re PR libfortran/32972 (performance of pack/unpack)

2007-03-23  Thomas Koenig  <tkoenig@gcc.gnu.org

	PR libfortran/32972
	* Makefile.am:  Add new variable, i_unpack_c, containing
	unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c,
	unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c,
	unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c
	and unpack_c16.c
	Add i_unpack_c to gfor_built_src.
	Add rule to generate i_unpack_c from m4/unpack.m4.
	* Makefile.in:  Regenerated.
	* libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2,
	unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8,
	unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10,
	unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8,
	unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16,
	unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16.
	* intrinsics/pack_generic.c (unpack1):  Add calls to specific
	unpack1 functions.
	(unpack0):  Add calls to specific unpack0 functions.
	* m4/unpack.m4:  New file.
	* generated/unpack_i1.c:  New file.
	* generated/unpack_i2.c:  New file.
	* generated/unpack_i4.c:  New file.
	* generated/unpack_i8.c:  New file.
	* generated/unpack_i16.c:  New file.
	* generated/unpack_r4.c:  New file.
	* generated/unpack_r8.c:  New file.
	* generated/unpack_r10.c:  New file.
	* generated/unpack_r16.c:  New file.
	* generated/unpack_c4.c:  New file.
	* generated/unpack_c8.c:  New file.
	* generated/unpack_c10.c:  New file.
	* generated/unpack_c16.c:  New file.

2007-03-23  Thomas Koenig  <tkoenig@gcc.gnu.org

	PR libfortran/32972
	* gfortran.dg/intrinsic_unpack_1.f90:  New test case.
	* gfortran.dg/intrinsic_unpack_2.f90:  New test case.
	* gfortran.dg/intrinsic_unpack_3.f90:  New test case.

From-SVN: r133469
This commit is contained in:
Thomas Koenig 2008-03-23 22:19:19 +00:00
parent 2ff8644d33
commit 3478bba466
23 changed files with 5432 additions and 19 deletions

View File

@ -1,3 +1,10 @@
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
PR libfortran/32972
* gfortran.dg/intrinsic_unpack_1.f90: New test case.
* gfortran.dg/intrinsic_unpack_2.f90: New test case.
* gfortran.dg/intrinsic_unpack_3.f90: New test case.
2008-03-22 Richard Sandiford <rsandifo@nildram.co.uk>
* gcc.target/mips/dse-1.c: Add checks for zeros.

View File

@ -0,0 +1,95 @@
! { dg-do run }
! Program to test the UNPACK intrinsic for the types usually present.
program intrinsic_unpack
implicit none
integer(kind=1), dimension(3, 3) :: a1, b1
integer(kind=2), dimension(3, 3) :: a2, b2
integer(kind=4), dimension(3, 3) :: a4, b4
integer(kind=8), dimension(3, 3) :: a8, b8
real(kind=4), dimension(3,3) :: ar4, br4
real(kind=8), dimension(3,3) :: ar8, br8
logical, dimension(3, 3) :: mask
character(len=100) line1, line2
integer i
mask = reshape ((/.false.,.true.,.false.,.true.,.false.,.false.,&
&.false.,.false.,.true./), (/3, 3/));
a1 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
b1 = unpack ((/2_1, 3_1, 4_1/), mask, a1)
if (any (b1 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
write (line1,'(10I4)') b1
write (line2,'(10I4)') unpack((/2_1, 3_1, 4_1/), mask, a1)
if (line1 .ne. line2) call abort
b1 = -1
b1 = unpack ((/2_1, 3_1, 4_1/), mask, 0_1)
if (any (b1 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
a2 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
b2 = unpack ((/2_2, 3_2, 4_2/), mask, a2)
if (any (b2 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
write (line1,'(10I4)') b2
write (line2,'(10I4)') unpack((/2_2, 3_2, 4_2/), mask, a2)
if (line1 .ne. line2) call abort
b2 = -1
b2 = unpack ((/2_2, 3_2, 4_2/), mask, 0_2)
if (any (b2 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
a4 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
b4 = unpack ((/2_4, 3_4, 4_4/), mask, a4)
if (any (b4 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
write (line1,'(10I4)') b4
write (line2,'(10I4)') unpack((/2_4, 3_4, 4_4/), mask, a4)
if (line1 .ne. line2) call abort
b4 = -1
b4 = unpack ((/2_4, 3_4, 4_4/), mask, 0_4)
if (any (b4 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
a8 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
b8 = unpack ((/2_8, 3_8, 4_8/), mask, a8)
if (any (b8 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
write (line1,'(10I4)') b8
write (line2,'(10I4)') unpack((/2_8, 3_8, 4_8/), mask, a8)
if (line1 .ne. line2) call abort
b8 = -1
b8 = unpack ((/2_8, 3_8, 4_8/), mask, 0_8)
if (any (b8 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
ar4 = reshape ((/1._4, 0._4, 0._4, 0._4, 1._4, 0._4, 0._4, 0._4, 1._4/), &
(/3, 3/));
br4 = unpack ((/2._4, 3._4, 4._4/), mask, ar4)
if (any (br4 .ne. reshape ((/1._4, 2._4, 0._4, 3._4, 1._4, 0._4, &
0._4, 0._4, 4._4/), (/3, 3/)))) &
call abort
write (line1,'(9F9.5)') br4
write (line2,'(9F9.5)') unpack((/2._4, 3._4, 4._4/), mask, ar4)
if (line1 .ne. line2) call abort
br4 = -1._4
br4 = unpack ((/2._4, 3._4, 4._4/), mask, 0._4)
if (any (br4 .ne. reshape ((/0._4, 2._4, 0._4, 3._4, 0._4, 0._4, &
0._4, 0._4, 4._4/), (/3, 3/)))) &
call abort
ar8 = reshape ((/1._8, 0._8, 0._8, 0._8, 1._8, 0._8, 0._8, 0._8, 1._8/), &
(/3, 3/));
br8 = unpack ((/2._8, 3._8, 4._8/), mask, ar8)
if (any (br8 .ne. reshape ((/1._8, 2._8, 0._8, 3._8, 1._8, 0._8, &
0._8, 0._8, 4._8/), (/3, 3/)))) &
call abort
write (line1,'(9F9.5)') br8
write (line2,'(9F9.5)') unpack((/2._8, 3._8, 4._8/), mask, ar8)
if (line1 .ne. line2) call abort
br8 = -1._8
br8 = unpack ((/2._8, 3._8, 4._8/), mask, 0._8)
if (any (br8 .ne. reshape ((/0._8, 2._8, 0._8, 3._8, 0._8, 0._8, &
0._8, 0._8, 4._8/), (/3, 3/)))) &
call abort
end program

View File

@ -0,0 +1,31 @@
! { dg-do run }
! { dg-require-effective-target fortran_large_real }
! Program to test the UNPACK intrinsic for large real type
program intrinsic_unpack
implicit none
integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
real(kind=k), dimension(3,3) :: ark, brk
logical, dimension(3, 3) :: mask
character(len=100) line1, line2
integer i
mask = reshape ((/.false.,.true.,.false.,.true.,.false.,.false.,&
&.false.,.false.,.true./), (/3, 3/));
ark = reshape ((/1._k, 0._k, 0._k, 0._k, 1._k, 0._k, 0._k, 0._k, 1._k/), &
(/3, 3/));
brk = unpack ((/2._k, 3._k, 4._k/), mask, ark)
if (any (brk .ne. reshape ((/1._k, 2._k, 0._k, 3._k, 1._k, 0._k, &
0._k, 0._k, 4._k/), (/3, 3/)))) &
call abort
write (line1,'(9F9.5)') brk
write (line2,'(9F9.5)') unpack((/2._k, 3._k, 4._k/), mask, ark)
if (line1 .ne. line2) call abort
brk = -1._k
brk = unpack ((/2._k, 3._k, 4._k/), mask, 0._k)
if (any (brk .ne. reshape ((/0._k, 2._k, 0._k, 3._k, 0._k, 0._k, &
0._k, 0._k, 4._k/), (/3, 3/)))) &
call abort
end program

View File

@ -0,0 +1,27 @@
! { dg-do run }
! { dg-require-effective-target fortran_large_int }
! Program to test the UNPACK intrinsic for a long integer type
program intrinsic_unpack
implicit none
integer,parameter :: k = selected_int_kind (range (0_8) + 1)
integer(kind=k), dimension(3, 3) :: ak, bk
logical, dimension(3, 3) :: mask
character(len=100) line1, line2
integer i
mask = reshape ((/.false.,.true.,.false.,.true.,.false.,.false.,&
&.false.,.false.,.true./), (/3, 3/));
ak = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
bk = unpack ((/2_k, 3_k, 4_k/), mask, ak)
if (any (bk .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
write (line1,'(10I4)') bk
write (line2,'(10I4)') unpack((/2_k, 3_k, 4_k/), mask, ak)
if (line1 .ne. line2) call abort
bk = -1
bk = unpack ((/2_k, 3_k, 4_k/), mask, 0_k)
if (any (bk .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
call abort
end program

View File

@ -1,3 +1,38 @@
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
PR libfortran/32972
* Makefile.am: Add new variable, i_unpack_c, containing
unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c,
unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c,
unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c
and unpack_c16.c
Add i_unpack_c to gfor_built_src.
Add rule to generate i_unpack_c from m4/unpack.m4.
* Makefile.in: Regenerated.
* libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2,
unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8,
unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10,
unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8,
unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16,
unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16.
* intrinsics/pack_generic.c (unpack1): Add calls to specific
unpack1 functions.
(unpack0): Add calls to specific unpack0 functions.
* m4/unpack.m4: New file.
* generated/unpack_i1.c: New file.
* generated/unpack_i2.c: New file.
* generated/unpack_i4.c: New file.
* generated/unpack_i8.c: New file.
* generated/unpack_i16.c: New file.
* generated/unpack_r4.c: New file.
* generated/unpack_r8.c: New file.
* generated/unpack_r10.c: New file.
* generated/unpack_r16.c: New file.
* generated/unpack_c4.c: New file.
* generated/unpack_c8.c: New file.
* generated/unpack_c10.c: New file.
* generated/unpack_c16.c: New file.
2008-03-22 Jerry DeLisle <jvdelisle@gcc.gnu.org>
PR libfortran/35632

View File

@ -491,6 +491,21 @@ $(srcdir)/generated/pack_c8.c \
$(srcdir)/generated/pack_c10.c \
$(srcdir)/generated/pack_c16.c
i_unpack_c = \
$(srcdir)/generated/unpack_i1.c \
$(srcdir)/generated/unpack_i2.c \
$(srcdir)/generated/unpack_i4.c \
$(srcdir)/generated/unpack_i8.c \
$(srcdir)/generated/unpack_i16.c \
$(srcdir)/generated/unpack_r4.c \
$(srcdir)/generated/unpack_r8.c \
$(srcdir)/generated/unpack_r10.c \
$(srcdir)/generated/unpack_r16.c \
$(srcdir)/generated/unpack_c4.c \
$(srcdir)/generated/unpack_c8.c \
$(srcdir)/generated/unpack_c10.c \
$(srcdir)/generated/unpack_c16.c
m4_files= m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
m4/any.m4 m4/count.m4 m4/maxloc0.m4 m4/maxloc1.m4 m4/maxval.m4 \
m4/minloc0.m4 m4/minloc1.m4 m4/minval.m4 m4/product.m4 m4/sum.m4 \
@ -499,7 +514,8 @@ m4_files= m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
m4/specific.m4 m4/specific2.m4 m4/head.m4 m4/shape.m4 m4/reshape.m4 \
m4/transpose.m4 m4/eoshift1.m4 m4/eoshift3.m4 m4/exponent.m4 \
m4/fraction.m4 m4/nearest.m4 m4/set_exponent.m4 m4/pow.m4 \
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 \
m4/unpack.m4
gfor_built_src= $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
$(i_maxloc1_c) $(i_maxval_c) $(i_minloc0_c) $(i_minloc1_c) $(i_minval_c) \
@ -507,7 +523,7 @@ gfor_built_src= $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
$(i_matmul_c) $(i_matmull_c) $(i_transpose_c) $(i_shape_c) $(i_eoshift1_c) \
$(i_eoshift3_c) $(i_cshift1_c) $(i_reshape_c) $(in_pack_c) $(in_unpack_c) \
$(i_exponent_c) $(i_fraction_c) $(i_nearest_c) $(i_set_exponent_c) \
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) \
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) $(i_unpack_c) \
selected_int_kind.inc selected_real_kind.inc kinds.h \
kinds.inc c99_protos.inc fpu-target.h
@ -826,6 +842,9 @@ $(i_pow_c): m4/pow.m4 $(I_M4_DEPS)
$(i_pack_c): m4/pack.m4 $(I_M4_DEPS)
$(M4) -Dfile=$@ -I$(srcdir)/m4 pack.m4 > $@
$(i_unpack_c): m4/unpack.m4 $(I_M4_DEPS)
$(M4) -Dfile=$@ -I$(srcdir)/m4 unpack.m4 > $@
$(gfor_built_specific_src): m4/specific.m4 m4/head.m4
$(M4) -Dfile=$@ -I$(srcdir)/m4 specific.m4 > $@

View File

@ -370,7 +370,19 @@ am__libgfortran_la_SOURCES_DIST = runtime/backtrace.c \
$(srcdir)/generated/pack_r8.c $(srcdir)/generated/pack_r10.c \
$(srcdir)/generated/pack_r16.c $(srcdir)/generated/pack_c4.c \
$(srcdir)/generated/pack_c8.c $(srcdir)/generated/pack_c10.c \
$(srcdir)/generated/pack_c16.c selected_int_kind.inc \
$(srcdir)/generated/pack_c16.c $(srcdir)/generated/unpack_i1.c \
$(srcdir)/generated/unpack_i2.c \
$(srcdir)/generated/unpack_i4.c \
$(srcdir)/generated/unpack_i8.c \
$(srcdir)/generated/unpack_i16.c \
$(srcdir)/generated/unpack_r4.c \
$(srcdir)/generated/unpack_r8.c \
$(srcdir)/generated/unpack_r10.c \
$(srcdir)/generated/unpack_r16.c \
$(srcdir)/generated/unpack_c4.c \
$(srcdir)/generated/unpack_c8.c \
$(srcdir)/generated/unpack_c10.c \
$(srcdir)/generated/unpack_c16.c selected_int_kind.inc \
selected_real_kind.inc kinds.h kinds.inc c99_protos.inc \
fpu-target.h io/close.c io/file_pos.c io/format.c io/inquire.c \
io/intrinsics.c io/list_read.c io/lock.c io/open.c io/read.c \
@ -643,7 +655,11 @@ am__objects_29 = spacing_r4.lo spacing_r8.lo spacing_r10.lo \
am__objects_30 = pack_i1.lo pack_i2.lo pack_i4.lo pack_i8.lo \
pack_i16.lo pack_r4.lo pack_r8.lo pack_r10.lo pack_r16.lo \
pack_c4.lo pack_c8.lo pack_c10.lo pack_c16.lo
am__objects_31 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \
am__objects_31 = unpack_i1.lo unpack_i2.lo unpack_i4.lo unpack_i8.lo \
unpack_i16.lo unpack_r4.lo unpack_r8.lo unpack_r10.lo \
unpack_r16.lo unpack_c4.lo unpack_c8.lo unpack_c10.lo \
unpack_c16.lo
am__objects_32 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \
$(am__objects_5) $(am__objects_6) $(am__objects_7) \
$(am__objects_8) $(am__objects_9) $(am__objects_10) \
$(am__objects_11) $(am__objects_12) $(am__objects_13) \
@ -652,11 +668,11 @@ am__objects_31 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \
$(am__objects_20) $(am__objects_21) $(am__objects_22) \
$(am__objects_23) $(am__objects_24) $(am__objects_25) \
$(am__objects_26) $(am__objects_27) $(am__objects_28) \
$(am__objects_29) $(am__objects_30)
am__objects_32 = close.lo file_pos.lo format.lo inquire.lo \
$(am__objects_29) $(am__objects_30) $(am__objects_31)
am__objects_33 = close.lo file_pos.lo format.lo inquire.lo \
intrinsics.lo list_read.lo lock.lo open.lo read.lo \
size_from_kind.lo transfer.lo unit.lo unix.lo write.lo
am__objects_33 = associated.lo abort.lo access.lo args.lo \
am__objects_34 = associated.lo abort.lo access.lo args.lo \
c99_functions.lo chdir.lo chmod.lo clock.lo cpu_time.lo \
cshift0.lo ctime.lo date_and_time.lo dtime.lo env.lo \
eoshift0.lo eoshift2.lo erfc_scaled.lo etime.lo exit.lo \
@ -670,8 +686,8 @@ am__objects_33 = associated.lo abort.lo access.lo args.lo \
system_clock.lo time.lo transpose_generic.lo umask.lo \
unlink.lo unpack_generic.lo in_pack_generic.lo \
in_unpack_generic.lo
am__objects_34 =
am__objects_35 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \
am__objects_35 =
am__objects_36 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \
_abs_i4.lo _abs_i8.lo _abs_i16.lo _abs_r4.lo _abs_r8.lo \
_abs_r10.lo _abs_r16.lo _aimag_c4.lo _aimag_c8.lo \
_aimag_c10.lo _aimag_c16.lo _exp_r4.lo _exp_r8.lo _exp_r10.lo \
@ -695,18 +711,18 @@ am__objects_35 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \
_conjg_c4.lo _conjg_c8.lo _conjg_c10.lo _conjg_c16.lo \
_aint_r4.lo _aint_r8.lo _aint_r10.lo _aint_r16.lo _anint_r4.lo \
_anint_r8.lo _anint_r10.lo _anint_r16.lo
am__objects_36 = _sign_i4.lo _sign_i8.lo _sign_i16.lo _sign_r4.lo \
am__objects_37 = _sign_i4.lo _sign_i8.lo _sign_i16.lo _sign_r4.lo \
_sign_r8.lo _sign_r10.lo _sign_r16.lo _dim_i4.lo _dim_i8.lo \
_dim_i16.lo _dim_r4.lo _dim_r8.lo _dim_r10.lo _dim_r16.lo \
_atan2_r4.lo _atan2_r8.lo _atan2_r10.lo _atan2_r16.lo \
_mod_i4.lo _mod_i8.lo _mod_i16.lo _mod_r4.lo _mod_r8.lo \
_mod_r10.lo _mod_r16.lo
am__objects_37 = misc_specifics.lo
am__objects_38 = $(am__objects_35) $(am__objects_36) $(am__objects_37) \
am__objects_38 = misc_specifics.lo
am__objects_39 = $(am__objects_36) $(am__objects_37) $(am__objects_38) \
dprod_r8.lo f2c_specifics.lo
am__objects_39 = $(am__objects_1) $(am__objects_31) $(am__objects_32) \
$(am__objects_33) $(am__objects_34) $(am__objects_38)
@onestep_FALSE@am_libgfortran_la_OBJECTS = $(am__objects_39)
am__objects_40 = $(am__objects_1) $(am__objects_32) $(am__objects_33) \
$(am__objects_34) $(am__objects_35) $(am__objects_39)
@onestep_FALSE@am_libgfortran_la_OBJECTS = $(am__objects_40)
@onestep_TRUE@am_libgfortran_la_OBJECTS = libgfortran_c.lo
libgfortran_la_OBJECTS = $(am_libgfortran_la_OBJECTS)
libgfortranbegin_la_LIBADD =
@ -1355,6 +1371,21 @@ $(srcdir)/generated/pack_c8.c \
$(srcdir)/generated/pack_c10.c \
$(srcdir)/generated/pack_c16.c
i_unpack_c = \
$(srcdir)/generated/unpack_i1.c \
$(srcdir)/generated/unpack_i2.c \
$(srcdir)/generated/unpack_i4.c \
$(srcdir)/generated/unpack_i8.c \
$(srcdir)/generated/unpack_i16.c \
$(srcdir)/generated/unpack_r4.c \
$(srcdir)/generated/unpack_r8.c \
$(srcdir)/generated/unpack_r10.c \
$(srcdir)/generated/unpack_r16.c \
$(srcdir)/generated/unpack_c4.c \
$(srcdir)/generated/unpack_c8.c \
$(srcdir)/generated/unpack_c10.c \
$(srcdir)/generated/unpack_c16.c
m4_files = m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
m4/any.m4 m4/count.m4 m4/maxloc0.m4 m4/maxloc1.m4 m4/maxval.m4 \
m4/minloc0.m4 m4/minloc1.m4 m4/minval.m4 m4/product.m4 m4/sum.m4 \
@ -1363,7 +1394,8 @@ m4_files = m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
m4/specific.m4 m4/specific2.m4 m4/head.m4 m4/shape.m4 m4/reshape.m4 \
m4/transpose.m4 m4/eoshift1.m4 m4/eoshift3.m4 m4/exponent.m4 \
m4/fraction.m4 m4/nearest.m4 m4/set_exponent.m4 m4/pow.m4 \
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 \
m4/unpack.m4
gfor_built_src = $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
$(i_maxloc1_c) $(i_maxval_c) $(i_minloc0_c) $(i_minloc1_c) $(i_minval_c) \
@ -1371,7 +1403,7 @@ gfor_built_src = $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
$(i_matmul_c) $(i_matmull_c) $(i_transpose_c) $(i_shape_c) $(i_eoshift1_c) \
$(i_eoshift3_c) $(i_cshift1_c) $(i_reshape_c) $(in_pack_c) $(in_unpack_c) \
$(i_exponent_c) $(i_fraction_c) $(i_nearest_c) $(i_set_exponent_c) \
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) \
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) $(i_unpack_c) \
selected_int_kind.inc selected_real_kind.inc kinds.h \
kinds.inc c99_protos.inc fpu-target.h
@ -2061,7 +2093,20 @@ distclean-compile:
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unit.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unix.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unlink.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c10.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c16.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c4.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c8.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_generic.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i1.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i16.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i2.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i4.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i8.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r10.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r16.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r4.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r8.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/write.Plo@am__quote@
.F90.o:
@ -4748,6 +4793,97 @@ pack_c16.lo: $(srcdir)/generated/pack_c16.c
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o pack_c16.lo `test -f '$(srcdir)/generated/pack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/pack_c16.c
unpack_i1.lo: $(srcdir)/generated/unpack_i1.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i1.lo -MD -MP -MF "$(DEPDIR)/unpack_i1.Tpo" -c -o unpack_i1.lo `test -f '$(srcdir)/generated/unpack_i1.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i1.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i1.Tpo" "$(DEPDIR)/unpack_i1.Plo"; else rm -f "$(DEPDIR)/unpack_i1.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i1.c' object='unpack_i1.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i1.lo `test -f '$(srcdir)/generated/unpack_i1.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i1.c
unpack_i2.lo: $(srcdir)/generated/unpack_i2.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i2.lo -MD -MP -MF "$(DEPDIR)/unpack_i2.Tpo" -c -o unpack_i2.lo `test -f '$(srcdir)/generated/unpack_i2.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i2.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i2.Tpo" "$(DEPDIR)/unpack_i2.Plo"; else rm -f "$(DEPDIR)/unpack_i2.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i2.c' object='unpack_i2.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i2.lo `test -f '$(srcdir)/generated/unpack_i2.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i2.c
unpack_i4.lo: $(srcdir)/generated/unpack_i4.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i4.lo -MD -MP -MF "$(DEPDIR)/unpack_i4.Tpo" -c -o unpack_i4.lo `test -f '$(srcdir)/generated/unpack_i4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i4.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i4.Tpo" "$(DEPDIR)/unpack_i4.Plo"; else rm -f "$(DEPDIR)/unpack_i4.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i4.c' object='unpack_i4.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i4.lo `test -f '$(srcdir)/generated/unpack_i4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i4.c
unpack_i8.lo: $(srcdir)/generated/unpack_i8.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i8.lo -MD -MP -MF "$(DEPDIR)/unpack_i8.Tpo" -c -o unpack_i8.lo `test -f '$(srcdir)/generated/unpack_i8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i8.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i8.Tpo" "$(DEPDIR)/unpack_i8.Plo"; else rm -f "$(DEPDIR)/unpack_i8.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i8.c' object='unpack_i8.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i8.lo `test -f '$(srcdir)/generated/unpack_i8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i8.c
unpack_i16.lo: $(srcdir)/generated/unpack_i16.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i16.lo -MD -MP -MF "$(DEPDIR)/unpack_i16.Tpo" -c -o unpack_i16.lo `test -f '$(srcdir)/generated/unpack_i16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i16.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i16.Tpo" "$(DEPDIR)/unpack_i16.Plo"; else rm -f "$(DEPDIR)/unpack_i16.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i16.c' object='unpack_i16.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i16.lo `test -f '$(srcdir)/generated/unpack_i16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i16.c
unpack_r4.lo: $(srcdir)/generated/unpack_r4.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r4.lo -MD -MP -MF "$(DEPDIR)/unpack_r4.Tpo" -c -o unpack_r4.lo `test -f '$(srcdir)/generated/unpack_r4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r4.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r4.Tpo" "$(DEPDIR)/unpack_r4.Plo"; else rm -f "$(DEPDIR)/unpack_r4.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r4.c' object='unpack_r4.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r4.lo `test -f '$(srcdir)/generated/unpack_r4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r4.c
unpack_r8.lo: $(srcdir)/generated/unpack_r8.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r8.lo -MD -MP -MF "$(DEPDIR)/unpack_r8.Tpo" -c -o unpack_r8.lo `test -f '$(srcdir)/generated/unpack_r8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r8.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r8.Tpo" "$(DEPDIR)/unpack_r8.Plo"; else rm -f "$(DEPDIR)/unpack_r8.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r8.c' object='unpack_r8.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r8.lo `test -f '$(srcdir)/generated/unpack_r8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r8.c
unpack_r10.lo: $(srcdir)/generated/unpack_r10.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r10.lo -MD -MP -MF "$(DEPDIR)/unpack_r10.Tpo" -c -o unpack_r10.lo `test -f '$(srcdir)/generated/unpack_r10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r10.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r10.Tpo" "$(DEPDIR)/unpack_r10.Plo"; else rm -f "$(DEPDIR)/unpack_r10.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r10.c' object='unpack_r10.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r10.lo `test -f '$(srcdir)/generated/unpack_r10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r10.c
unpack_r16.lo: $(srcdir)/generated/unpack_r16.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r16.lo -MD -MP -MF "$(DEPDIR)/unpack_r16.Tpo" -c -o unpack_r16.lo `test -f '$(srcdir)/generated/unpack_r16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r16.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r16.Tpo" "$(DEPDIR)/unpack_r16.Plo"; else rm -f "$(DEPDIR)/unpack_r16.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r16.c' object='unpack_r16.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r16.lo `test -f '$(srcdir)/generated/unpack_r16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r16.c
unpack_c4.lo: $(srcdir)/generated/unpack_c4.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c4.lo -MD -MP -MF "$(DEPDIR)/unpack_c4.Tpo" -c -o unpack_c4.lo `test -f '$(srcdir)/generated/unpack_c4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c4.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c4.Tpo" "$(DEPDIR)/unpack_c4.Plo"; else rm -f "$(DEPDIR)/unpack_c4.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c4.c' object='unpack_c4.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c4.lo `test -f '$(srcdir)/generated/unpack_c4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c4.c
unpack_c8.lo: $(srcdir)/generated/unpack_c8.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c8.lo -MD -MP -MF "$(DEPDIR)/unpack_c8.Tpo" -c -o unpack_c8.lo `test -f '$(srcdir)/generated/unpack_c8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c8.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c8.Tpo" "$(DEPDIR)/unpack_c8.Plo"; else rm -f "$(DEPDIR)/unpack_c8.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c8.c' object='unpack_c8.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c8.lo `test -f '$(srcdir)/generated/unpack_c8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c8.c
unpack_c10.lo: $(srcdir)/generated/unpack_c10.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c10.lo -MD -MP -MF "$(DEPDIR)/unpack_c10.Tpo" -c -o unpack_c10.lo `test -f '$(srcdir)/generated/unpack_c10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c10.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c10.Tpo" "$(DEPDIR)/unpack_c10.Plo"; else rm -f "$(DEPDIR)/unpack_c10.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c10.c' object='unpack_c10.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c10.lo `test -f '$(srcdir)/generated/unpack_c10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c10.c
unpack_c16.lo: $(srcdir)/generated/unpack_c16.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c16.lo -MD -MP -MF "$(DEPDIR)/unpack_c16.Tpo" -c -o unpack_c16.lo `test -f '$(srcdir)/generated/unpack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c16.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c16.Tpo" "$(DEPDIR)/unpack_c16.Plo"; else rm -f "$(DEPDIR)/unpack_c16.Tpo"; exit 1; fi
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c16.c' object='unpack_c16.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c16.lo `test -f '$(srcdir)/generated/unpack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c16.c
close.lo: io/close.c
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT close.lo -MD -MP -MF "$(DEPDIR)/close.Tpo" -c -o close.lo `test -f 'io/close.c' || echo '$(srcdir)/'`io/close.c; \
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/close.Tpo" "$(DEPDIR)/close.Plo"; else rm -f "$(DEPDIR)/close.Tpo"; exit 1; fi
@ -5702,6 +5838,9 @@ fpu-target.h: $(srcdir)/$(FPU_HOST_HEADER)
@MAINTAINER_MODE_TRUE@$(i_pack_c): m4/pack.m4 $(I_M4_DEPS)
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 pack.m4 > $@
@MAINTAINER_MODE_TRUE@$(i_unpack_c): m4/unpack.m4 $(I_M4_DEPS)
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 unpack.m4 > $@
@MAINTAINER_MODE_TRUE@$(gfor_built_specific_src): m4/specific.m4 m4/head.m4
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 specific.m4 > $@

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_COMPLEX_10)
void
unpack0_c10 (gfc_array_c10 *ret, const gfc_array_c10 *vector,
const gfc_array_l1 *mask, const GFC_COMPLEX_10 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_10 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_10 *vptr;
/* Value for field, this is constant. */
const GFC_COMPLEX_10 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_10));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_c10 (gfc_array_c10 *ret, const gfc_array_c10 *vector,
const gfc_array_l1 *mask, const gfc_array_c10 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_10 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_10 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_COMPLEX_10 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_10));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_COMPLEX_16)
void
unpack0_c16 (gfc_array_c16 *ret, const gfc_array_c16 *vector,
const gfc_array_l1 *mask, const GFC_COMPLEX_16 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_16 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_16 *vptr;
/* Value for field, this is constant. */
const GFC_COMPLEX_16 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_16));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_c16 (gfc_array_c16 *ret, const gfc_array_c16 *vector,
const gfc_array_l1 *mask, const gfc_array_c16 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_16 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_16 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_COMPLEX_16 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_16));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_COMPLEX_4)
void
unpack0_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector,
const gfc_array_l1 *mask, const GFC_COMPLEX_4 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_4 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_4 *vptr;
/* Value for field, this is constant. */
const GFC_COMPLEX_4 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector,
const gfc_array_l1 *mask, const gfc_array_c4 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_4 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_4 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_COMPLEX_4 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_COMPLEX_8)
void
unpack0_c8 (gfc_array_c8 *ret, const gfc_array_c8 *vector,
const gfc_array_l1 *mask, const GFC_COMPLEX_8 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_8 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_8 *vptr;
/* Value for field, this is constant. */
const GFC_COMPLEX_8 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_8));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_c8 (gfc_array_c8 *ret, const gfc_array_c8 *vector,
const gfc_array_l1 *mask, const gfc_array_c8 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_COMPLEX_8 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_COMPLEX_8 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_COMPLEX_8 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_8));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_INTEGER_1)
void
unpack0_i1 (gfc_array_i1 *ret, const gfc_array_i1 *vector,
const gfc_array_l1 *mask, const GFC_INTEGER_1 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_1 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_1 *vptr;
/* Value for field, this is constant. */
const GFC_INTEGER_1 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_1));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_i1 (gfc_array_i1 *ret, const gfc_array_i1 *vector,
const gfc_array_l1 *mask, const gfc_array_i1 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_1 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_1 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_INTEGER_1 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_1));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_INTEGER_16)
void
unpack0_i16 (gfc_array_i16 *ret, const gfc_array_i16 *vector,
const gfc_array_l1 *mask, const GFC_INTEGER_16 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_16 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_16 *vptr;
/* Value for field, this is constant. */
const GFC_INTEGER_16 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_16));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_i16 (gfc_array_i16 *ret, const gfc_array_i16 *vector,
const gfc_array_l1 *mask, const gfc_array_i16 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_16 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_16 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_INTEGER_16 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_16));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_INTEGER_2)
void
unpack0_i2 (gfc_array_i2 *ret, const gfc_array_i2 *vector,
const gfc_array_l1 *mask, const GFC_INTEGER_2 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_2 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_2 *vptr;
/* Value for field, this is constant. */
const GFC_INTEGER_2 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_2));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_i2 (gfc_array_i2 *ret, const gfc_array_i2 *vector,
const gfc_array_l1 *mask, const gfc_array_i2 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_2 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_2 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_INTEGER_2 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_2));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_INTEGER_4)
void
unpack0_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector,
const gfc_array_l1 *mask, const GFC_INTEGER_4 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_4 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_4 *vptr;
/* Value for field, this is constant. */
const GFC_INTEGER_4 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector,
const gfc_array_l1 *mask, const gfc_array_i4 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_4 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_4 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_INTEGER_4 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_INTEGER_8)
void
unpack0_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector,
const gfc_array_l1 *mask, const GFC_INTEGER_8 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_8 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_8 *vptr;
/* Value for field, this is constant. */
const GFC_INTEGER_8 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector,
const gfc_array_l1 *mask, const gfc_array_i8 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_8 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_8 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_INTEGER_8 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_REAL_10)
void
unpack0_r10 (gfc_array_r10 *ret, const gfc_array_r10 *vector,
const gfc_array_l1 *mask, const GFC_REAL_10 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_10 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_10 *vptr;
/* Value for field, this is constant. */
const GFC_REAL_10 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_10));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_r10 (gfc_array_r10 *ret, const gfc_array_r10 *vector,
const gfc_array_l1 *mask, const gfc_array_r10 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_10 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_10 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_REAL_10 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_10));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_REAL_16)
void
unpack0_r16 (gfc_array_r16 *ret, const gfc_array_r16 *vector,
const gfc_array_l1 *mask, const GFC_REAL_16 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_16 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_16 *vptr;
/* Value for field, this is constant. */
const GFC_REAL_16 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_16));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_r16 (gfc_array_r16 *ret, const gfc_array_r16 *vector,
const gfc_array_l1 *mask, const gfc_array_r16 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_16 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_16 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_REAL_16 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_16));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_REAL_4)
void
unpack0_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector,
const gfc_array_l1 *mask, const GFC_REAL_4 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_4 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_4 *vptr;
/* Value for field, this is constant. */
const GFC_REAL_4 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector,
const gfc_array_l1 *mask, const gfc_array_r4 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_4 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_4 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_REAL_4 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -0,0 +1,338 @@
/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_REAL_8)
void
unpack0_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector,
const gfc_array_l1 *mask, const GFC_REAL_8 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_8 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_8 *vptr;
/* Value for field, this is constant. */
const GFC_REAL_8 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector,
const gfc_array_l1 *mask, const gfc_array_r8 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_REAL_8 *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_REAL_8 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_REAL_8 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif

View File

@ -196,8 +196,103 @@ void
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l1 *mask, const gfc_array_char *field)
{
unpack_internal (ret, vector, mask, field,
GFC_DESCRIPTOR_SIZE (vector),
int type;
index_type size;
type = GFC_DESCRIPTOR_TYPE (vector);
size = GFC_DESCRIPTOR_SIZE (vector);
switch(type)
{
case GFC_DTYPE_INTEGER:
case GFC_DTYPE_LOGICAL:
switch(size)
{
case sizeof (GFC_INTEGER_1):
unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
mask, (gfc_array_i1 *) field);
return;
case sizeof (GFC_INTEGER_2):
unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
mask, (gfc_array_i2 *) field);
return;
case sizeof (GFC_INTEGER_4):
unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
mask, (gfc_array_i4 *) field);
return;
case sizeof (GFC_INTEGER_8):
unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
mask, (gfc_array_i8 *) field);
return;
#ifdef HAVE_GFC_INTEGER_16
case sizeof (GFC_INTEGER_16):
unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
mask, (gfc_array_i16 *) field);
return;
#endif
}
case GFC_DTYPE_REAL:
switch (size)
{
case sizeof (GFC_REAL_4):
unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
mask, (gfc_array_r4 *) field);
return;
case sizeof (GFC_REAL_8):
unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
mask, (gfc_array_r8 *) field);
return;
#ifdef HAVE_GFC_REAL_10
case sizeof (GFC_REAL_10):
unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
mask, (gfc_array_r10 *) field);
return;
#endif
#ifdef HAVE_GFC_REAL_16
case sizeof (GFC_REAL_16):
unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
mask, (gfc_array_r16 *) field);
return;
#endif
}
case GFC_DTYPE_COMPLEX:
switch (size)
{
case sizeof (GFC_COMPLEX_4):
unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
mask, (gfc_array_c4 *) field);
return;
case sizeof (GFC_COMPLEX_8):
unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
mask, (gfc_array_c8 *) field);
return;
#ifdef HAVE_GFC_COMPLEX_10
case sizeof (GFC_COMPLEX_10):
unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
mask, (gfc_array_c10 *) field);
return;
#endif
#ifdef HAVE_GFC_COMPLEX_16
case sizeof (GFC_COMPLEX_16):
unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
mask, (gfc_array_c16 *) field);
return;
#endif
}
}
unpack_internal (ret, vector, mask, field, size,
GFC_DESCRIPTOR_SIZE (field));
}
@ -227,6 +322,102 @@ unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
{
gfc_array_char tmp;
int type;
index_type size;
type = GFC_DESCRIPTOR_TYPE (vector);
size = GFC_DESCRIPTOR_SIZE (vector);
switch(type)
{
case GFC_DTYPE_INTEGER:
case GFC_DTYPE_LOGICAL:
switch(size)
{
case sizeof (GFC_INTEGER_1):
unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
mask, (GFC_INTEGER_1 *) field);
return;
case sizeof (GFC_INTEGER_2):
unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
mask, (GFC_INTEGER_2 *) field);
return;
case sizeof (GFC_INTEGER_4):
unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
mask, (GFC_INTEGER_4 *) field);
return;
case sizeof (GFC_INTEGER_8):
unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
mask, (GFC_INTEGER_8 *) field);
return;
#ifdef HAVE_GFC_INTEGER_16
case sizeof (GFC_INTEGER_16):
unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
mask, (GFC_INTEGER_16 *) field);
return;
#endif
}
case GFC_DTYPE_REAL:
switch(size)
{
case sizeof (GFC_REAL_4):
unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
mask, (GFC_REAL_4 *) field);
return;
case sizeof (GFC_REAL_8):
unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
mask, (GFC_REAL_8 *) field);
return;
#ifdef HAVE_GFC_REAL_10
case sizeof (GFC_REAL_10):
unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
mask, (GFC_REAL_10 *) field);
return;
#endif
#ifdef HAVE_GFC_REAL_16
case sizeof (GFC_REAL_16):
unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
mask, (GFC_REAL_16 *) field);
return;
#endif
}
case GFC_DTYPE_COMPLEX:
switch(size)
{
case sizeof (GFC_COMPLEX_4):
unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
mask, (GFC_COMPLEX_4 *) field);
return;
case sizeof (GFC_COMPLEX_8):
unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
mask, (GFC_COMPLEX_8 *) field);
return;
#ifdef HAVE_GFC_COMPLEX_10
case sizeof (GFC_COMPLEX_10):
unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
mask, (GFC_COMPLEX_10 *) field);
return;
#endif
#ifdef HAVE_GFC_COMPLEX_16
case sizeof (GFC_COMPLEX_16):
unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
mask, (GFC_COMPLEX_16 *) field);
return;
#endif
}
}
memset (&tmp, 0, sizeof (tmp));
tmp.dtype = 0;
tmp.data = field;

View File

@ -774,6 +774,142 @@ extern void pack_c16 (gfc_array_c16 *, const gfc_array_c16 *,
internal_proto(pack_c16);
#endif
/* Internal auxiliary functions for the unpack intrinsic. */
extern void unpack0_i1 (gfc_array_i1 *, const gfc_array_i1 *,
const gfc_array_l1 *, const GFC_INTEGER_1 *);
internal_proto(unpack0_i1);
extern void unpack0_i2 (gfc_array_i2 *, const gfc_array_i2 *,
const gfc_array_l1 *, const GFC_INTEGER_2 *);
internal_proto(unpack0_i2);
extern void unpack0_i4 (gfc_array_i4 *, const gfc_array_i4 *,
const gfc_array_l1 *, const GFC_INTEGER_4 *);
internal_proto(unpack0_i4);
extern void unpack0_i8 (gfc_array_i8 *, const gfc_array_i8 *,
const gfc_array_l1 *, const GFC_INTEGER_8 *);
internal_proto(unpack0_i8);
#ifdef HAVE_GFC_INTEGER_16
extern void unpack0_i16 (gfc_array_i16 *, const gfc_array_i16 *,
const gfc_array_l1 *, const GFC_INTEGER_16 *);
internal_proto(unpack0_i16);
#endif
extern void unpack0_r4 (gfc_array_r4 *, const gfc_array_r4 *,
const gfc_array_l1 *, const GFC_REAL_4 *);
internal_proto(unpack0_r4);
extern void unpack0_r8 (gfc_array_r8 *, const gfc_array_r8 *,
const gfc_array_l1 *, const GFC_REAL_8 *);
internal_proto(unpack0_r8);
#ifdef HAVE_GFC_REAL_10
extern void unpack0_r10 (gfc_array_r10 *, const gfc_array_r10 *,
const gfc_array_l1 *, const GFC_REAL_10 *);
internal_proto(unpack0_r10);
#endif
#ifdef HAVE_GFC_REAL_16
extern void unpack0_r16 (gfc_array_r16 *, const gfc_array_r16 *,
const gfc_array_l1 *, const GFC_REAL_16 *);
internal_proto(unpack0_r16);
#endif
extern void unpack0_c4 (gfc_array_c4 *, const gfc_array_c4 *,
const gfc_array_l1 *, const GFC_COMPLEX_4 *);
internal_proto(unpack0_c4);
extern void unpack0_c8 (gfc_array_c8 *, const gfc_array_c8 *,
const gfc_array_l1 *, const GFC_COMPLEX_8 *);
internal_proto(unpack0_c8);
#ifdef HAVE_GFC_COMPLEX_10
extern void unpack0_c10 (gfc_array_c10 *, const gfc_array_c10 *,
const gfc_array_l1 *mask, const GFC_COMPLEX_10 *);
internal_proto(unpack0_c10);
#endif
#ifdef HAVE_GFC_COMPLEX_16
extern void unpack0_c16 (gfc_array_c16 *, const gfc_array_c16 *,
const gfc_array_l1 *, const GFC_COMPLEX_16 *);
internal_proto(unpack0_c16);
#endif
extern void unpack1_i1 (gfc_array_i1 *, const gfc_array_i1 *,
const gfc_array_l1 *, const gfc_array_i1 *);
internal_proto(unpack1_i1);
extern void unpack1_i2 (gfc_array_i2 *, const gfc_array_i2 *,
const gfc_array_l1 *, const gfc_array_i2 *);
internal_proto(unpack1_i2);
extern void unpack1_i4 (gfc_array_i4 *, const gfc_array_i4 *,
const gfc_array_l1 *, const gfc_array_i4 *);
internal_proto(unpack1_i4);
extern void unpack1_i8 (gfc_array_i8 *, const gfc_array_i8 *,
const gfc_array_l1 *, const gfc_array_i8 *);
internal_proto(unpack1_i8);
#ifdef HAVE_GFC_INTEGER_16
extern void unpack1_i16 (gfc_array_i16 *, const gfc_array_i16 *,
const gfc_array_l1 *, const gfc_array_i16 *);
internal_proto(unpack1_i16);
#endif
extern void unpack1_r4 (gfc_array_r4 *, const gfc_array_r4 *,
const gfc_array_l1 *, const gfc_array_r4 *);
internal_proto(unpack1_r4);
extern void unpack1_r8 (gfc_array_r8 *, const gfc_array_r8 *,
const gfc_array_l1 *, const gfc_array_r8 *);
internal_proto(unpack1_r8);
#ifdef HAVE_GFC_REAL_10
extern void unpack1_r10 (gfc_array_r10 *, const gfc_array_r10 *,
const gfc_array_l1 *, const gfc_array_r10 *);
internal_proto(unpack1_r10);
#endif
#ifdef HAVE_GFC_REAL_16
extern void unpack1_r16 (gfc_array_r16 *, const gfc_array_r16 *,
const gfc_array_l1 *, const gfc_array_r16 *);
internal_proto(unpack1_r16);
#endif
extern void unpack1_c4 (gfc_array_c4 *, const gfc_array_c4 *,
const gfc_array_l1 *, const gfc_array_c4 *);
internal_proto(unpack1_c4);
extern void unpack1_c8 (gfc_array_c8 *, const gfc_array_c8 *,
const gfc_array_l1 *, const gfc_array_c8 *);
internal_proto(unpack1_c8);
#ifdef HAVE_GFC_COMPLEX_10
extern void unpack1_c10 (gfc_array_c10 *, const gfc_array_c10 *,
const gfc_array_l1 *, const gfc_array_c10 *);
internal_proto(unpack1_c10);
#endif
#ifdef HAVE_GFC_COMPLEX_16
extern void unpack1_c16 (gfc_array_c16 *, const gfc_array_c16 *,
const gfc_array_l1 *, const gfc_array_c16 *);
internal_proto(unpack1_c16);
#endif
/* string_intrinsics.c */
extern int compare_string (GFC_INTEGER_4, const char *,

339
libgfortran/m4/unpack.m4 Normal file
View File

@ -0,0 +1,339 @@
`/* Specific implementation of the UNPACK intrinsic
Copyright 2008 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>'
include(iparm.m4)dnl
`#if defined (HAVE_'rtype_name`)
void
unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
const gfc_array_l1 *mask, const 'rtype_name` *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
'rtype_name` *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
'rtype_name` *vptr;
/* Value for field, this is constant. */
const 'rtype_name` fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
const gfc_array_l1 *mask, const 'rtype` *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
'rtype_name` *rptr;
/* v.* indicates the vector array. */
index_type vstride0;
'rtype_name` *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const 'rtype_name` *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->data;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
extent[n] = ret->dim[n].ubound + 1;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
rs *= extent[n];
}
ret->offset = 0;
ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
empty = empty || extent[n] <= 0;
rstride[n] = ret->dim[n].stride;
fstride[n] = field->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = vector->dim[0].stride;
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->data;
fptr = field->data;
vptr = vector->data;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif
'