slp: Don't traverse tree on (nil) nodes.

The given testcase shows that one of the children of the complex MUL contains a
PHI node.  This results in the vectorizer having a child that's (nil).

The pattern matcher handles this correctly, but optimize_load_redistribution_1
needs to not traverse/inspect the NULL nodes.

This however does high-light a missed opportunity.  This testcase seems to
result in a different canonicalization than normally.

Normally the expressions are right leaning.  But sometimes, especially when type
casts are introduced the trees suddenly become left leaning. For instance this
testcase (even without type casts) won't detect the FMA form because the addition
gets the MUL node in the left and not right node as it expects.

Checking all forms would be quite expensive so for GCC 12 it probably makes sense to make
forms with type casts in them have the same form as those without?

gcc/ChangeLog:

	* tree-vect-slp.c (optimize_load_redistribution_1): Abort on NULL nodes.

gcc/testsuite/ChangeLog:

	* g++.dg/vect/simd-complex-num-null-node.cc: New test.
This commit is contained in:
Tamar Christina 2021-02-25 16:26:37 +00:00
parent 557a0d3b1b
commit 28af4b9a7c
2 changed files with 79 additions and 1 deletions

View File

@ -0,0 +1,78 @@
/* { dg-do compile { target { aarch64-*-* } } } */
/* { dg-skip-if "incorrect syntax for c++98" { *-*-* } { "-std=c++98" } { "" } } */
/* { dg-additional-options "-w -O3 -march=armv8.3-a -fdump-tree-vect-all" } */
/* { dg-require-effective-target le } */
typedef struct {
float b;
float c;
} d;
namespace {
typedef int e;
template <typename, typename> struct f;
template <template <typename> class g, typename h, typename k, typename... l>
struct f<g<k, l...>, h> {
using m = g<h>;
};
} // namespace
namespace aa {
template <typename k> class o {
public:
typedef k p;
};
} // namespace aa
namespace ab {
template <typename k> using r = aa::o<k>;
template <typename k> class ac : public r<k> {};
struct s {
template <typename k, typename h> struct ad : f<k, h> {};
};
template <typename t, typename h> using ae = typename s::ad<t, h>::m;
template <typename t> struct af {
typedef typename t::p p;
template <typename k> using u = ae<t, k>;
};
} // namespace ab
namespace aa {
template <typename t> struct ag {
typedef ab::af<t> v;
typedef typename v::p &ah;
template <typename k> struct ai { typedef typename v::u<k> aj; };
};
} // namespace aa
namespace ab {
template <typename k, typename t> struct w {
typedef typename aa::ag<t>::ai<k>::aj x;
struct y {};
typedef t ak;
w(e, ak);
y a;
};
template <typename k, typename t = ac<k>> class al : w<k, t> {
typedef w<k, t> am;
typedef typename am::x x;
typedef aa::ag<x> an;
public:
typedef typename an::ah ah;
typedef e ao;
typedef t ak;
al(ao ap, ak aq = ak()) : am(ar(ap, aq), aq) {}
ah operator[](ao);
ao ar(ao ap, ak) { return ap; }
};
} // namespace ab
void as(int n, d *a, d *q) {
ab::al<d> z(n);
d acc;
for (int j = 0; j < n; ++j) {
auto at = a[j];
auto au = q[j];
acc.b += at.b * au.b - at.c * au.c;
acc.c += at.b * au.c + at.c * au.b;
}
z[0] = acc;
}
/* { dg-final { scan-tree-dump-times "stmt.*COMPLEX_MUL" 1 "vect" } } */

View File

@ -2298,7 +2298,7 @@ optimize_load_redistribution_1 (scalar_stmts_to_slp_tree_map_t *bst_map,
unsigned i;
/* For now, we don't know anything about externals so do not do anything. */
if (SLP_TREE_DEF_TYPE (root) != vect_internal_def)
if (!root || SLP_TREE_DEF_TYPE (root) != vect_internal_def)
return NULL;
else if (SLP_TREE_CODE (root) == VEC_PERM_EXPR)
{