PowerPC64 ELFv2 support

PowerPC64 ELFv2 support
	* src/powerpc/ffitarget.h: Import from upstream.
	* src/powerpc/ffi.c: Likewise.
	* src/powerpc/linux64.S: Likewise.
	* src/powerpc/linux64_closure.S: Likewise.
	* doc/libffi.texi: Likewise.
	* testsuite/libffi.call/cls_double_va.c: Likewise.
	* testsuite/libffi.call/cls_longdouble_va.c: Likewise.

From-SVN: r204917
This commit is contained in:
Alan Modra 2013-11-18 01:05:08 +10:30
parent abe6cd5d35
commit 3521ba8b2e
8 changed files with 865 additions and 355 deletions

View File

@ -1,3 +1,13 @@
2013-11-18 Alan Modra <amodra@gmail.com>
* src/powerpc/ffitarget.h: Import from upstream.
* src/powerpc/ffi.c: Likewise.
* src/powerpc/linux64.S: Likewise.
* src/powerpc/linux64_closure.S: Likewise.
* doc/libffi.texi: Likewise.
* testsuite/libffi.call/cls_double_va.c: Likewise.
* testsuite/libffi.call/cls_longdouble_va.c: Likewise.
2013-09-20 Alan Modra <amodra@gmail.com>
* configure: Regenerate.
@ -88,10 +98,10 @@
2012-10-30 James Greenhalgh <james.greenhalgh at arm.com>
Marcus Shawcroft <marcus.shawcroft at arm.com>
* README: Add details of aarch64 port.
* src/aarch64/ffi.c: New.
* src/aarch64/ffitarget.h: Likewise.
* src/aarch64/sysv.S: Likewise.
* README: Add details of aarch64 port.
* src/aarch64/ffi.c: New.
* src/aarch64/ffitarget.h: Likewise.
* src/aarch64/sysv.S: Likewise.
* Makefile.am: Support aarch64.
* configure.ac: Support aarch64.
* Makefile.in, configure: Rebuilt.
@ -99,30 +109,30 @@
2012-10-30 James Greenhalgh <james.greenhalgh at arm.com>
Marcus Shawcroft <marcus.shawcroft at arm.com>
* testsuite/lib/libffi.exp: Add support for aarch64.
* testsuite/libffi.call/cls_struct_va1.c: New.
* testsuite/libffi.call/cls_uchar_va.c: Likewise.
* testsuite/libffi.call/cls_uint_va.c: Likewise.
* testsuite/libffi.call/cls_ulong_va.c: Likewise.
* testsuite/libffi.call/cls_ushort_va.c: Likewise.
* testsuite/libffi.call/nested_struct11.c: Likewise.
* testsuite/libffi.call/uninitialized.c: Likewise.
* testsuite/libffi.call/va_1.c: Likewise.
* testsuite/libffi.call/va_struct1.c: Likewise.
* testsuite/libffi.call/va_struct2.c: Likewise.
* testsuite/libffi.call/va_struct3.c: Likewise.
* testsuite/lib/libffi.exp: Add support for aarch64.
* testsuite/libffi.call/cls_struct_va1.c: New.
* testsuite/libffi.call/cls_uchar_va.c: Likewise.
* testsuite/libffi.call/cls_uint_va.c: Likewise.
* testsuite/libffi.call/cls_ulong_va.c: Likewise.
* testsuite/libffi.call/cls_ushort_va.c: Likewise.
* testsuite/libffi.call/nested_struct11.c: Likewise.
* testsuite/libffi.call/uninitialized.c: Likewise.
* testsuite/libffi.call/va_1.c: Likewise.
* testsuite/libffi.call/va_struct1.c: Likewise.
* testsuite/libffi.call/va_struct2.c: Likewise.
* testsuite/libffi.call/va_struct3.c: Likewise.
2012-10-12 Walter Lee <walt@tilera.com>
* Makefile.am: Add TILE-Gx/TILEPro support.
* configure.ac: Likewise.
* Makefile.in: Regenerate.
* configure: Likewise.
* src/prep_cif.c (ffi_prep_cif_core): Handle TILE-Gx/TILEPro.
* src/tile: New directory.
* src/tile/ffi.c: New file.
* src/tile/ffitarget.h: Ditto.
* src/tile/tile.S: Ditto.
* Makefile.am: Add TILE-Gx/TILEPro support.
* configure.ac: Likewise.
* Makefile.in: Regenerate.
* configure: Likewise.
* src/prep_cif.c (ffi_prep_cif_core): Handle TILE-Gx/TILEPro.
* src/tile: New directory.
* src/tile/ffi.c: New file.
* src/tile/ffitarget.h: Ditto.
* src/tile/tile.S: Ditto.
2012-10-12 Matthias Klose <doko@ubuntu.com>
@ -623,7 +633,7 @@
2011-07-11 Andrew Haley <aph@redhat.com>
* src/arm/ffi.c (FFI_INIT_TRAMPOLINE): Clear icache.
* src/arm/ffi.c (FFI_INIT_TRAMPOLINE): Clear icache.
2011-06-29 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
@ -923,10 +933,10 @@
2010-08-05 Dan Witte <dwitte@mozilla.com>
* Makefile.am: Pass FFI_DEBUG define to msvcc.sh for linking to the
debug CRT when --enable-debug is given.
* configure.ac: Define it.
* msvcc.sh: Translate -g and -DFFI_DEBUG appropriately.
* Makefile.am: Pass FFI_DEBUG define to msvcc.sh for linking to the
debug CRT when --enable-debug is given.
* configure.ac: Define it.
* msvcc.sh: Translate -g and -DFFI_DEBUG appropriately.
2010-08-04 Dan Witte <dwitte@mozilla.com>
@ -944,7 +954,7 @@
* src/*/ffitarget.h: Make FFI_LAST_ABI one past the last valid ABI.
* src/prep_cif.c: Fix ABI assertion.
* src/cris/ffi.c: Ditto.
* src/cris/ffi.c: Ditto.
2010-07-10 Evan Phoenix <evan@fallingsnow.net>
@ -1546,74 +1556,74 @@
testsuite/libffi.call/cls_2byte.c,
testsuite/libffi.call/cls_3_1byte.c,
testsuite/libffi.call/cls_3byte1.c,
testsuite/libffi.call/cls_3byte2.c,
testsuite/libffi.call/cls_4_1byte.c,
testsuite/libffi.call/cls_4byte.c,
testsuite/libffi.call/cls_5_1_byte.c,
testsuite/libffi.call/cls_5byte.c,
testsuite/libffi.call/cls_64byte.c,
testsuite/libffi.call/cls_6_1_byte.c,
testsuite/libffi.call/cls_6byte.c,
testsuite/libffi.call/cls_7_1_byte.c,
testsuite/libffi.call/cls_7byte.c,
testsuite/libffi.call/cls_8byte.c,
testsuite/libffi.call/cls_9byte1.c,
testsuite/libffi.call/cls_9byte2.c,
testsuite/libffi.call/cls_align_double.c,
testsuite/libffi.call/cls_align_float.c,
testsuite/libffi.call/cls_align_longdouble.c,
testsuite/libffi.call/cls_align_longdouble_split.c,
testsuite/libffi.call/cls_align_longdouble_split2.c,
testsuite/libffi.call/cls_align_pointer.c,
testsuite/libffi.call/cls_align_sint16.c,
testsuite/libffi.call/cls_align_sint32.c,
testsuite/libffi.call/cls_align_sint64.c,
testsuite/libffi.call/cls_align_uint16.c,
testsuite/libffi.call/cls_align_uint32.c,
testsuite/libffi.call/cls_align_uint64.c,
testsuite/libffi.call/cls_dbls_struct.c,
testsuite/libffi.call/cls_double.c,
testsuite/libffi.call/cls_double_va.c,
testsuite/libffi.call/cls_float.c,
testsuite/libffi.call/cls_longdouble.c,
testsuite/libffi.call/cls_longdouble_va.c,
testsuite/libffi.call/cls_multi_schar.c,
testsuite/libffi.call/cls_multi_sshort.c,
testsuite/libffi.call/cls_multi_sshortchar.c,
testsuite/libffi.call/cls_multi_uchar.c,
testsuite/libffi.call/cls_multi_ushort.c,
testsuite/libffi.call/cls_multi_ushortchar.c,
testsuite/libffi.call/cls_pointer.c,
testsuite/libffi.call/cls_pointer_stack.c,
testsuite/libffi.call/cls_schar.c,
testsuite/libffi.call/cls_sint.c,
testsuite/libffi.call/cls_sshort.c,
testsuite/libffi.call/cls_uchar.c,
testsuite/libffi.call/cls_uint.c,
testsuite/libffi.call/cls_ulonglong.c,
testsuite/libffi.call/cls_ushort.c,
testsuite/libffi.call/err_bad_abi.c,
testsuite/libffi.call/err_bad_typedef.c,
testsuite/libffi.call/float2.c,
testsuite/libffi.call/huge_struct.c,
testsuite/libffi.call/nested_struct.c,
testsuite/libffi.call/nested_struct1.c,
testsuite/libffi.call/nested_struct10.c,
testsuite/libffi.call/nested_struct2.c,
testsuite/libffi.call/nested_struct3.c,
testsuite/libffi.call/nested_struct4.c,
testsuite/libffi.call/nested_struct5.c,
testsuite/libffi.call/nested_struct6.c,
testsuite/libffi.call/nested_struct7.c,
testsuite/libffi.call/nested_struct8.c,
testsuite/libffi.call/nested_struct9.c,
testsuite/libffi.call/problem1.c,
testsuite/libffi.call/return_ldl.c,
testsuite/libffi.call/return_ll1.c,
testsuite/libffi.call/stret_large.c,
testsuite/libffi.call/stret_large2.c,
testsuite/libffi.call/stret_medium.c,
testsuite/libffi.call/stret_medium2.c,
testsuite/libffi.call/cls_3byte2.c,
testsuite/libffi.call/cls_4_1byte.c,
testsuite/libffi.call/cls_4byte.c,
testsuite/libffi.call/cls_5_1_byte.c,
testsuite/libffi.call/cls_5byte.c,
testsuite/libffi.call/cls_64byte.c,
testsuite/libffi.call/cls_6_1_byte.c,
testsuite/libffi.call/cls_6byte.c,
testsuite/libffi.call/cls_7_1_byte.c,
testsuite/libffi.call/cls_7byte.c,
testsuite/libffi.call/cls_8byte.c,
testsuite/libffi.call/cls_9byte1.c,
testsuite/libffi.call/cls_9byte2.c,
testsuite/libffi.call/cls_align_double.c,
testsuite/libffi.call/cls_align_float.c,
testsuite/libffi.call/cls_align_longdouble.c,
testsuite/libffi.call/cls_align_longdouble_split.c,
testsuite/libffi.call/cls_align_longdouble_split2.c,
testsuite/libffi.call/cls_align_pointer.c,
testsuite/libffi.call/cls_align_sint16.c,
testsuite/libffi.call/cls_align_sint32.c,
testsuite/libffi.call/cls_align_sint64.c,
testsuite/libffi.call/cls_align_uint16.c,
testsuite/libffi.call/cls_align_uint32.c,
testsuite/libffi.call/cls_align_uint64.c,
testsuite/libffi.call/cls_dbls_struct.c,
testsuite/libffi.call/cls_double.c,
testsuite/libffi.call/cls_double_va.c,
testsuite/libffi.call/cls_float.c,
testsuite/libffi.call/cls_longdouble.c,
testsuite/libffi.call/cls_longdouble_va.c,
testsuite/libffi.call/cls_multi_schar.c,
testsuite/libffi.call/cls_multi_sshort.c,
testsuite/libffi.call/cls_multi_sshortchar.c,
testsuite/libffi.call/cls_multi_uchar.c,
testsuite/libffi.call/cls_multi_ushort.c,
testsuite/libffi.call/cls_multi_ushortchar.c,
testsuite/libffi.call/cls_pointer.c,
testsuite/libffi.call/cls_pointer_stack.c,
testsuite/libffi.call/cls_schar.c,
testsuite/libffi.call/cls_sint.c,
testsuite/libffi.call/cls_sshort.c,
testsuite/libffi.call/cls_uchar.c,
testsuite/libffi.call/cls_uint.c,
testsuite/libffi.call/cls_ulonglong.c,
testsuite/libffi.call/cls_ushort.c,
testsuite/libffi.call/err_bad_abi.c,
testsuite/libffi.call/err_bad_typedef.c,
testsuite/libffi.call/float2.c,
testsuite/libffi.call/huge_struct.c,
testsuite/libffi.call/nested_struct.c,
testsuite/libffi.call/nested_struct1.c,
testsuite/libffi.call/nested_struct10.c,
testsuite/libffi.call/nested_struct2.c,
testsuite/libffi.call/nested_struct3.c,
testsuite/libffi.call/nested_struct4.c,
testsuite/libffi.call/nested_struct5.c,
testsuite/libffi.call/nested_struct6.c,
testsuite/libffi.call/nested_struct7.c,
testsuite/libffi.call/nested_struct8.c,
testsuite/libffi.call/nested_struct9.c,
testsuite/libffi.call/problem1.c,
testsuite/libffi.call/return_ldl.c,
testsuite/libffi.call/return_ll1.c,
testsuite/libffi.call/stret_large.c,
testsuite/libffi.call/stret_large2.c,
testsuite/libffi.call/stret_medium.c,
testsuite/libffi.call/stret_medium2.c,
testsuite/libffi.special/unwindtest.cc: use ffi_closure_alloc instead
of checking for MMAP. Use intptr_t instead of long casts.

View File

@ -184,11 +184,11 @@ This calls the function @var{fn} according to the description given in
@var{rvalue} is a pointer to a chunk of memory that will hold the
result of the function call. This must be large enough to hold the
result and must be suitably aligned; it is the caller's responsibility
result, no smaller than the system register size (generally 32 or 64
bits), and must be suitably aligned; it is the caller's responsibility
to ensure this. If @var{cif} declares that the function returns
@code{void} (using @code{ffi_type_void}), then @var{rvalue} is
ignored. If @var{rvalue} is @samp{NULL}, then the return value is
discarded.
ignored.
@var{avalues} is a vector of @code{void *} pointers that point to the
memory locations holding the argument values for a call. If @var{cif}
@ -214,7 +214,7 @@ int main()
ffi_type *args[1];
void *values[1];
char *s;
int rc;
ffi_arg rc;
/* Initialize the argument info vectors */
args[0] = &ffi_type_pointer;
@ -222,7 +222,7 @@ int main()
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_uint, args) == FFI_OK)
&ffi_type_sint, args) == FFI_OK)
@{
s = "Hello World!";
ffi_call(&cif, puts, &rc, values);
@ -360,7 +360,7 @@ You must first describe the structure to @samp{libffi} by creating a
new @code{ffi_type} object for it.
@tindex ffi_type
@deftp ffi_type
@deftp {Data type} ffi_type
The @code{ffi_type} has the following members:
@table @code
@item size_t size
@ -414,6 +414,7 @@ Here is the corresponding code to describe this struct to
int i;
tm_type.size = tm_type.alignment = 0;
tm_type.type = FFI_TYPE_STRUCT;
tm_type.elements = &tm_type_elements;
for (i = 0; i < 9; i++)
@ -540,21 +541,23 @@ A trivial example that creates a new @code{puts} by binding
#include <ffi.h>
/* Acts like puts with the file given at time of enclosure. */
void puts_binding(ffi_cif *cif, unsigned int *ret, void* args[],
FILE *stream)
void puts_binding(ffi_cif *cif, void *ret, void* args[],
void *stream)
@{
*ret = fputs(*(char **)args[0], stream);
*(ffi_arg *)ret = fputs(*(char **)args[0], (FILE *)stream);
@}
typedef int (*puts_t)(char *);
int main()
@{
ffi_cif cif;
ffi_type *args[1];
ffi_closure *closure;
int (*bound_puts)(char *);
void *bound_puts;
int rc;
/* Allocate closure and bound_puts */
closure = ffi_closure_alloc(sizeof(ffi_closure), &bound_puts);
@ -565,13 +568,13 @@ int main()
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_uint, args) == FFI_OK)
&ffi_type_sint, args) == FFI_OK)
@{
/* Initialize the closure, setting stream to stdout */
if (ffi_prep_closure_loc(closure, &cif, puts_binding,
if (ffi_prep_closure_loc(closure, &cif, puts_binding,
stdout, bound_puts) == FFI_OK)
@{
rc = bound_puts("Hello World!");
rc = ((puts_t)bound_puts)("Hello World!");
/* rc now holds the result of the call to fputs */
@}
@}

View File

@ -49,6 +49,7 @@ enum {
FLAG_RETURNS_128BITS = 1 << (31-27), /* cr6 */
FLAG_ARG_NEEDS_COPY = 1 << (31- 7),
FLAG_ARG_NEEDS_PSAVE = FLAG_ARG_NEEDS_COPY, /* Used by ELFv2 */
#ifndef __NO_FPRS__
FLAG_FP_ARGUMENTS = 1 << (31- 6), /* cr1.eq; specified by ABI */
#endif
@ -369,7 +370,13 @@ ffi_prep_args_SYSV (extended_cif *ecif, unsigned *const stack)
/* Check that we didn't overrun the stack... */
FFI_ASSERT (copy_space.c >= next_arg.c);
FFI_ASSERT (gpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS);
/* The assert below is testing that the number of integer arguments agrees
with the number found in ffi_prep_cif_machdep(). However, intarg_count
is incremented whenever we place an FP arg on the stack, so account for
that before our assert test. */
#ifndef __NO_FPRS__
if (fparg_count > NUM_FPR_ARG_REGISTERS)
intarg_count -= fparg_count - NUM_FPR_ARG_REGISTERS;
FFI_ASSERT (fpr_base.u
<= stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
#endif
@ -383,6 +390,45 @@ enum {
};
enum { ASM_NEEDS_REGISTERS64 = 4 };
#if _CALL_ELF == 2
static unsigned int
discover_homogeneous_aggregate (const ffi_type *t, unsigned int *elnum)
{
switch (t->type)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
*elnum = 1;
return (int) t->type;
case FFI_TYPE_STRUCT:;
{
unsigned int base_elt = 0, total_elnum = 0;
ffi_type **el = t->elements;
while (*el)
{
unsigned int el_elt, el_elnum = 0;
el_elt = discover_homogeneous_aggregate (*el, &el_elnum);
if (el_elt == 0
|| (base_elt && base_elt != el_elt))
return 0;
base_elt = el_elt;
total_elnum += el_elnum;
if (total_elnum > 8)
return 0;
el++;
}
*elnum = total_elnum;
return base_elt;
}
default:
return 0;
}
}
#endif
/* ffi_prep_args64 is called by the assembly routine once stack space
has been allocated for the function's arguments.
@ -428,6 +474,7 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
unsigned long *ul;
float *f;
double *d;
size_t p;
} valp;
/* 'stacktop' points at the previous backchain pointer. */
@ -443,9 +490,9 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
/* 'fpr_base' points at the space for fpr3, and grows upwards as
we use FPR registers. */
valp fpr_base;
int fparg_count;
unsigned int fparg_count;
int i, words;
unsigned int i, words, nargs, nfixedargs;
ffi_type **ptr;
double double_tmp;
union {
@ -462,11 +509,18 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
double **d;
} p_argv;
unsigned long gprvalue;
#ifdef __STRUCT_PARM_ALIGN__
unsigned long align;
#endif
stacktop.c = (char *) stack + bytes;
gpr_base.ul = stacktop.ul - ASM_NEEDS_REGISTERS64 - NUM_GPR_ARG_REGISTERS64;
gpr_end.ul = gpr_base.ul + NUM_GPR_ARG_REGISTERS64;
#if _CALL_ELF == 2
rest.ul = stack + 4 + NUM_GPR_ARG_REGISTERS64;
#else
rest.ul = stack + 6 + NUM_GPR_ARG_REGISTERS64;
#endif
fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS64;
fparg_count = 0;
next_arg.ul = gpr_base.ul;
@ -482,30 +536,36 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
/* Now for the arguments. */
p_argv.v = ecif->avalue;
for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
i > 0;
i--, ptr++, p_argv.v++)
nargs = ecif->cif->nargs;
nfixedargs = ecif->cif->nfixedargs;
for (ptr = ecif->cif->arg_types, i = 0;
i < nargs;
i++, ptr++, p_argv.v++)
{
unsigned int elt, elnum;
switch ((*ptr)->type)
{
case FFI_TYPE_FLOAT:
double_tmp = **p_argv.f;
*next_arg.f = (float) double_tmp;
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
*fpr_base.d++ = double_tmp;
else
*next_arg.f = (float) double_tmp;
if (++next_arg.ul == gpr_end.ul)
next_arg.ul = rest.ul;
if (fparg_count < NUM_FPR_ARG_REGISTERS64)
*fpr_base.d++ = double_tmp;
fparg_count++;
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
break;
case FFI_TYPE_DOUBLE:
double_tmp = **p_argv.d;
*next_arg.d = double_tmp;
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
*fpr_base.d++ = double_tmp;
else
*next_arg.d = double_tmp;
if (++next_arg.ul == gpr_end.ul)
next_arg.ul = rest.ul;
if (fparg_count < NUM_FPR_ARG_REGISTERS64)
*fpr_base.d++ = double_tmp;
fparg_count++;
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
break;
@ -513,18 +573,20 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
double_tmp = (*p_argv.d)[0];
*next_arg.d = double_tmp;
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
*fpr_base.d++ = double_tmp;
else
*next_arg.d = double_tmp;
if (++next_arg.ul == gpr_end.ul)
next_arg.ul = rest.ul;
if (fparg_count < NUM_FPR_ARG_REGISTERS64)
*fpr_base.d++ = double_tmp;
fparg_count++;
double_tmp = (*p_argv.d)[1];
*next_arg.d = double_tmp;
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
*fpr_base.d++ = double_tmp;
else
*next_arg.d = double_tmp;
if (++next_arg.ul == gpr_end.ul)
next_arg.ul = rest.ul;
if (fparg_count < NUM_FPR_ARG_REGISTERS64)
*fpr_base.d++ = double_tmp;
fparg_count++;
FFI_ASSERT (__LDBL_MANT_DIG__ == 106);
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
@ -532,28 +594,86 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
#endif
case FFI_TYPE_STRUCT:
words = ((*ptr)->size + 7) / 8;
if (next_arg.ul >= gpr_base.ul && next_arg.ul + words > gpr_end.ul)
#ifdef __STRUCT_PARM_ALIGN__
align = (*ptr)->alignment;
if (align > __STRUCT_PARM_ALIGN__)
align = __STRUCT_PARM_ALIGN__;
if (align > 1)
next_arg.p = ALIGN (next_arg.p, align);
#endif
elt = 0;
#if _CALL_ELF == 2
elt = discover_homogeneous_aggregate (*ptr, &elnum);
#endif
if (elt)
{
size_t first = gpr_end.c - next_arg.c;
memcpy (next_arg.c, *p_argv.c, first);
memcpy (rest.c, *p_argv.c + first, (*ptr)->size - first);
next_arg.c = rest.c + words * 8 - first;
union {
void *v;
float *f;
double *d;
} arg;
arg.v = *p_argv.v;
if (elt == FFI_TYPE_FLOAT)
{
do
{
double_tmp = *arg.f++;
if (fparg_count < NUM_FPR_ARG_REGISTERS64
&& i < nfixedargs)
*fpr_base.d++ = double_tmp;
else
*next_arg.f = (float) double_tmp;
if (++next_arg.f == gpr_end.f)
next_arg.f = rest.f;
fparg_count++;
}
while (--elnum != 0);
if ((next_arg.p & 3) != 0)
{
if (++next_arg.f == gpr_end.f)
next_arg.f = rest.f;
}
}
else
do
{
double_tmp = *arg.d++;
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
*fpr_base.d++ = double_tmp;
else
*next_arg.d = double_tmp;
if (++next_arg.d == gpr_end.d)
next_arg.d = rest.d;
fparg_count++;
}
while (--elnum != 0);
}
else
{
char *where = next_arg.c;
words = ((*ptr)->size + 7) / 8;
if (next_arg.ul >= gpr_base.ul && next_arg.ul + words > gpr_end.ul)
{
size_t first = gpr_end.c - next_arg.c;
memcpy (next_arg.c, *p_argv.c, first);
memcpy (rest.c, *p_argv.c + first, (*ptr)->size - first);
next_arg.c = rest.c + words * 8 - first;
}
else
{
char *where = next_arg.c;
#ifndef __LITTLE_ENDIAN__
/* Structures with size less than eight bytes are passed
left-padded. */
if ((*ptr)->size < 8)
where += 8 - (*ptr)->size;
/* Structures with size less than eight bytes are passed
left-padded. */
if ((*ptr)->size < 8)
where += 8 - (*ptr)->size;
#endif
memcpy (where, *p_argv.c, (*ptr)->size);
next_arg.ul += words;
if (next_arg.ul == gpr_end.ul)
next_arg.ul = rest.ul;
memcpy (where, *p_argv.c, (*ptr)->size);
next_arg.ul += words;
if (next_arg.ul == gpr_end.ul)
next_arg.ul = rest.ul;
}
}
break;
@ -597,24 +717,22 @@ ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
/* Perform machine dependent cif processing */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
static ffi_status
ffi_prep_cif_machdep_core (ffi_cif *cif)
{
/* All this is for the SYSV and LINUX64 ABI. */
int i;
ffi_type **ptr;
unsigned bytes;
int fparg_count = 0, intarg_count = 0;
unsigned flags = 0;
unsigned i, fparg_count = 0, intarg_count = 0;
unsigned flags = cif->flags;
unsigned struct_copy_size = 0;
unsigned type = cif->rtype->type;
unsigned size = cif->rtype->size;
/* The machine-independent calculation of cif->bytes doesn't work
for us. Redo the calculation. */
if (cif->abi != FFI_LINUX64)
{
/* All the machine-independent calculation of cif->bytes will be wrong.
Redo the calculation for SYSV. */
/* Space for the frame pointer, callee's LR, and the asm's temp regs. */
bytes = (2 + ASM_NEEDS_REGISTERS) * sizeof (int);
@ -624,13 +742,20 @@ ffi_prep_cif_machdep (ffi_cif *cif)
else
{
/* 64-bit ABI. */
#if _CALL_ELF == 2
/* Space for backchain, CR, LR, TOC and the asm's temp regs. */
bytes = (4 + ASM_NEEDS_REGISTERS64) * sizeof (long);
/* Space for the general registers. */
bytes += NUM_GPR_ARG_REGISTERS64 * sizeof (long);
#else
/* Space for backchain, CR, LR, cc/ld doubleword, TOC and the asm's temp
regs. */
bytes = (6 + ASM_NEEDS_REGISTERS64) * sizeof (long);
/* Space for the mandatory parm save area and general registers. */
bytes += 2 * NUM_GPR_ARG_REGISTERS64 * sizeof (long);
#endif
}
/* Return value handling. The rules for SYSV are as follows:
@ -650,19 +775,23 @@ ffi_prep_cif_machdep (ffi_cif *cif)
- soft-float float/doubles are treated as UINT32/UINT64 respectivley.
- soft-float long doubles are returned in gpr3-gpr6. */
/* First translate for softfloat/nonlinux */
if (cif->abi == FFI_LINUX_SOFT_FLOAT) {
if (type == FFI_TYPE_FLOAT)
type = FFI_TYPE_UINT32;
if (type == FFI_TYPE_DOUBLE)
type = FFI_TYPE_UINT64;
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_UINT128;
} else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) {
if (cif->abi == FFI_LINUX_SOFT_FLOAT)
{
if (type == FFI_TYPE_FLOAT)
type = FFI_TYPE_UINT32;
if (type == FFI_TYPE_DOUBLE)
type = FFI_TYPE_UINT64;
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_UINT128;
}
else if (cif->abi != FFI_LINUX
&& cif->abi != FFI_LINUX64)
{
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
}
}
switch (type)
{
@ -691,7 +820,7 @@ ffi_prep_cif_machdep (ffi_cif *cif)
case FFI_TYPE_STRUCT:
/*
* The final SYSV ABI says that structures smaller or equal 8 bytes
* are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
* are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
* in memory.
*
* NOTE: The assembly code can safely assume that it just needs to
@ -700,7 +829,29 @@ ffi_prep_cif_machdep (ffi_cif *cif)
* set.
*/
if (cif->abi == FFI_SYSV && size <= 8)
flags |= FLAG_RETURNS_SMST;
{
flags |= FLAG_RETURNS_SMST;
break;
}
#if _CALL_ELF == 2
if (cif->abi == FFI_LINUX64)
{
unsigned int elt, elnum;
elt = discover_homogeneous_aggregate (cif->rtype, &elnum);
if (elt)
{
if (elt == FFI_TYPE_DOUBLE)
flags |= FLAG_RETURNS_64BITS;
flags |= FLAG_RETURNS_FP | FLAG_RETURNS_SMST;
break;
}
if (size <= 16)
{
flags |= FLAG_RETURNS_SMST;
break;
}
}
#endif
intarg_count++;
flags |= FLAG_RETVAL_REFERENCE;
/* Fall through. */
@ -816,27 +967,54 @@ ffi_prep_cif_machdep (ffi_cif *cif)
else
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
unsigned int elt, elnum;
#ifdef __STRUCT_PARM_ALIGN__
unsigned int align;
#endif
switch ((*ptr)->type)
{
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
if (cif->abi == FFI_LINUX_SOFT_FLOAT)
intarg_count += 4;
else
{
fparg_count += 2;
intarg_count += 2;
}
fparg_count += 2;
intarg_count += 2;
if (fparg_count > NUM_FPR_ARG_REGISTERS)
flags |= FLAG_ARG_NEEDS_PSAVE;
break;
#endif
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
fparg_count++;
intarg_count++;
if (fparg_count > NUM_FPR_ARG_REGISTERS)
flags |= FLAG_ARG_NEEDS_PSAVE;
break;
case FFI_TYPE_STRUCT:
#ifdef __STRUCT_PARM_ALIGN__
align = (*ptr)->alignment;
if (align > __STRUCT_PARM_ALIGN__)
align = __STRUCT_PARM_ALIGN__;
align = align / 8;
if (align > 1)
intarg_count = ALIGN (intarg_count, align);
#endif
intarg_count += ((*ptr)->size + 7) / 8;
elt = 0;
#if _CALL_ELF == 2
elt = discover_homogeneous_aggregate (*ptr, &elnum);
#endif
if (elt)
{
fparg_count += elnum;
if (fparg_count > NUM_FPR_ARG_REGISTERS)
flags |= FLAG_ARG_NEEDS_PSAVE;
}
else
{
if (intarg_count > NUM_GPR_ARG_REGISTERS)
flags |= FLAG_ARG_NEEDS_PSAVE;
}
break;
case FFI_TYPE_POINTER:
@ -852,9 +1030,11 @@ ffi_prep_cif_machdep (ffi_cif *cif)
/* Everything else is passed as a 8-byte word in a GPR, either
the object itself or a pointer to it. */
intarg_count++;
if (intarg_count > NUM_GPR_ARG_REGISTERS)
flags |= FLAG_ARG_NEEDS_PSAVE;
break;
default:
FFI_ASSERT (0);
FFI_ASSERT (0);
}
}
@ -892,8 +1072,13 @@ ffi_prep_cif_machdep (ffi_cif *cif)
#endif
/* Stack space. */
#if _CALL_ELF == 2
if ((flags & FLAG_ARG_NEEDS_PSAVE) != 0)
bytes += intarg_count * sizeof (long);
#else
if (intarg_count > NUM_GPR_ARG_REGISTERS64)
bytes += (intarg_count - NUM_GPR_ARG_REGISTERS64) * sizeof (long);
#endif
}
/* The stack space allocated needs to be a multiple of 16 bytes. */
@ -908,6 +1093,26 @@ ffi_prep_cif_machdep (ffi_cif *cif)
return FFI_OK;
}
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
cif->nfixedargs = cif->nargs;
return ffi_prep_cif_machdep_core (cif);
}
ffi_status
ffi_prep_cif_machdep_var (ffi_cif *cif,
unsigned int nfixedargs,
unsigned int ntotalargs MAYBE_UNUSED)
{
cif->nfixedargs = nfixedargs;
#if _CALL_ELF == 2
if (cif->abi == FFI_LINUX64)
cif->flags |= FLAG_ARG_NEEDS_PSAVE;
#endif
return ffi_prep_cif_machdep_core (cif);
}
extern void ffi_call_SYSV(extended_cif *, unsigned, unsigned, unsigned *,
void (*fn)(void));
extern void FFI_HIDDEN ffi_call_LINUX64(extended_cif *, unsigned long,
@ -919,30 +1124,28 @@ ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
/*
* The final SYSV ABI says that structures smaller or equal 8 bytes
* are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
* are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
* in memory.
*
* Just to keep things simple for the assembly code, we will always
* bounce-buffer struct return values less than or equal to 8 bytes.
* This allows the ASM to handle SYSV small structures by directly
* writing r3 and r4 to memory without worrying about struct size.
* We bounce-buffer SYSV small struct return values so that sysv.S
* can write r3 and r4 to memory without worrying about struct size.
*
* For ELFv2 ABI, use a bounce buffer for homogeneous structs too,
* for similar reasons.
*/
unsigned int smst_buffer[2];
unsigned long smst_buffer[8];
extended_cif ecif;
unsigned int rsize = 0;
ecif.cif = cif;
ecif.avalue = avalue;
/* Ensure that we have a valid struct return value */
ecif.rvalue = rvalue;
if (cif->rtype->type == FFI_TYPE_STRUCT) {
rsize = cif->rtype->size;
if (rsize <= 8)
ecif.rvalue = smst_buffer;
else if (!rvalue)
ecif.rvalue = alloca(rsize);
}
if ((cif->flags & FLAG_RETURNS_SMST) != 0)
ecif.rvalue = smst_buffer;
/* Ensure that we have a valid struct return value.
FIXME: Isn't this just papering over a user problem? */
else if (!rvalue && cif->rtype->type == FFI_TYPE_STRUCT)
ecif.rvalue = alloca (cif->rtype->size);
switch (cif->abi)
{
@ -967,11 +1170,26 @@ ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
/* Check for a bounce-buffered return value */
if (rvalue && ecif.rvalue == smst_buffer)
memcpy(rvalue, smst_buffer, rsize);
{
unsigned int rsize = cif->rtype->size;
#ifndef __LITTLE_ENDIAN__
/* The SYSV ABI returns a structure of up to 4 bytes in size
left-padded in r3. */
if (cif->abi == FFI_SYSV && rsize <= 4)
memcpy (rvalue, (char *) smst_buffer + 4 - rsize, rsize);
/* The SYSV ABI returns a structure of up to 8 bytes in size
left-padded in r3/r4, and the ELFv2 ABI similarly returns a
structure of up to 8 bytes in size left-padded in r3. */
else if (rsize <= 8)
memcpy (rvalue, (char *) smst_buffer + 8 - rsize, rsize);
else
#endif
memcpy (rvalue, smst_buffer, rsize);
}
}
#ifndef POWERPC64
#if !defined POWERPC64 || _CALL_ELF == 2
#define MIN_CACHE_LINE_SIZE 8
static void
@ -995,6 +1213,22 @@ ffi_prep_closure_loc (ffi_closure *closure,
void *codeloc)
{
#ifdef POWERPC64
# if _CALL_ELF == 2
unsigned int *tramp = (unsigned int *) &closure->tramp[0];
if (cif->abi != FFI_LINUX64)
return FFI_BAD_ABI;
tramp[0] = 0xe96c0018; /* 0: ld 11,2f-0b(12) */
tramp[1] = 0xe98c0010; /* ld 12,1f-0b(12) */
tramp[2] = 0x7d8903a6; /* mtctr 12 */
tramp[3] = 0x4e800420; /* bctr */
/* 1: .quad function_addr */
/* 2: .quad context */
*(void **) &tramp[4] = (void *) ffi_closure_LINUX64;
*(void **) &tramp[6] = codeloc;
flush_icache ((char *)tramp, (char *)codeloc, FFI_TRAMPOLINE_SIZE);
# else
void **tramp = (void **) &closure->tramp[0];
if (cif->abi != FFI_LINUX64)
@ -1002,6 +1236,7 @@ ffi_prep_closure_loc (ffi_closure *closure,
/* Copy function address and TOC from ffi_closure_LINUX64. */
memcpy (tramp, (char *) ffi_closure_LINUX64, 16);
tramp[2] = codeloc;
# endif
#else
unsigned int *tramp;
@ -1226,6 +1461,7 @@ ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue,
}
break;
#endif
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT16:
#ifndef __LITTLE_ENDIAN__
@ -1243,6 +1479,7 @@ ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue,
}
break;
#endif
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_POINTER:
@ -1346,16 +1583,20 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
void **avalue;
ffi_type **arg_types;
long i, avn;
unsigned long i, avn, nfixedargs;
ffi_cif *cif;
ffi_dblfl *end_pfr = pfr + NUM_FPR_ARG_REGISTERS64;
#ifdef __STRUCT_PARM_ALIGN__
unsigned long align;
#endif
cif = closure->cif;
avalue = alloca (cif->nargs * sizeof (void *));
/* Copy the caller's structure return value address so that the closure
returns the data directly to the caller. */
if (cif->rtype->type == FFI_TYPE_STRUCT)
/* Copy the caller's structure return value address so that the
closure returns the data directly to the caller. */
if (cif->rtype->type == FFI_TYPE_STRUCT
&& (cif->flags & FLAG_RETURNS_SMST) == 0)
{
rvalue = (void *) *pst;
pst++;
@ -1363,11 +1604,14 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
i = 0;
avn = cif->nargs;
nfixedargs = cif->nfixedargs;
arg_types = cif->arg_types;
/* Grab the addresses of the arguments from the stack frame. */
while (i < avn)
{
unsigned int elt, elnum;
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
@ -1377,6 +1621,7 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
pst++;
break;
#endif
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT16:
#ifndef __LITTLE_ENDIAN__
@ -1384,6 +1629,7 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
pst++;
break;
#endif
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
#ifndef __LITTLE_ENDIAN__
@ -1391,6 +1637,7 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
pst++;
break;
#endif
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
case FFI_TYPE_POINTER:
@ -1399,14 +1646,82 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
break;
case FFI_TYPE_STRUCT:
#ifndef __LITTLE_ENDIAN__
/* Structures with size less than eight bytes are passed
left-padded. */
if (arg_types[i]->size < 8)
avalue[i] = (char *) pst + 8 - arg_types[i]->size;
else
#ifdef __STRUCT_PARM_ALIGN__
align = arg_types[i]->alignment;
if (align > __STRUCT_PARM_ALIGN__)
align = __STRUCT_PARM_ALIGN__;
if (align > 1)
pst = (unsigned long *) ALIGN ((size_t) pst, align);
#endif
avalue[i] = pst;
elt = 0;
#if _CALL_ELF == 2
elt = discover_homogeneous_aggregate (arg_types[i], &elnum);
#endif
if (elt)
{
union {
void *v;
unsigned long *ul;
float *f;
double *d;
size_t p;
} to, from;
/* Repackage the aggregate from its parts. The
aggregate size is not greater than the space taken by
the registers so store back to the register/parameter
save arrays. */
if (pfr + elnum <= end_pfr)
to.v = pfr;
else
to.v = pst;
avalue[i] = to.v;
from.ul = pst;
if (elt == FFI_TYPE_FLOAT)
{
do
{
if (pfr < end_pfr && i < nfixedargs)
{
*to.f = (float) pfr->d;
pfr++;
}
else
*to.f = *from.f;
to.f++;
from.f++;
}
while (--elnum != 0);
}
else
{
do
{
if (pfr < end_pfr && i < nfixedargs)
{
*to.d = pfr->d;
pfr++;
}
else
*to.d = *from.d;
to.d++;
from.d++;
}
while (--elnum != 0);
}
}
else
{
#ifndef __LITTLE_ENDIAN__
/* Structures with size less than eight bytes are passed
left-padded. */
if (arg_types[i]->size < 8)
avalue[i] = (char *) pst + 8 - arg_types[i]->size;
else
#endif
avalue[i] = pst;
}
pst += (arg_types[i]->size + 7) / 8;
break;
@ -1418,7 +1733,7 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
/* there are 13 64bit floating point registers */
if (pfr < end_pfr)
if (pfr < end_pfr && i < nfixedargs)
{
double temp = pfr->d;
pfr->f = (float) temp;
@ -1434,7 +1749,7 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
/* On the outgoing stack all values are aligned to 8 */
/* there are 13 64bit floating point registers */
if (pfr < end_pfr)
if (pfr < end_pfr && i < nfixedargs)
{
avalue[i] = pfr;
pfr++;
@ -1446,14 +1761,14 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
if (pfr + 1 < end_pfr)
if (pfr + 1 < end_pfr && i + 1 < nfixedargs)
{
avalue[i] = pfr;
pfr += 2;
}
else
{
if (pfr < end_pfr)
if (pfr < end_pfr && i < nfixedargs)
{
/* Passed partly in f13 and partly on the stack.
Move it all to the stack. */
@ -1477,5 +1792,14 @@ ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
(closure->fun) (cif, rvalue, avalue, closure->user_data);
/* Tell ffi_closure_LINUX64 how to perform return type promotions. */
if ((cif->flags & FLAG_RETURNS_SMST) != 0)
{
if ((cif->flags & FLAG_RETURNS_FP) == 0)
return FFI_V2_TYPE_SMALL_STRUCT + cif->rtype->size - 1;
else if ((cif->flags & FLAG_RETURNS_64BITS) != 0)
return FFI_V2_TYPE_DOUBLE_HOMOG;
else
return FFI_V2_TYPE_FLOAT_HOMOG;
}
return cif->rtype->type;
}

View File

@ -106,6 +106,10 @@ typedef enum ffi_abi {
#define FFI_CLOSURES 1
#define FFI_NATIVE_RAW_API 0
#if defined (POWERPC) || defined (POWERPC_FREEBSD)
# define FFI_TARGET_SPECIFIC_VARIADIC 1
# define FFI_EXTRA_CIF_FIELDS unsigned nfixedargs
#endif
/* For additional types like the below, take care about the order in
ppc_closures.S. They must follow after the FFI_TYPE_LAST. */
@ -118,14 +122,23 @@ typedef enum ffi_abi {
defined in ffi.c, to determine the exact return type and its size. */
#define FFI_SYSV_TYPE_SMALL_STRUCT (FFI_TYPE_LAST + 2)
#if defined(POWERPC64) || defined(POWERPC_AIX)
/* Used by ELFv2 for homogenous structure returns. */
#define FFI_V2_TYPE_FLOAT_HOMOG (FFI_TYPE_LAST + 1)
#define FFI_V2_TYPE_DOUBLE_HOMOG (FFI_TYPE_LAST + 2)
#define FFI_V2_TYPE_SMALL_STRUCT (FFI_TYPE_LAST + 3)
#if _CALL_ELF == 2
# define FFI_TRAMPOLINE_SIZE 32
#else
# if defined(POWERPC64) || defined(POWERPC_AIX)
# if defined(POWERPC_DARWIN64)
# define FFI_TRAMPOLINE_SIZE 48
# else
# define FFI_TRAMPOLINE_SIZE 24
# endif
#else /* POWERPC || POWERPC_AIX */
# else /* POWERPC || POWERPC_AIX */
# define FFI_TRAMPOLINE_SIZE 40
# endif
#endif
#ifndef LIBFFI_ASM

View File

@ -32,15 +32,22 @@
#ifdef __powerpc64__
.hidden ffi_call_LINUX64
.globl ffi_call_LINUX64
# if _CALL_ELF == 2
.text
ffi_call_LINUX64:
addis %r2, %r12, .TOC.-ffi_call_LINUX64@ha
addi %r2, %r2, .TOC.-ffi_call_LINUX64@l
.localentry ffi_call_LINUX64, . - ffi_call_LINUX64
# else
.section ".opd","aw"
.align 3
ffi_call_LINUX64:
#ifdef _CALL_LINUX
# ifdef _CALL_LINUX
.quad .L.ffi_call_LINUX64,.TOC.@tocbase,0
.type ffi_call_LINUX64,@function
.text
.L.ffi_call_LINUX64:
#else
# else
.hidden .ffi_call_LINUX64
.globl .ffi_call_LINUX64
.quad .ffi_call_LINUX64,.TOC.@tocbase,0
@ -48,7 +55,8 @@ ffi_call_LINUX64:
.type .ffi_call_LINUX64,@function
.text
.ffi_call_LINUX64:
#endif
# endif
# endif
.LFB1:
mflr %r0
std %r28, -32(%r1)
@ -63,26 +71,35 @@ ffi_call_LINUX64:
mr %r31, %r5 /* flags, */
mr %r30, %r6 /* rvalue, */
mr %r29, %r7 /* function address. */
/* Save toc pointer, not for the ffi_prep_args64 call, but for the later
bctrl function call. */
# if _CALL_ELF == 2
std %r2, 24(%r1)
# else
std %r2, 40(%r1)
# endif
/* Call ffi_prep_args64. */
mr %r4, %r1
#ifdef _CALL_LINUX
# if defined _CALL_LINUX || _CALL_ELF == 2
bl ffi_prep_args64
#else
# else
bl .ffi_prep_args64
#endif
# endif
ld %r0, 0(%r29)
# if _CALL_ELF == 2
mr %r12, %r29
# else
ld %r12, 0(%r29)
ld %r2, 8(%r29)
ld %r11, 16(%r29)
# endif
/* Now do the call. */
/* Set up cr1 with bits 4-7 of the flags. */
mtcrf 0x40, %r31
/* Get the address to call into CTR. */
mtctr %r0
mtctr %r12
/* Load all those argument registers. */
ld %r3, -32-(8*8)(%r28)
ld %r4, -32-(7*8)(%r28)
@ -117,12 +134,17 @@ ffi_call_LINUX64:
/* This must follow the call immediately, the unwinder
uses this to find out if r2 has been saved or not. */
# if _CALL_ELF == 2
ld %r2, 24(%r1)
# else
ld %r2, 40(%r1)
# endif
/* Now, deal with the return value. */
mtcrf 0x01, %r31
bt- 30, .Ldone_return_value
bt- 29, .Lfp_return_value
bt 31, .Lstruct_return_value
bt 30, .Ldone_return_value
bt 29, .Lfp_return_value
std %r3, 0(%r30)
/* Fall through... */
@ -130,7 +152,7 @@ ffi_call_LINUX64:
/* Restore the registers we used and return. */
mr %r1, %r28
ld %r0, 16(%r28)
ld %r28, -32(%r1)
ld %r28, -32(%r28)
mtlr %r0
ld %r29, -24(%r1)
ld %r30, -16(%r1)
@ -147,14 +169,48 @@ ffi_call_LINUX64:
.Lfloat_return_value:
stfs %f1, 0(%r30)
b .Ldone_return_value
.Lstruct_return_value:
bf 29, .Lsmall_struct
bf 28, .Lfloat_homog_return_value
stfd %f1, 0(%r30)
stfd %f2, 8(%r30)
stfd %f3, 16(%r30)
stfd %f4, 24(%r30)
stfd %f5, 32(%r30)
stfd %f6, 40(%r30)
stfd %f7, 48(%r30)
stfd %f8, 56(%r30)
b .Ldone_return_value
.Lfloat_homog_return_value:
stfs %f1, 0(%r30)
stfs %f2, 4(%r30)
stfs %f3, 8(%r30)
stfs %f4, 12(%r30)
stfs %f5, 16(%r30)
stfs %f6, 20(%r30)
stfs %f7, 24(%r30)
stfs %f8, 28(%r30)
b .Ldone_return_value
.Lsmall_struct:
std %r3, 0(%r30)
std %r4, 8(%r30)
b .Ldone_return_value
.LFE1:
.long 0
.byte 0,12,0,1,128,4,0,0
#ifdef _CALL_LINUX
# if _CALL_ELF == 2
.size ffi_call_LINUX64,.-ffi_call_LINUX64
# else
# ifdef _CALL_LINUX
.size ffi_call_LINUX64,.-.L.ffi_call_LINUX64
#else
# else
.size .ffi_call_LINUX64,.-.ffi_call_LINUX64
#endif
# endif
# endif
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
@ -197,8 +253,8 @@ ffi_call_LINUX64:
.uleb128 0x4
.align 3
.LEFDE1:
#endif
#if defined __ELF__ && defined __linux__
# if (defined __ELF__ && defined __linux__) || _CALL_ELF == 2
.section .note.GNU-stack,"",@progbits
# endif
#endif

View File

@ -33,15 +33,22 @@
#ifdef __powerpc64__
FFI_HIDDEN (ffi_closure_LINUX64)
.globl ffi_closure_LINUX64
# if _CALL_ELF == 2
.text
ffi_closure_LINUX64:
addis %r2, %r12, .TOC.-ffi_closure_LINUX64@ha
addi %r2, %r2, .TOC.-ffi_closure_LINUX64@l
.localentry ffi_closure_LINUX64, . - ffi_closure_LINUX64
# else
.section ".opd","aw"
.align 3
ffi_closure_LINUX64:
#ifdef _CALL_LINUX
# ifdef _CALL_LINUX
.quad .L.ffi_closure_LINUX64,.TOC.@tocbase,0
.type ffi_closure_LINUX64,@function
.text
.L.ffi_closure_LINUX64:
#else
# else
FFI_HIDDEN (.ffi_closure_LINUX64)
.globl .ffi_closure_LINUX64
.quad .ffi_closure_LINUX64,.TOC.@tocbase,0
@ -49,61 +56,103 @@ ffi_closure_LINUX64:
.type .ffi_closure_LINUX64,@function
.text
.ffi_closure_LINUX64:
#endif
.LFB1:
# save general regs into parm save area
std %r3, 48(%r1)
std %r4, 56(%r1)
std %r5, 64(%r1)
std %r6, 72(%r1)
mflr %r0
# endif
# endif
# if _CALL_ELF == 2
# 32 byte special reg save area + 64 byte parm save area and retval
# + 13*8 fpr save area + round to 16
# define STACKFRAME 208
# define PARMSAVE 32
# No parameter save area is needed for the call to ffi_closure_helper_LINUX64,
# so return value can start there.
# define RETVAL PARMSAVE
# else
# 48 bytes special reg save area + 64 bytes parm save area
# + 16 bytes retval area + 13*8 bytes fpr save area + round to 16
# define STACKFRAME 240
# define PARMSAVE 48
# define RETVAL PARMSAVE+64
# endif
.LFB1:
# if _CALL_ELF == 2
ld %r12, FFI_TRAMPOLINE_SIZE(%r11) # closure->cif
mflr %r0
lwz %r12, 28(%r12) # cif->flags
mtcrf 0x40, %r12
addi %r12, %r1, PARMSAVE
bt 7, .Lparmsave
# Our caller has not allocated a parameter save area.
# We need to allocate one here and use it to pass gprs to
# ffi_closure_helper_LINUX64. The return value area will do.
addi %r12, %r1, -STACKFRAME+RETVAL
.Lparmsave:
std %r0, 16(%r1)
# Save general regs into parm save area
std %r3, 0(%r12)
std %r4, 8(%r12)
std %r5, 16(%r12)
std %r6, 24(%r12)
std %r7, 32(%r12)
std %r8, 40(%r12)
std %r9, 48(%r12)
std %r10, 56(%r12)
# load up the pointer to the parm save area
mr %r5, %r12
# else
mflr %r0
# Save general regs into parm save area
# This is the parameter save area set up by our caller.
std %r3, PARMSAVE+0(%r1)
std %r4, PARMSAVE+8(%r1)
std %r5, PARMSAVE+16(%r1)
std %r6, PARMSAVE+24(%r1)
std %r7, PARMSAVE+32(%r1)
std %r8, PARMSAVE+40(%r1)
std %r9, PARMSAVE+48(%r1)
std %r10, PARMSAVE+56(%r1)
std %r7, 80(%r1)
std %r8, 88(%r1)
std %r9, 96(%r1)
std %r10, 104(%r1)
std %r0, 16(%r1)
# mandatory 48 bytes special reg save area + 64 bytes parm save area
# + 16 bytes retval area + 13*8 bytes fpr save area + round to 16
stdu %r1, -240(%r1)
.LCFI0:
# load up the pointer to the parm save area
addi %r5, %r1, PARMSAVE
# endif
# next save fpr 1 to fpr 13
stfd %f1, 128+(0*8)(%r1)
stfd %f2, 128+(1*8)(%r1)
stfd %f3, 128+(2*8)(%r1)
stfd %f4, 128+(3*8)(%r1)
stfd %f5, 128+(4*8)(%r1)
stfd %f6, 128+(5*8)(%r1)
stfd %f7, 128+(6*8)(%r1)
stfd %f8, 128+(7*8)(%r1)
stfd %f9, 128+(8*8)(%r1)
stfd %f10, 128+(9*8)(%r1)
stfd %f11, 128+(10*8)(%r1)
stfd %f12, 128+(11*8)(%r1)
stfd %f13, 128+(12*8)(%r1)
stfd %f1, -104+(0*8)(%r1)
stfd %f2, -104+(1*8)(%r1)
stfd %f3, -104+(2*8)(%r1)
stfd %f4, -104+(3*8)(%r1)
stfd %f5, -104+(4*8)(%r1)
stfd %f6, -104+(5*8)(%r1)
stfd %f7, -104+(6*8)(%r1)
stfd %f8, -104+(7*8)(%r1)
stfd %f9, -104+(8*8)(%r1)
stfd %f10, -104+(9*8)(%r1)
stfd %f11, -104+(10*8)(%r1)
stfd %f12, -104+(11*8)(%r1)
stfd %f13, -104+(12*8)(%r1)
# load up the pointer to the saved fpr registers */
addi %r6, %r1, -104
# load up the pointer to the result storage
addi %r4, %r1, -STACKFRAME+RETVAL
stdu %r1, -STACKFRAME(%r1)
.LCFI0:
# set up registers for the routine that actually does the work
# get the context pointer from the trampoline
mr %r3, %r11
# now load up the pointer to the result storage
addi %r4, %r1, 112
# now load up the pointer to the parameter save area
# in the previous frame
addi %r5, %r1, 240 + 48
# now load up the pointer to the saved fpr registers */
addi %r6, %r1, 128
mr %r3, %r11
# make the call
#ifdef _CALL_LINUX
# if defined _CALL_LINUX || _CALL_ELF == 2
bl ffi_closure_helper_LINUX64
#else
# else
bl .ffi_closure_helper_LINUX64
#endif
# endif
.Lret:
# now r3 contains the return type
@ -112,10 +161,12 @@ ffi_closure_LINUX64:
# look up the proper starting point in table
# by using return type as offset
ld %r0, STACKFRAME+16(%r1)
cmpldi %r3, FFI_V2_TYPE_SMALL_STRUCT
bge .Lsmall
mflr %r4 # move address of .Lret to r4
sldi %r3, %r3, 4 # now multiply return type by 16
addi %r4, %r4, .Lret_type0 - .Lret
ld %r0, 240+16(%r1)
add %r3, %r3, %r4 # add contents of table to table address
mtctr %r3
bctr # jump to it
@ -128,117 +179,175 @@ ffi_closure_LINUX64:
.Lret_type0:
# case FFI_TYPE_VOID
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
nop
# case FFI_TYPE_INT
#ifdef __LITTLE_ENDIAN__
lwa %r3, 112+0(%r1)
#else
lwa %r3, 112+4(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lwa %r3, RETVAL+0(%r1)
# else
lwa %r3, RETVAL+4(%r1)
# endif
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_FLOAT
lfs %f1, 112+0(%r1)
lfs %f1, RETVAL+0(%r1)
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_DOUBLE
lfd %f1, 112+0(%r1)
lfd %f1, RETVAL+0(%r1)
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_LONGDOUBLE
lfd %f1, 112+0(%r1)
lfd %f1, RETVAL+0(%r1)
mtlr %r0
lfd %f2, 112+8(%r1)
lfd %f2, RETVAL+8(%r1)
b .Lfinish
# case FFI_TYPE_UINT8
#ifdef __LITTLE_ENDIAN__
lbz %r3, 112+0(%r1)
#else
lbz %r3, 112+7(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lbz %r3, RETVAL+0(%r1)
# else
lbz %r3, RETVAL+7(%r1)
# endif
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_SINT8
#ifdef __LITTLE_ENDIAN__
lbz %r3, 112+0(%r1)
#else
lbz %r3, 112+7(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lbz %r3, RETVAL+0(%r1)
# else
lbz %r3, RETVAL+7(%r1)
# endif
extsb %r3,%r3
mtlr %r0
b .Lfinish
# case FFI_TYPE_UINT16
#ifdef __LITTLE_ENDIAN__
lhz %r3, 112+0(%r1)
#else
lhz %r3, 112+6(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lhz %r3, RETVAL+0(%r1)
# else
lhz %r3, RETVAL+6(%r1)
# endif
mtlr %r0
.Lfinish:
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_SINT16
#ifdef __LITTLE_ENDIAN__
lha %r3, 112+0(%r1)
#else
lha %r3, 112+6(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lha %r3, RETVAL+0(%r1)
# else
lha %r3, RETVAL+6(%r1)
# endif
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_UINT32
#ifdef __LITTLE_ENDIAN__
lwz %r3, 112+0(%r1)
#else
lwz %r3, 112+4(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lwz %r3, RETVAL+0(%r1)
# else
lwz %r3, RETVAL+4(%r1)
# endif
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_SINT32
#ifdef __LITTLE_ENDIAN__
lwa %r3, 112+0(%r1)
#else
lwa %r3, 112+4(%r1)
#endif
# ifdef __LITTLE_ENDIAN__
lwa %r3, RETVAL+0(%r1)
# else
lwa %r3, RETVAL+4(%r1)
# endif
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_UINT64
ld %r3, 112+0(%r1)
ld %r3, RETVAL+0(%r1)
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_SINT64
ld %r3, 112+0(%r1)
ld %r3, RETVAL+0(%r1)
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# case FFI_TYPE_STRUCT
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
nop
# case FFI_TYPE_POINTER
ld %r3, 112+0(%r1)
ld %r3, RETVAL+0(%r1)
mtlr %r0
addi %r1, %r1, 240
addi %r1, %r1, STACKFRAME
blr
# esac
# case FFI_V2_TYPE_FLOAT_HOMOG
lfs %f1, RETVAL+0(%r1)
lfs %f2, RETVAL+4(%r1)
lfs %f3, RETVAL+8(%r1)
b .Lmorefloat
# case FFI_V2_TYPE_DOUBLE_HOMOG
lfd %f1, RETVAL+0(%r1)
lfd %f2, RETVAL+8(%r1)
lfd %f3, RETVAL+16(%r1)
lfd %f4, RETVAL+24(%r1)
mtlr %r0
lfd %f5, RETVAL+32(%r1)
lfd %f6, RETVAL+40(%r1)
lfd %f7, RETVAL+48(%r1)
lfd %f8, RETVAL+56(%r1)
addi %r1, %r1, STACKFRAME
blr
.Lmorefloat:
lfs %f4, RETVAL+12(%r1)
mtlr %r0
lfs %f5, RETVAL+16(%r1)
lfs %f6, RETVAL+20(%r1)
lfs %f7, RETVAL+24(%r1)
lfs %f8, RETVAL+28(%r1)
addi %r1, %r1, STACKFRAME
blr
.Lsmall:
# ifdef __LITTLE_ENDIAN__
ld %r3,RETVAL+0(%r1)
mtlr %r0
ld %r4,RETVAL+8(%r1)
addi %r1, %r1, STACKFRAME
blr
# else
# A struct smaller than a dword is returned in the low bits of r3
# ie. right justified. Larger structs are passed left justified
# in r3 and r4. The return value area on the stack will have
# the structs as they are usually stored in memory.
cmpldi %r3, FFI_V2_TYPE_SMALL_STRUCT + 7 # size 8 bytes?
neg %r5, %r3
ld %r3,RETVAL+0(%r1)
blt .Lsmalldown
mtlr %r0
ld %r4,RETVAL+8(%r1)
addi %r1, %r1, STACKFRAME
blr
.Lsmalldown:
addi %r5, %r5, FFI_V2_TYPE_SMALL_STRUCT + 7
mtlr %r0
sldi %r5, %r5, 3
addi %r1, %r1, STACKFRAME
srd %r3, %r3, %r5
blr
# endif
.LFE1:
.long 0
.byte 0,12,0,1,128,0,0,0
#ifdef _CALL_LINUX
# if _CALL_ELF == 2
.size ffi_closure_LINUX64,.-ffi_closure_LINUX64
# else
# ifdef _CALL_LINUX
.size ffi_closure_LINUX64,.-.L.ffi_closure_LINUX64
#else
# else
.size .ffi_closure_LINUX64,.-.ffi_closure_LINUX64
#endif
# endif
# endif
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
@ -267,14 +376,14 @@ ffi_closure_LINUX64:
.byte 0x2 # DW_CFA_advance_loc1
.byte .LCFI0-.LFB1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 240
.uleb128 STACKFRAME
.byte 0x11 # DW_CFA_offset_extended_sf
.uleb128 0x41
.sleb128 -2
.align 3
.LEFDE1:
#endif
#if defined __ELF__ && defined __linux__
# if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
# endif
#endif

View File

@ -38,26 +38,24 @@ int main (void)
/* This printf call is variadic */
CHECK(ffi_prep_cif_var(&cif, FFI_DEFAULT_ABI, 1, 2, &ffi_type_sint,
arg_types) == FFI_OK);
arg_types) == FFI_OK);
args[0] = &format;
args[1] = &doubleArg;
args[2] = NULL;
ffi_call(&cif, FFI_FN(printf), &res, args);
// { dg-output "7.0" }
/* { dg-output "7.0" } */
printf("res: %d\n", (int) res);
// { dg-output "\nres: 4" }
/* { dg-output "\nres: 4" } */
/* The call to cls_double_va_fn is static, so have to use a normal prep_cif */
CHECK(ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 2, &ffi_type_sint, arg_types) == FFI_OK);
CHECK(ffi_prep_closure_loc(pcl, &cif, cls_double_va_fn, NULL,
code) == FFI_OK);
CHECK(ffi_prep_closure_loc(pcl, &cif, cls_double_va_fn, NULL, code) == FFI_OK);
res = ((int(*)(char*, double))(code))(format, doubleArg);
// { dg-output "\n7.0" }
res = ((int(*)(char*, ...))(code))(format, doubleArg);
/* { dg-output "\n7.0" } */
printf("res: %d\n", (int) res);
// { dg-output "\nres: 4" }
/* { dg-output "\nres: 4" } */
exit(0);
}

View File

@ -38,27 +38,24 @@ int main (void)
/* This printf call is variadic */
CHECK(ffi_prep_cif_var(&cif, FFI_DEFAULT_ABI, 1, 2, &ffi_type_sint,
arg_types) == FFI_OK);
arg_types) == FFI_OK);
args[0] = &format;
args[1] = &ldArg;
args[2] = NULL;
ffi_call(&cif, FFI_FN(printf), &res, args);
// { dg-output "7.0" }
/* { dg-output "7.0" } */
printf("res: %d\n", (int) res);
// { dg-output "\nres: 4" }
/* { dg-output "\nres: 4" } */
/* The call to cls_longdouble_va_fn is static, so have to use a normal prep_cif */
CHECK(ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 2, &ffi_type_sint,
arg_types) == FFI_OK);
CHECK(ffi_prep_closure_loc(pcl, &cif, cls_longdouble_va_fn, NULL,
code) == FFI_OK);
CHECK(ffi_prep_closure_loc(pcl, &cif, cls_longdouble_va_fn, NULL, code) == FFI_OK);
res = ((int(*)(char*, long double))(code))(format, ldArg);
// { dg-output "\n7.0" }
res = ((int(*)(char*, ...))(code))(format, ldArg);
/* { dg-output "\n7.0" } */
printf("res: %d\n", (int) res);
// { dg-output "\nres: 4" }
/* { dg-output "\nres: 4" } */
exit(0);
}