bool);
static inline tree
build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
{
return double_int_to_tree (type, uhwi_to_double_int (cst));
return double_int_to_tree (type, double_int::from_uhwi (cst));
}
extern tree build_int_cst (tree, HOST_WIDE_INT);

View File

@ -4649,14 +4649,13 @@ array_size_for_constructor (tree val)
/* Compute the total number of array elements. */
tmp = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (val)));
i = double_int_sub (tree_to_double_int (max_index), tree_to_double_int (tmp));
i = double_int_add (i, double_int_one);
i = tree_to_double_int (max_index) - tree_to_double_int (tmp);
i += double_int_one;
/* Multiply by the array element unit size to find number of bytes. */
i = double_int_mul (i, tree_to_double_int
(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (val)))));
i *= tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (val))));
gcc_assert (double_int_fits_in_uhwi_p (i));
gcc_assert (i.fits_uhwi ());
return i.low;
}
@ -4740,9 +4739,9 @@ output_constructor_regular_field (oc_local_state *local)
sign-extend the result because Ada has negative DECL_FIELD_OFFSETs
but we are using an unsigned sizetype. */
unsigned prec = TYPE_PRECISION (sizetype);
double_int idx = double_int_sub (tree_to_double_int (local->index),
tree_to_double_int (local->min_index));
idx = double_int_sext (idx, prec);
double_int idx = tree_to_double_int (local->index)
- tree_to_double_int (local->min_index);
idx = idx.sext (prec);
fieldpos = (tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (local->val)), 1)
* idx.low);
}