freeze.adb (Freeze_Entity): Remove check for preelaborable initialization of a full view.

2007-09-26  Gary Dismukes  <dismukes@adacore.com>

	* freeze.adb (Freeze_Entity): Remove check for preelaborable
	initialization of a full view. This is moved to
	Analyze_Package_Specification.

	* sem_ch7.adb (Analyze_Package_Specification): Add check for
	preelaborable initialization of a full view in entity loop.
	(Uninstall_Declarations): If entity is a use-visible compilation unit,
	its child units are use-visible only if they are visible child units.

	* sem_util.adb (Is_Preelaborable_Expression): New function to determine
	whether an expression can be used within a type declaration that
	requires preelaborable init.
	(Check_Components): Replace inline code that does partial checking for
	preelaborable default expressions with call to
	Is_Preelaborable_Expression.
	(Has_Preelaborable_Initialization): In the case of a generic actual
	subtype, (that is, Is_Generic_Actual is True), return the result of
	applying Has_Preelaborable_Initialization to the generic actual's base
	type.

From-SVN: r128789
This commit is contained in:
Gary Dismukes 2007-09-26 12:43:34 +02:00 committed by Arnaud Charlet
parent af04dc07c5
commit 31b5873d01
3 changed files with 275 additions and 54 deletions

View File

@ -2542,15 +2542,13 @@ package body Freeze is
-- Case of a type or subtype being frozen
else
-- Check preelaborable initialization for full type completing a
-- private type for which pragma Preelaborable_Initialization given.
if Must_Have_Preelab_Init (E)
and then not Has_Preelaborable_Initialization (E)
then
Error_Msg_N
("full view of & does not have preelaborable initialization", E);
end if;
-- We used to check here that a full type must have preelaborable
-- initialization if it completes a private type specified with
-- pragma Preelaborable_Intialization, but that missed cases where
-- the types occur within a generic package, since the freezing
-- that occurs within a containing scope generally skips traversal
-- of a generic unit's declarations (those will be frozen within
-- instances). This check was moved to Analyze_Package_Specification.
-- The type may be defined in a generic unit. This can occur when
-- freezing a generic function that returns the type (which is

View File

@ -1168,15 +1168,27 @@ package body Sem_Ch7 is
Set_First_Private_Entity (Id, Next_Entity (L));
end if;
-- Check rule of 3.6(11), which in general requires waiting till all
-- full types have been seen.
E := First_Entity (Id);
while Present (E) loop
-- Check rule of 3.6(11), which in general requires waiting till all
-- full types have been seen.
if Ekind (E) = E_Record_Type or else Ekind (E) = E_Array_Type then
Check_Aliased_Component_Types (E);
end if;
-- Check preelaborable initialization for full type completing a
-- private type for which pragma Preelaborable_Initialization given.
if Is_Type (E)
and then Must_Have_Preelab_Init (E)
and then not Has_Preelaborable_Initialization (E)
then
Error_Msg_N
("full view of & does not have preelaborable initialization", E);
end if;
Next_Entity (E);
end loop;
@ -2024,8 +2036,24 @@ package body Sem_Ch7 is
Type_In_Use
(Etype (Next_Formal (First_Formal (Id))))));
else
Set_Is_Potentially_Use_Visible (Id,
In_Use (P) and not Is_Hidden (Id));
if In_Use (P) and then not Is_Hidden (Id) then
-- A child unit of a use-visible package remains use-visible
-- only if it is itself a visible child unit. Otherwise it
-- would remain visible in other contexts where P is use-
-- visible, because once compiled it stays in the entity list
-- of its parent unit.
if Is_Child_Unit (Id) then
Set_Is_Potentially_Use_Visible (Id,
Is_Visible_Child_Unit (Id));
else
Set_Is_Potentially_Use_Visible (Id);
end if;
else
Set_Is_Potentially_Use_Visible (Id, False);
end if;
end if;
-- Local entities are not immediately visible outside of the package

View File

@ -110,15 +110,14 @@ package body Sem_Util is
if Present (Full_View (Typ)) then
Nod := Type_Definition (Parent (Full_View (Typ)));
-- If the full-view is not available we cannot do anything
-- else here (the source has errors)
-- If the full-view is not available we cannot do anything else
-- here (the source has errors).
else
return Empty_List;
end if;
-- The support for generic formals with interfaces is still
-- missing???
-- Support for generic formals with interfaces is still missing ???
elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
return Empty_List;
@ -2677,6 +2676,64 @@ package body Sem_Util is
raise Program_Error;
end Find_Corresponding_Discriminant;
--------------------------
-- Find_Overlaid_Object --
--------------------------
function Find_Overlaid_Object (N : Node_Id) return Entity_Id is
Expr : Node_Id;
begin
-- We are looking for one of the two following forms:
-- for X'Address use Y'Address
-- or
-- Const : constant Address := expr;
-- ...
-- for X'Address use Const;
-- In the second case, the expr is either Y'Address, or recursively a
-- constant that eventually references Y'Address.
if Nkind (N) = N_Attribute_Definition_Clause
and then Chars (N) = Name_Address
then
-- This loop checks the form of the expression for Y'Address where Y
-- is an object entity name. The first loop checks the original
-- expression in the attribute definition clause. Subsequent loops
-- check referenced constants.
Expr := Expression (N);
loop
-- Check for Y'Address where Y is an object entity
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
and then Is_Entity_Name (Prefix (Expr))
and then Is_Object (Entity (Prefix (Expr)))
then
return Entity (Prefix (Expr));
-- Check for Const where Const is a constant entity
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Expr := Constant_Value (Entity (Expr));
-- Anything else does not need checking
else
exit;
end if;
end loop;
end if;
return Empty;
end Find_Overlaid_Object;
--------------------------------------------
-- Find_Overridden_Synchronized_Primitive --
--------------------------------------------
@ -4386,6 +4443,151 @@ package body Sem_Util is
Ent : Entity_Id;
Exp : Node_Id;
function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
-- Returns True if and only if the expression denoted by N does not
-- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
---------------------------------
-- Is_Preelaborable_Expression --
---------------------------------
function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
Exp : Node_Id;
Assn : Node_Id;
Choice : Node_Id;
Comp_Type : Entity_Id;
Is_Array_Aggr : Boolean;
begin
if Is_Static_Expression (N) then
return True;
elsif Nkind (N) = N_Null then
return True;
elsif Nkind (N) = N_Attribute_Reference
and then
(Attribute_Name (N) = Name_Access
or else
Attribute_Name (N) = Name_Unchecked_Access
or else
Attribute_Name (N) = Name_Unrestricted_Access)
then
return True;
elsif Nkind (N) = N_Qualified_Expression then
return Is_Preelaborable_Expression (Expression (N));
-- For aggregates we have to check that each of the associations
-- is preelaborable.
elsif Nkind (N) = N_Aggregate
or else Nkind (N) = N_Extension_Aggregate
then
Is_Array_Aggr := Is_Array_Type (Etype (N));
if Is_Array_Aggr then
Comp_Type := Component_Type (Etype (N));
end if;
-- Check the ancestor part of extension aggregates, which must
-- be either the name of a type that has preelaborable init or
-- an expression that is preelaborable.
if Nkind (N) = N_Extension_Aggregate then
declare
Anc_Part : constant Node_Id := Ancestor_Part (N);
begin
if Is_Entity_Name (Anc_Part)
and then Is_Type (Entity (Anc_Part))
then
if not Has_Preelaborable_Initialization
(Entity (Anc_Part))
then
return False;
end if;
elsif not Is_Preelaborable_Expression (Anc_Part) then
return False;
end if;
end;
end if;
-- Check positional associations
Exp := First (Expressions (N));
while Present (Exp) loop
if not Is_Preelaborable_Expression (Exp) then
return False;
end if;
Next (Exp);
end loop;
-- Check named associations
Assn := First (Component_Associations (N));
while Present (Assn) loop
Choice := First (Choices (Assn));
while Present (Choice) loop
if Is_Array_Aggr then
if Nkind (Choice) = N_Others_Choice then
null;
elsif Nkind (Choice) = N_Range then
if not Is_Static_Range (Choice) then
return False;
end if;
elsif not Is_Static_Expression (Choice) then
return False;
end if;
else
Comp_Type := Etype (Choice);
end if;
Next (Choice);
end loop;
-- If the association has a <> at this point, then we have
-- to check whether the component's type has preelaborable
-- initialization. Note that this only occurs when the
-- association's corresponding component does not have a
-- default expression, the latter case having already been
-- expanded as an expression for the association.
if Box_Present (Assn) then
if not Has_Preelaborable_Initialization (Comp_Type) then
return False;
end if;
-- In the expression case we check whether the expression
-- is preelaborable.
elsif
not Is_Preelaborable_Expression (Expression (Assn))
then
return False;
end if;
Next (Assn);
end loop;
-- If we get here then aggregate as a whole is preelaborable
return True;
-- All other cases are not preelaborable
else
return False;
end if;
end Is_Preelaborable_Expression;
-- Start of processing for Check_Components
begin
-- Loop through entities of record or protected type
@ -4400,8 +4602,8 @@ package body Sem_Util is
then
-- Get default expression if any. If there is no declaration
-- node, it means we have an internal entity. The parent and
-- tag fields are examples of such entitires. For these
-- cases, we just test the type of the entity.
-- tag fields are examples of such entitires. For these cases,
-- we just test the type of the entity.
if Present (Declaration_Node (Ent)) then
Exp := Expression (Declaration_Node (Ent));
@ -4409,8 +4611,8 @@ package body Sem_Util is
Exp := Empty;
end if;
-- A component has PI if it has no default expression and
-- the component type has PI.
-- A component has PI if it has no default expression and the
-- component type has PI.
if No (Exp) then
if not Has_Preelaborable_Initialization (Etype (Ent)) then
@ -4418,29 +4620,9 @@ package body Sem_Util is
exit;
end if;
-- Or if expression obeys rules for preelaboration. For
-- now we approximate this by testing if the default
-- expression is a static expression or if it is an
-- access attribute reference, or the literal null.
-- Require the default expression to be preelaborable
-- This is an approximation, it is probably incomplete???
elsif Is_Static_Expression (Exp) then
null;
elsif Nkind (Exp) = N_Attribute_Reference
and then (Attribute_Name (Exp) = Name_Access
or else
Attribute_Name (Exp) = Name_Unchecked_Access
or else
Attribute_Name (Exp) = Name_Unrestricted_Access)
then
null;
elsif Nkind (Exp) = N_Null then
null;
else
elsif not Is_Preelaborable_Expression (Exp) then
Has_PE := False;
exit;
end if;
@ -4462,6 +4644,15 @@ package body Sem_Util is
return True;
end if;
-- If the type is a subtype representing a generic actual type, then
-- test whether its base type has preelaborable initialization since
-- the subtype representing the actual does not inherit this attribute
-- from the actual or formal. (but maybe it should???)
if Is_Generic_Actual_Type (E) then
return Has_Preelaborable_Initialization (Base_Type (E));
end if;
-- Other private types never have preelaborable initialization
if Is_Private_Type (E) then
@ -4586,24 +4777,21 @@ package body Sem_Util is
UT : constant Entity_Id := Underlying_Type (Btype);
begin
if No (UT) then
if No (Full_View (Btype)) then
return not Is_Generic_Type (Btype)
and then not Is_Generic_Type (Root_Type (Btype));
else
return not Is_Generic_Type (Root_Type (Full_View (Btype)));
end if;
else
return not Is_Frozen (UT) and then Has_Private_Component (UT);
end if;
end;
elsif Is_Array_Type (Btype) then
return Has_Private_Component (Component_Type (Btype));
elsif Is_Record_Type (Btype) then
Component := First_Component (Btype);
while Present (Component) loop
if Has_Private_Component (Etype (Component)) then
@ -4716,7 +4904,6 @@ package body Sem_Util is
or else Ekind (S) = E_Procedure)
and then Is_Generic_Instance (S)
then
-- A child instance is always compiled in the context of a parent
-- instance. Nevertheless, the actuals are not analyzed in an
-- instance context. We detect this case by examining the current
@ -4910,7 +5097,8 @@ package body Sem_Util is
begin
Save_Interps (N, New_Prefix);
Rewrite (N,
Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
Make_Explicit_Dereference (Sloc (N),
Prefix => New_Prefix));
Set_Etype (N, Designated_Type (Etype (New_Prefix)));
@ -4973,9 +5161,8 @@ package body Sem_Util is
-------------------
function Is_AAMP_Float (E : Entity_Id) return Boolean is
begin
pragma Assert (Is_Type (E));
begin
return AAMP_On_Target
and then Is_Floating_Point_Type (E)
and then E = Base_Type (E);
@ -5072,8 +5259,8 @@ package body Sem_Util is
-------------------------
function Is_Ancestor_Package
(E1 : Entity_Id;
E2 : Entity_Id) return Boolean
(E1 : Entity_Id;
E2 : Entity_Id) return Boolean
is
Par : Entity_Id;
@ -5104,6 +5291,10 @@ package body Sem_Util is
function Is_Atomic_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
----------------------
-- Is_Atomic_Prefix --
----------------------
function Is_Atomic_Prefix (N : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (N)) then
@ -5114,6 +5305,10 @@ package body Sem_Util is
end if;
end Is_Atomic_Prefix;
----------------------------------
-- Object_Has_Atomic_Components --
----------------------------------
function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
begin
if Has_Atomic_Components (Etype (N))