runtime: copy runtime package time code from Go 1.7

Fix handling of function values for -fgo-c-header to generate FuncVal*,
    not simply FuncVal.
    
    While we're here change runtime.nanotime to use clock_gettime with
    CLOCK_MONOTONIC, rather than gettimeofday.  This is what the gc library
    does.  It provides nanosecond precision and a monotonic clock.
    
    Reviewed-on: https://go-review.googlesource.com/31232

From-SVN: r241197
This commit is contained in:
Ian Lance Taylor 2016-10-15 00:29:06 +00:00
parent 2a0b23da05
commit 35d9424444
12 changed files with 339 additions and 424 deletions

View File

@ -1,4 +1,4 @@
ec3dc927da71d15cac48a13c0fb0c1f94572d0d2
880cb0a45590d992880fc6aabc7484e54c817eeb
The first line of this file holds the git revision number of the last
merge done from the gofrontend repository.

View File

@ -5928,7 +5928,7 @@ Struct_type::write_field_to_c_header(std::ostream& os, const std::string& name,
break;
case TYPE_FUNCTION:
os << "FuncVal";
os << "FuncVal*";
break;
case TYPE_POINTER:

View File

@ -519,7 +519,6 @@ runtime_files = \
reflect.c \
runtime1.c \
sigqueue.c \
time.c \
$(runtime_getncpu_file)
goc2c.$(OBJEXT): runtime/goc2c.c

View File

@ -262,8 +262,7 @@ am__objects_6 = go-append.lo go-assert.lo go-assert-interface.lo \
$(am__objects_2) panic.lo parfor.lo print.lo proc.lo \
runtime.lo signal_unix.lo thread.lo $(am__objects_3) yield.lo \
$(am__objects_4) go-iface.lo lfstack.lo malloc.lo netpoll.lo \
rdebug.lo reflect.lo runtime1.lo sigqueue.lo time.lo \
$(am__objects_5)
rdebug.lo reflect.lo runtime1.lo sigqueue.lo $(am__objects_5)
am_libgo_llgo_la_OBJECTS = $(am__objects_6)
libgo_llgo_la_OBJECTS = $(am_libgo_llgo_la_OBJECTS)
libgo_llgo_la_LINK = $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) \
@ -918,7 +917,6 @@ runtime_files = \
reflect.c \
runtime1.c \
sigqueue.c \
time.c \
$(runtime_getncpu_file)
noinst_DATA = zstdpkglist.go
@ -1636,7 +1634,6 @@ distclean-compile:
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/thread-linux.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/thread-sema.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/thread.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/time.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/yield.Plo@am__quote@
.c.o:

View File

@ -196,15 +196,15 @@ func getcallersp(argp unsafe.Pointer) uintptr
// argp used in Defer structs when there is no argp.
const _NoArgs = ^uintptr(0)
// //go:linkname time_now time.now
// func time_now() (sec int64, nsec int32)
//go:linkname time_now time.now
func time_now() (sec int64, nsec int32)
/*
// For gccgo, expose this for C callers.
//go:linkname unixnanotime runtime.unixnanotime
func unixnanotime() int64 {
sec, nsec := time_now()
return sec*1e9 + int64(nsec)
}
*/
// round n up to a multiple of a. a must be a power of 2.
func round(n, a uintptr) uintptr {

307
libgo/go/runtime/time.go Normal file
View File

@ -0,0 +1,307 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Time-related runtime and pieces of package time.
package runtime
import "unsafe"
// Export temporarily for gccgo's C code to call:
//go:linkname addtimer runtime.addtimer
//go:linkname deltimer runtime.deltimer
// Package time knows the layout of this structure.
// If this struct changes, adjust ../time/sleep.go:/runtimeTimer.
// For GOOS=nacl, package syscall knows the layout of this structure.
// If this struct changes, adjust ../syscall/net_nacl.go:/runtimeTimer.
type timer struct {
i int // heap index
// Timer wakes up at when, and then at when+period, ... (period > 0 only)
// each time calling f(arg, now) in the timer goroutine, so f must be
// a well-behaved function and not block.
when int64
period int64
f func(interface{}, uintptr)
arg interface{}
seq uintptr
}
var timers struct {
lock mutex
gp *g
created bool
sleeping bool
rescheduling bool
waitnote note
t []*timer
}
// nacl fake time support - time in nanoseconds since 1970
var faketime int64
// Package time APIs.
// Godoc uses the comments in package time, not these.
// time.now is implemented in assembly.
// timeSleep puts the current goroutine to sleep for at least ns nanoseconds.
//go:linkname timeSleep time.Sleep
func timeSleep(ns int64) {
if ns <= 0 {
return
}
t := new(timer)
t.when = nanotime() + ns
t.f = goroutineReady
t.arg = getg()
lock(&timers.lock)
addtimerLocked(t)
goparkunlock(&timers.lock, "sleep", traceEvGoSleep, 2)
}
// startTimer adds t to the timer heap.
//go:linkname startTimer time.startTimer
func startTimer(t *timer) {
if raceenabled {
racerelease(unsafe.Pointer(t))
}
addtimer(t)
}
// stopTimer removes t from the timer heap if it is there.
// It returns true if t was removed, false if t wasn't even there.
//go:linkname stopTimer time.stopTimer
func stopTimer(t *timer) bool {
return deltimer(t)
}
// Go runtime.
// Ready the goroutine arg.
func goroutineReady(arg interface{}, seq uintptr) {
goready(arg.(*g), 0)
}
func addtimer(t *timer) {
lock(&timers.lock)
addtimerLocked(t)
unlock(&timers.lock)
}
// Add a timer to the heap and start or kick the timer proc.
// If the new timer is earlier than any of the others.
// Timers are locked.
func addtimerLocked(t *timer) {
// when must never be negative; otherwise timerproc will overflow
// during its delta calculation and never expire other runtime·timers.
if t.when < 0 {
t.when = 1<<63 - 1
}
t.i = len(timers.t)
timers.t = append(timers.t, t)
siftupTimer(t.i)
if t.i == 0 {
// siftup moved to top: new earliest deadline.
if timers.sleeping {
timers.sleeping = false
notewakeup(&timers.waitnote)
}
if timers.rescheduling {
timers.rescheduling = false
goready(timers.gp, 0)
}
}
if !timers.created {
timers.created = true
go timerproc()
}
}
// Delete timer t from the heap.
// Do not need to update the timerproc: if it wakes up early, no big deal.
func deltimer(t *timer) bool {
// Dereference t so that any panic happens before the lock is held.
// Discard result, because t might be moving in the heap.
_ = t.i
lock(&timers.lock)
// t may not be registered anymore and may have
// a bogus i (typically 0, if generated by Go).
// Verify it before proceeding.
i := t.i
last := len(timers.t) - 1
if i < 0 || i > last || timers.t[i] != t {
unlock(&timers.lock)
return false
}
if i != last {
timers.t[i] = timers.t[last]
timers.t[i].i = i
}
timers.t[last] = nil
timers.t = timers.t[:last]
if i != last {
siftupTimer(i)
siftdownTimer(i)
}
unlock(&timers.lock)
return true
}
// Timerproc runs the time-driven events.
// It sleeps until the next event in the timers heap.
// If addtimer inserts a new earlier event, addtimer1 wakes timerproc early.
func timerproc() {
timers.gp = getg()
for {
lock(&timers.lock)
timers.sleeping = false
now := nanotime()
delta := int64(-1)
for {
if len(timers.t) == 0 {
delta = -1
break
}
t := timers.t[0]
delta = t.when - now
if delta > 0 {
break
}
if t.period > 0 {
// leave in heap but adjust next time to fire
t.when += t.period * (1 + -delta/t.period)
siftdownTimer(0)
} else {
// remove from heap
last := len(timers.t) - 1
if last > 0 {
timers.t[0] = timers.t[last]
timers.t[0].i = 0
}
timers.t[last] = nil
timers.t = timers.t[:last]
if last > 0 {
siftdownTimer(0)
}
t.i = -1 // mark as removed
}
f := t.f
arg := t.arg
seq := t.seq
unlock(&timers.lock)
if raceenabled {
raceacquire(unsafe.Pointer(t))
}
f(arg, seq)
lock(&timers.lock)
}
if delta < 0 || faketime > 0 {
// No timers left - put goroutine to sleep.
timers.rescheduling = true
goparkunlock(&timers.lock, "timer goroutine (idle)", traceEvGoBlock, 1)
continue
}
// At least one timer pending. Sleep until then.
timers.sleeping = true
noteclear(&timers.waitnote)
unlock(&timers.lock)
notetsleepg(&timers.waitnote, delta)
}
}
func timejump() *g {
if faketime == 0 {
return nil
}
lock(&timers.lock)
if !timers.created || len(timers.t) == 0 {
unlock(&timers.lock)
return nil
}
var gp *g
if faketime < timers.t[0].when {
faketime = timers.t[0].when
if timers.rescheduling {
timers.rescheduling = false
gp = timers.gp
}
}
unlock(&timers.lock)
return gp
}
// Heap maintenance algorithms.
func siftupTimer(i int) {
t := timers.t
when := t[i].when
tmp := t[i]
for i > 0 {
p := (i - 1) / 4 // parent
if when >= t[p].when {
break
}
t[i] = t[p]
t[i].i = i
t[p] = tmp
t[p].i = p
i = p
}
}
func siftdownTimer(i int) {
t := timers.t
n := len(t)
when := t[i].when
tmp := t[i]
for {
c := i*4 + 1 // left child
c3 := c + 2 // mid child
if c >= n {
break
}
w := t[c].when
if c+1 < n && t[c+1].when < w {
w = t[c+1].when
c++
}
if c3 < n {
w3 := t[c3].when
if c3+1 < n && t[c3+1].when < w3 {
w3 = t[c3+1].when
c3++
}
if w3 < w {
w = w3
c = c3
}
}
if w >= when {
break
}
t[i] = t[c]
t[i].i = i
t[c] = tmp
t[c].i = c
i = c
}
}
// Entry points for net, time to call nanotime.
//go:linkname net_runtimeNano net.runtimeNano
func net_runtimeNano() int64 {
return nanotime()
}
//go:linkname time_runtimeNano time.runtimeNano
func time_runtimeNano() int64 {
return nanotime()
}

View File

@ -14,8 +14,8 @@ int64 runtime_nanotime (void)
int64
runtime_nanotime (void)
{
struct timeval tv;
struct timespec ts;
gettimeofday (&tv, NULL);
return (int64) tv.tv_sec * 1000000000 + (int64) tv.tv_usec * 1000;
clock_gettime (CLOCK_MONOTONIC, &ts);
return (int64) ts.tv_sec * 1000000000 + (int64) ts.tv_nsec;
}

View File

@ -543,5 +543,4 @@ int32 runtime_setgcpercent(int32);
struct Workbuf;
void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));

View File

@ -1277,7 +1277,6 @@ markroot(ParFor *desc, uint32 i)
enqueue1(&wbuf, (Obj){(byte*)&runtime_allp, sizeof runtime_allp, 0});
enqueue1(&wbuf, (Obj){(byte*)&work, sizeof work, 0});
runtime_proc_scan(&wbuf, enqueue1);
runtime_time_scan(&wbuf, enqueue1);
runtime_netpoll_scan(&wbuf, enqueue1);
break;

View File

@ -89,11 +89,6 @@ static FuncVal deadlineFn = {(void(*)(void))deadline};
static FuncVal readDeadlineFn = {(void(*)(void))readDeadline};
static FuncVal writeDeadlineFn = {(void(*)(void))writeDeadline};
// runtimeNano returns the current value of the runtime clock in nanoseconds.
func runtimeNano() (ns int64) {
ns = runtime_nanotime();
}
func runtime_pollServerInit() {
runtime_netpollinit();
}
@ -176,13 +171,13 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
}
pd->seq++; // invalidate current timers
// Reset current timers.
if(pd->rt.fv) {
if(pd->rt.f) {
runtime_deltimer(&pd->rt);
pd->rt.fv = nil;
pd->rt.f = nil;
}
if(pd->wt.fv) {
if(pd->wt.f) {
runtime_deltimer(&pd->wt);
pd->wt.fv = nil;
pd->wt.f = nil;
}
// Setup new timers.
if(d != 0 && d <= runtime_nanotime())
@ -192,7 +187,7 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
if(mode == 'w' || mode == 'r'+'w')
pd->wd = d;
if(pd->rd > 0 && pd->rd == pd->wd) {
pd->rt.fv = &deadlineFn;
pd->rt.f = &deadlineFn;
pd->rt.when = pd->rd;
// Copy current seq into the timer arg.
// Timer func will check the seq against current descriptor seq,
@ -203,7 +198,7 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
runtime_addtimer(&pd->rt);
} else {
if(pd->rd > 0) {
pd->rt.fv = &readDeadlineFn;
pd->rt.f = &readDeadlineFn;
pd->rt.when = pd->rd;
pd->rt.arg.type = nil; // should be *pollDesc type descriptor.
pd->rt.arg.data = pd;
@ -211,7 +206,7 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
runtime_addtimer(&pd->rt);
}
if(pd->wd > 0) {
pd->wt.fv = &writeDeadlineFn;
pd->wt.f = &writeDeadlineFn;
pd->wt.when = pd->wd;
pd->wt.arg.type = nil; // should be *pollDesc type descriptor.
pd->wt.arg.data = pd;
@ -244,13 +239,13 @@ func runtime_pollUnblock(pd *PollDesc) {
runtime_atomicstorep(&rg, nil); // full memory barrier between store to closing and read of rg/wg in netpollunblock
rg = netpollunblock(pd, 'r', false);
wg = netpollunblock(pd, 'w', false);
if(pd->rt.fv) {
if(pd->rt.f) {
runtime_deltimer(&pd->rt);
pd->rt.fv = nil;
pd->rt.f = nil;
}
if(pd->wt.fv) {
if(pd->wt.f) {
runtime_deltimer(&pd->wt);
pd->wt.fv = nil;
pd->wt.f = nil;
}
runtime_unlock(pd);
if(rg)
@ -408,17 +403,17 @@ deadlineimpl(Eface arg, uintptr seq, bool read, bool write)
return;
}
if(read) {
if(pd->rd <= 0 || pd->rt.fv == nil)
if(pd->rd <= 0 || pd->rt.f == nil)
runtime_throw("deadlineimpl: inconsistent read deadline");
pd->rd = -1;
runtime_atomicstorep(&pd->rt.fv, nil); // full memory barrier between store to rd and load of rg in netpollunblock
runtime_atomicstorep(&pd->rt.f, nil); // full memory barrier between store to rd and load of rg in netpollunblock
rg = netpollunblock(pd, 'r', false);
}
if(write) {
if(pd->wd <= 0 || (pd->wt.fv == nil && !read))
if(pd->wd <= 0 || (pd->wt.f == nil && !read))
runtime_throw("deadlineimpl: inconsistent write deadline");
pd->wd = -1;
runtime_atomicstorep(&pd->wt.fv, nil); // full memory barrier between store to wd and load of wg in netpollunblock
runtime_atomicstorep(&pd->wt.f, nil); // full memory barrier between store to wd and load of wg in netpollunblock
wg = netpollunblock(pd, 'w', false);
}
runtime_unlock(pd);

View File

@ -66,8 +66,7 @@ typedef struct SigTab SigTab;
typedef struct mcache MCache;
typedef struct FixAlloc FixAlloc;
typedef struct hchan Hchan;
typedef struct Timers Timers;
typedef struct Timer Timer;
typedef struct timer Timer;
typedef struct gcstats GCStats;
typedef struct LFNode LFNode;
typedef struct ParFor ParFor;
@ -181,36 +180,6 @@ enum {
};
#endif
struct Timers
{
Lock;
G *timerproc;
bool sleeping;
bool rescheduling;
Note waitnote;
Timer **t;
int32 len;
int32 cap;
};
// Package time knows the layout of this structure.
// If this struct changes, adjust ../time/sleep.go:/runtimeTimer.
// For GOOS=nacl, package syscall knows the layout of this structure.
// If this struct changes, adjust ../syscall/net_nacl.go:/runtimeTimer.
struct Timer
{
intgo i; // heap index
// Timer wakes up at when, and then at when+period, ... (period > 0 only)
// each time calling f(now, arg) in the timer goroutine, so f must be
// a well-behaved function and not block.
int64 when;
int64 period;
FuncVal *fv;
Eface arg;
uintptr seq;
};
// Lock-free stack node.
struct LFNode
{
@ -403,7 +372,8 @@ bool __go_sigsend(int32 sig);
int32 runtime_callers(int32, Location*, int32, bool keep_callers);
int64 runtime_nanotime(void) // monotonic time
__asm__(GOSYM_PREFIX "runtime.nanotime");
int64 runtime_unixnanotime(void); // real time, can skip
int64 runtime_unixnanotime(void) // real time, can skip
__asm__ (GOSYM_PREFIX "runtime.unixnanotime");
void runtime_dopanic(int32) __attribute__ ((noreturn));
void runtime_startpanic(void);
void runtime_freezetheworld(void);
@ -422,8 +392,10 @@ int64 runtime_tickspersecond(void)
__asm__ (GOSYM_PREFIX "runtime.tickspersecond");
void runtime_blockevent(int64, int32);
extern int64 runtime_blockprofilerate;
void runtime_addtimer(Timer*);
bool runtime_deltimer(Timer*);
void runtime_addtimer(Timer*)
__asm__ (GOSYM_PREFIX "runtime.addtimer");
bool runtime_deltimer(Timer*)
__asm__ (GOSYM_PREFIX "runtime.deltimer");
G* runtime_netpoll(bool);
void runtime_netpollinit(void);
int32 runtime_netpollopen(uintptr, PollDesc*);

View File

@ -1,353 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Time-related runtime and pieces of package time.
package time
#include <sys/time.h>
#include "runtime.h"
#include "defs.h"
#include "arch.h"
#include "malloc.h"
enum {
debug = 0,
};
static Timers timers;
static void addtimer(Timer*);
static void dumptimers(const char*);
// nacl fake time support.
int64 runtime_timens;
// Package time APIs.
// Godoc uses the comments in package time, not these.
// time.now is implemented in assembly.
// runtimeNano returns the current value of the runtime clock in nanoseconds.
func runtimeNano() (ns int64) {
ns = runtime_nanotime();
}
// Sleep puts the current goroutine to sleep for at least ns nanoseconds.
func Sleep(ns int64) {
runtime_tsleep(ns, "sleep");
}
// startTimer adds t to the timer heap.
func startTimer(t *Timer) {
runtime_addtimer(t);
}
// stopTimer removes t from the timer heap if it is there.
// It returns true if t was removed, false if t wasn't even there.
func stopTimer(t *Timer) (stopped bool) {
stopped = runtime_deltimer(t);
}
// C runtime.
int64 runtime_unixnanotime(void)
{
struct time_now_ret r;
r = now();
return r.sec*1000000000 + r.nsec;
}
static void timerproc(void*);
static void siftup(int32);
static void siftdown(int32);
// Ready the goroutine e.data.
static void
ready(Eface e, uintptr seq)
{
USED(seq);
runtime_ready(e.__object);
}
static FuncVal readyv = {(void(*)(void))ready};
// Put the current goroutine to sleep for ns nanoseconds.
void
runtime_tsleep(int64 ns, const char *reason)
{
G* g;
Timer t;
g = runtime_g();
if(ns <= 0)
return;
t.when = runtime_nanotime() + ns;
t.period = 0;
t.fv = &readyv;
t.arg.__object = g;
t.seq = 0;
runtime_lock(&timers);
addtimer(&t);
runtime_parkunlock(&timers, reason);
}
void
runtime_addtimer(Timer *t)
{
runtime_lock(&timers);
addtimer(t);
runtime_unlock(&timers);
}
// Add a timer to the heap and start or kick the timer proc
// if the new timer is earlier than any of the others.
static void
addtimer(Timer *t)
{
int32 n;
Timer **nt;
// when must never be negative; otherwise timerproc will overflow
// during its delta calculation and never expire other timers.
if(t->when < 0)
t->when = (int64)((1ULL<<63)-1);
if(timers.len >= timers.cap) {
// Grow slice.
n = 16;
if(n <= timers.cap)
n = timers.cap*3 / 2;
nt = runtime_malloc(n*sizeof nt[0]);
runtime_memmove(nt, timers.t, timers.len*sizeof nt[0]);
runtime_free(timers.t);
timers.t = nt;
timers.cap = n;
}
t->i = timers.len++;
timers.t[t->i] = t;
siftup(t->i);
if(t->i == 0) {
// siftup moved to top: new earliest deadline.
if(timers.sleeping) {
timers.sleeping = false;
runtime_notewakeup(&timers.waitnote);
}
if(timers.rescheduling) {
timers.rescheduling = false;
runtime_ready(timers.timerproc);
}
}
if(timers.timerproc == nil) {
timers.timerproc = __go_go(timerproc, nil);
timers.timerproc->issystem = true;
}
if(debug)
dumptimers("addtimer");
}
// Used to force a dereference before the lock is acquired.
static int32 gi;
// Delete timer t from the heap.
// Do not need to update the timerproc:
// if it wakes up early, no big deal.
bool
runtime_deltimer(Timer *t)
{
int32 i;
// Dereference t so that any panic happens before the lock is held.
// Discard result, because t might be moving in the heap.
i = t->i;
gi = i;
runtime_lock(&timers);
// t may not be registered anymore and may have
// a bogus i (typically 0, if generated by Go).
// Verify it before proceeding.
i = t->i;
if(i < 0 || i >= timers.len || timers.t[i] != t) {
runtime_unlock(&timers);
return false;
}
timers.len--;
if(i == timers.len) {
timers.t[i] = nil;
} else {
timers.t[i] = timers.t[timers.len];
timers.t[timers.len] = nil;
timers.t[i]->i = i;
siftup(i);
siftdown(i);
}
if(debug)
dumptimers("deltimer");
runtime_unlock(&timers);
return true;
}
// Timerproc runs the time-driven events.
// It sleeps until the next event in the timers heap.
// If addtimer inserts a new earlier event, addtimer
// wakes timerproc early.
static void
timerproc(void* dummy __attribute__ ((unused)))
{
int64 delta, now;
Timer *t;
FuncVal *fv;
void (*f)(Eface, uintptr);
Eface arg;
uintptr seq;
for(;;) {
runtime_lock(&timers);
timers.sleeping = false;
now = runtime_nanotime();
for(;;) {
if(timers.len == 0) {
delta = -1;
break;
}
t = timers.t[0];
delta = t->when - now;
if(delta > 0)
break;
if(t->period > 0) {
// leave in heap but adjust next time to fire
t->when += t->period * (1 + -delta/t->period);
siftdown(0);
} else {
// remove from heap
timers.t[0] = timers.t[--timers.len];
timers.t[0]->i = 0;
siftdown(0);
t->i = -1; // mark as removed
}
fv = t->fv;
f = (void*)t->fv->fn;
arg = t->arg;
seq = t->seq;
runtime_unlock(&timers);
__builtin_call_with_static_chain(f(arg, seq), fv);
// clear f and arg to avoid leak while sleeping for next timer
f = nil;
USED(f);
arg.__type_descriptor = nil;
arg.__object = nil;
USED(&arg);
runtime_lock(&timers);
}
if(delta < 0) {
// No timers left - put goroutine to sleep.
timers.rescheduling = true;
runtime_g()->isbackground = true;
runtime_parkunlock(&timers, "timer goroutine (idle)");
runtime_g()->isbackground = false;
continue;
}
// At least one timer pending. Sleep until then.
timers.sleeping = true;
runtime_noteclear(&timers.waitnote);
runtime_unlock(&timers);
runtime_notetsleepg(&timers.waitnote, delta);
}
}
// heap maintenance algorithms.
static void
siftup(int32 i)
{
int32 p;
int64 when;
Timer **t, *tmp;
t = timers.t;
when = t[i]->when;
tmp = t[i];
while(i > 0) {
p = (i-1)/4; // parent
if(when >= t[p]->when)
break;
t[i] = t[p];
t[i]->i = i;
t[p] = tmp;
tmp->i = p;
i = p;
}
}
static void
siftdown(int32 i)
{
int32 c, c3, len;
int64 when, w, w3;
Timer **t, *tmp;
t = timers.t;
len = timers.len;
when = t[i]->when;
tmp = t[i];
for(;;) {
c = i*4 + 1; // left child
c3 = c + 2; // mid child
if(c >= len) {
break;
}
w = t[c]->when;
if(c+1 < len && t[c+1]->when < w) {
w = t[c+1]->when;
c++;
}
if(c3 < len) {
w3 = t[c3]->when;
if(c3+1 < len && t[c3+1]->when < w3) {
w3 = t[c3+1]->when;
c3++;
}
if(w3 < w) {
w = w3;
c = c3;
}
}
if(w >= when)
break;
t[i] = t[c];
t[i]->i = i;
t[c] = tmp;
tmp->i = c;
i = c;
}
}
static void
dumptimers(const char *msg)
{
Timer *t;
int32 i;
runtime_printf("timers: %s\n", msg);
for(i = 0; i < timers.len; i++) {
t = timers.t[i];
runtime_printf("\t%d\t%p:\ti %d when %D period %D fn %p\n",
i, t, t->i, t->when, t->period, t->fv->fn);
}
runtime_printf("\n");
}
void
runtime_time_scan(struct Workbuf** wbufp, void (*enqueue1)(struct Workbuf**, Obj))
{
enqueue1(wbufp, (Obj){(byte*)&timers, sizeof timers, 0});
}