aarch64: Add Demeter tuning structs

This patch adds tuning structs for -mcpu/-mtune=demeter.

gcc/ChangeLog:

2022-03-22  Tamar Christina  <tamar.christina@arm.com>
	    Andre Vieira  <andre.simoesdiasvieira@arm.com>

	* config/aarch64/aarch64.cc (demeter_addrcost_table,
	demeter_regmove_cost, demeter_advsimd_vector_cost,
	demeter_sve_vector_cost, demeter_scalar_issue_info,
	demeter_advsimd_issue_info, demeter_sve_issue_info,
	demeter_vec_issue_info, demeter_vector_cost,
	demeter_tunings): New tuning structs.
	(aarch64_ve_op_count::rename_cycles_per_iter): Enable for demeter
	tuning.
	* config/aarch64/aarch64-cores.def: Add entry for demeter.
	* config/aarch64/aarch64-tune.md (tune): Add demeter to list.
This commit is contained in:
Andre Vieira 2022-03-22 10:48:41 +00:00
parent b074fa6970
commit 27d8748df5
3 changed files with 222 additions and 2 deletions

View File

@ -172,4 +172,6 @@ AARCH64_CORE("cortex-a710", cortexa710, cortexa57, 9A, AARCH64_FL_FOR_ARCH9 |
AARCH64_CORE("cortex-x2", cortexx2, cortexa57, 9A, AARCH64_FL_FOR_ARCH9 | AARCH64_FL_SVE2_BITPERM | AARCH64_FL_MEMTAG | AARCH64_FL_I8MM | AARCH64_FL_BF16, neoversen2, 0x41, 0xd48, -1)
AARCH64_CORE("demeter", demeter, cortexa57, 9A, AARCH64_FL_FOR_ARCH9 | AARCH64_FL_I8MM | AARCH64_FL_BF16 | AARCH64_FL_SVE2_BITPERM | AARCH64_FL_RNG | AARCH64_FL_MEMTAG | AARCH64_FL_PROFILE, demeter, 0x41, 0xd4f, -1)
#undef AARCH64_CORE

View File

@ -1,5 +1,5 @@
;; -*- buffer-read-only: t -*-
;; Generated automatically by gentune.sh from aarch64-cores.def
(define_attr "tune"
"cortexa34,cortexa35,cortexa53,cortexa57,cortexa72,cortexa73,thunderx,thunderxt88p1,thunderxt88,octeontx,octeontxt81,octeontxt83,thunderxt81,thunderxt83,ampere1,emag,xgene1,falkor,qdf24xx,exynosm1,phecda,thunderx2t99p1,vulcan,thunderx2t99,cortexa55,cortexa75,cortexa76,cortexa76ae,cortexa77,cortexa78,cortexa78ae,cortexa78c,cortexa65,cortexa65ae,cortexx1,ares,neoversen1,neoversee1,octeontx2,octeontx2t98,octeontx2t96,octeontx2t93,octeontx2f95,octeontx2f95n,octeontx2f95mm,a64fx,tsv110,thunderx3t110,zeus,neoversev1,neoverse512tvb,saphira,neoversen2,cortexa57cortexa53,cortexa72cortexa53,cortexa73cortexa35,cortexa73cortexa53,cortexa75cortexa55,cortexa76cortexa55,cortexr82,cortexa510,cortexa710,cortexx2"
"cortexa34,cortexa35,cortexa53,cortexa57,cortexa72,cortexa73,thunderx,thunderxt88p1,thunderxt88,octeontx,octeontxt81,octeontxt83,thunderxt81,thunderxt83,ampere1,emag,xgene1,falkor,qdf24xx,exynosm1,phecda,thunderx2t99p1,vulcan,thunderx2t99,cortexa55,cortexa75,cortexa76,cortexa76ae,cortexa77,cortexa78,cortexa78ae,cortexa78c,cortexa65,cortexa65ae,cortexx1,ares,neoversen1,neoversee1,octeontx2,octeontx2t98,octeontx2t96,octeontx2t93,octeontx2f95,octeontx2f95n,octeontx2f95mm,a64fx,tsv110,thunderx3t110,zeus,neoversev1,neoverse512tvb,saphira,neoversen2,cortexa57cortexa53,cortexa72cortexa53,cortexa73cortexa35,cortexa73cortexa53,cortexa75cortexa55,cortexa76cortexa55,cortexr82,cortexa510,cortexa710,cortexx2,demeter"
(const (symbol_ref "((enum attr_tune) aarch64_tune)")))

View File

@ -537,6 +537,24 @@ static const struct cpu_addrcost_table neoversen2_addrcost_table =
0 /* imm_offset */
};
static const struct cpu_addrcost_table demeter_addrcost_table =
{
{
1, /* hi */
0, /* si */
0, /* di */
1, /* ti */
},
0, /* pre_modify */
0, /* post_modify */
2, /* post_modify_ld3_st3 */
2, /* post_modify_ld4_st4 */
0, /* register_offset */
0, /* register_sextend */
0, /* register_zextend */
0 /* imm_offset */
};
static const struct cpu_regmove_cost generic_regmove_cost =
{
1, /* GP2GP */
@ -652,6 +670,16 @@ static const struct cpu_regmove_cost neoversen2_regmove_cost =
2 /* FP2FP */
};
static const struct cpu_regmove_cost demeter_regmove_cost =
{
1, /* GP2GP */
/* Spilling to int<->fp instead of memory is recommended so set
realistic costs compared to memmov_cost. */
3, /* GP2FP */
2, /* FP2GP */
2 /* FP2FP */
};
/* Generic costs for Advanced SIMD vector operations. */
static const advsimd_vec_cost generic_advsimd_vector_cost =
{
@ -2391,6 +2419,195 @@ static const struct tune_params neoversen2_tunings =
&generic_prefetch_tune
};
static const advsimd_vec_cost demeter_advsimd_vector_cost =
{
2, /* int_stmt_cost */
2, /* fp_stmt_cost */
2, /* ld2_st2_permute_cost */
2, /* ld3_st3_permute_cost */
3, /* ld4_st4_permute_cost */
3, /* permute_cost */
4, /* reduc_i8_cost */
4, /* reduc_i16_cost */
2, /* reduc_i32_cost */
2, /* reduc_i64_cost */
6, /* reduc_f16_cost */
3, /* reduc_f32_cost */
2, /* reduc_f64_cost */
2, /* store_elt_extra_cost */
/* This value is just inherited from the Cortex-A57 table. */
8, /* vec_to_scalar_cost */
/* This depends very much on what the scalar value is and
where it comes from. E.g. some constants take two dependent
instructions or a load, while others might be moved from a GPR.
4 seems to be a reasonable compromise in practice. */
4, /* scalar_to_vec_cost */
4, /* align_load_cost */
4, /* unalign_load_cost */
/* Although stores have a latency of 2 and compete for the
vector pipes, in practice it's better not to model that. */
1, /* unalign_store_cost */
1 /* store_cost */
};
static const sve_vec_cost demeter_sve_vector_cost =
{
{
2, /* int_stmt_cost */
2, /* fp_stmt_cost */
3, /* ld2_st2_permute_cost */
3, /* ld3_st3_permute_cost */
4, /* ld4_st4_permute_cost */
3, /* permute_cost */
/* Theoretically, a reduction involving 15 scalar ADDs could
complete in ~3 cycles and would have a cost of 15. [SU]ADDV
completes in 11 cycles, so give it a cost of 15 + 8. */
21, /* reduc_i8_cost */
/* Likewise for 7 scalar ADDs (~2 cycles) vs. 9: 7 + 7. */
14, /* reduc_i16_cost */
/* Likewise for 3 scalar ADDs (~2 cycles) vs. 8: 3 + 4. */
7, /* reduc_i32_cost */
/* Likewise for 1 scalar ADD (~1 cycles) vs. 2: 1 + 1. */
2, /* reduc_i64_cost */
/* Theoretically, a reduction involving 7 scalar FADDs could
complete in ~6 cycles and would have a cost of 14. FADDV
completes in 8 cycles, so give it a cost of 14 + 2. */
16, /* reduc_f16_cost */
/* Likewise for 3 scalar FADDs (~4 cycles) vs. 6: 6 + 2. */
8, /* reduc_f32_cost */
/* Likewise for 1 scalar FADD (~2 cycles) vs. 4: 2 + 2. */
4, /* reduc_f64_cost */
2, /* store_elt_extra_cost */
/* This value is just inherited from the Cortex-A57 table. */
8, /* vec_to_scalar_cost */
/* See the comment above the Advanced SIMD versions. */
4, /* scalar_to_vec_cost */
4, /* align_load_cost */
4, /* unalign_load_cost */
/* Although stores have a latency of 2 and compete for the
vector pipes, in practice it's better not to model that. */
1, /* unalign_store_cost */
1 /* store_cost */
},
3, /* clast_cost */
10, /* fadda_f16_cost */
6, /* fadda_f32_cost */
4, /* fadda_f64_cost */
/* A strided Advanced SIMD x64 load would take two parallel FP loads
(8 cycles) plus an insertion (2 cycles). Assume a 64-bit SVE gather
is 1 cycle more. The Advanced SIMD version is costed as 2 scalar loads
(cost 8) and a vec_construct (cost 2). Add a full vector operation
(cost 2) to that, to avoid the difference being lost in rounding.
There is no easy comparison between a strided Advanced SIMD x32 load
and an SVE 32-bit gather, but cost an SVE 32-bit gather as 1 vector
operation more than a 64-bit gather. */
14, /* gather_load_x32_cost */
12, /* gather_load_x64_cost */
3 /* scatter_store_elt_cost */
};
static const aarch64_scalar_vec_issue_info demeter_scalar_issue_info =
{
3, /* loads_stores_per_cycle */
2, /* stores_per_cycle */
6, /* general_ops_per_cycle */
0, /* fp_simd_load_general_ops */
1 /* fp_simd_store_general_ops */
};
static const aarch64_advsimd_vec_issue_info demeter_advsimd_issue_info =
{
{
3, /* loads_stores_per_cycle */
2, /* stores_per_cycle */
4, /* general_ops_per_cycle */
0, /* fp_simd_load_general_ops */
1 /* fp_simd_store_general_ops */
},
2, /* ld2_st2_general_ops */
2, /* ld3_st3_general_ops */
3 /* ld4_st4_general_ops */
};
static const aarch64_sve_vec_issue_info demeter_sve_issue_info =
{
{
{
3, /* loads_per_cycle */
2, /* stores_per_cycle */
4, /* general_ops_per_cycle */
0, /* fp_simd_load_general_ops */
1 /* fp_simd_store_general_ops */
},
2, /* ld2_st2_general_ops */
3, /* ld3_st3_general_ops */
3 /* ld4_st4_general_ops */
},
2, /* pred_ops_per_cycle */
2, /* while_pred_ops */
2, /* int_cmp_pred_ops */
1, /* fp_cmp_pred_ops */
1, /* gather_scatter_pair_general_ops */
1 /* gather_scatter_pair_pred_ops */
};
static const aarch64_vec_issue_info demeter_vec_issue_info =
{
&demeter_scalar_issue_info,
&demeter_advsimd_issue_info,
&demeter_sve_issue_info
};
/* Demeter costs for vector insn classes. */
static const struct cpu_vector_cost demeter_vector_cost =
{
1, /* scalar_int_stmt_cost */
2, /* scalar_fp_stmt_cost */
4, /* scalar_load_cost */
1, /* scalar_store_cost */
1, /* cond_taken_branch_cost */
1, /* cond_not_taken_branch_cost */
&demeter_advsimd_vector_cost, /* advsimd */
&demeter_sve_vector_cost, /* sve */
&demeter_vec_issue_info /* issue_info */
};
static const struct tune_params demeter_tunings =
{
&cortexa76_extra_costs,
&demeter_addrcost_table,
&demeter_regmove_cost,
&demeter_vector_cost,
&generic_branch_cost,
&generic_approx_modes,
SVE_128, /* sve_width */
{ 4, /* load_int. */
2, /* store_int. */
6, /* load_fp. */
1, /* store_fp. */
6, /* load_pred. */
2 /* store_pred. */
}, /* memmov_cost. */
5, /* issue_rate */
(AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops */
"32:16", /* function_align. */
"4", /* jump_align. */
"32:16", /* loop_align. */
3, /* int_reassoc_width. */
6, /* fp_reassoc_width. */
3, /* vec_reassoc_width. */
2, /* min_div_recip_mul_sf. */
2, /* min_div_recip_mul_df. */
0, /* max_case_values. */
tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */
(AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND
| AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS
| AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS
| AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT), /* tune_flags. */
&generic_prefetch_tune
};
static const struct tune_params a64fx_tunings =
{
&a64fx_extra_costs,
@ -15304,7 +15521,8 @@ fractional_cost
aarch64_vec_op_count::rename_cycles_per_iter () const
{
if (sve_issue_info () == &neoverse512tvb_sve_issue_info
|| sve_issue_info () == &neoversen2_sve_issue_info)
|| sve_issue_info () == &neoversen2_sve_issue_info
|| sve_issue_info () == &demeter_sve_issue_info)
/* + 1 for an addition. We've already counted a general op for each
store, so we don't need to account for stores separately. The branch
reads no registers and so does not need to be counted either.