re PR libfortran/52434 (Insufficient number of digits in floating point formatting)

2012-03-15  Janne Blomqvist  <jb@gcc.gnu.org>

        PR libfortran/52434
        PR libfortran/48878
        PR libfortran/38199
        * io/unit.c (get_internal_unit): Default to ROUND_UNSPECIFIED.
        (init_units): Likewise.
        * io/write_float.def (determine_precision): New function.
        (output_float): Take into account buffer with %f format, no need
        for our own rounding if unspecified or processor specified
        rounding.
        (DTOA): Simplify format string, add parameters.
        (FDTOA): New macros similar to DTOA, but using %f format.
        (OUTPUT_FLOAT_FMT_G): Stack allocate newf, determine correct
        precision and fill buffer.
        (EN_PREC): New macro.
        (determine_en_precision): New function.
        (WRITE_FLOAT): For G format, move buffer filling into
        output_float_FMT_G, use FDTOA for F format.
        (write_float): Increase buffer due to F format.

testsuite ChangeLog:

2012-03-15  Janne Blomqvist  <jb@gcc.gnu.org>

        PR libfortran/52434
        PR libfortran/48878
        PR libfortran/38199
        * gfortran.dg/edit_real_1.f90: Don't assume roundTiesToAway.
        * gfortran.dg/round_1.f03: Likewise.

From-SVN: r185433
This commit is contained in:
Janne Blomqvist 2012-03-15 17:14:43 +02:00
parent ff63ac4d66
commit 37b659dd29
6 changed files with 348 additions and 120 deletions

View File

@ -1,3 +1,11 @@
2012-03-15 Janne Blomqvist <jb@gcc.gnu.org>
PR libfortran/52434
PR libfortran/48878
PR libfortran/38199
* gfortran.dg/edit_real_1.f90: Don't assume roundTiesToAway.
* gfortran.dg/round_1.f03: Likewise.
2012-03-15 Jakub Jelinek <jakub@redhat.com>
Andrew Pinski <apinski@cavium.com>

View File

@ -68,7 +68,7 @@ program edit_real_1
if (s .ne. '12.345E-01z') call abort
! E format, negative scale factor
s = x
write (s, '(-2PE10.4,A)') 1.25, "z"
write (s, '(-2PE10.4,A)') 1.250001, "z"
if (s .ne. '0.0013E+03z') call abort
! E format, single digit precision
s = x

View File

@ -20,9 +20,9 @@ write(line, fmt(4)) 1.20, 1.22, 1.25, 1.27, 1.30, 1.125
if (line.ne." 1.20 1.22 1.25 1.27 1.30 1.12") call abort
write(line, fmt(5)) 1.20, 1.22, 1.25, 1.27, 1.30, 1.125
if (line.ne." 1.20 1.22 1.25 1.27 1.30 1.13") call abort
write(line, fmt(6)) 1.20, 1.22, 1.25, 1.27, 1.30, 1.125
write(line, fmt(6)) 1.20, 1.22, 1.250001, 1.27, 1.30, 1.125
if (line.ne." 1.2 1.2 1.3 1.3 1.3 1.1") call abort
write(line, fmt(7)) 1.20, 1.22, 1.25, 1.27, 1.30, 1.125
write(line, fmt(7)) 1.20, 1.22, 1.250001, 1.27, 1.30, 1.125
if (line.ne." +1.2 +1.2 +1.3 +1.3 +1.3 +1.1") call abort
end

View File

@ -1,3 +1,24 @@
2012-03-15 Janne Blomqvist <jb@gcc.gnu.org>
PR libfortran/52434
PR libfortran/48878
PR libfortran/38199
* io/unit.c (get_internal_unit): Default to ROUND_UNSPECIFIED.
(init_units): Likewise.
* io/write_float.def (determine_precision): New function.
(output_float): Take into account buffer with %f format, no need
for our own rounding if unspecified or processor specified
rounding.
(DTOA): Simplify format string, add parameters.
(FDTOA): New macros similar to DTOA, but using %f format.
(OUTPUT_FLOAT_FMT_G): Stack allocate newf, determine correct
precision and fill buffer.
(EN_PREC): New macro.
(determine_en_precision): New function.
(WRITE_FLOAT): For G format, move buffer filling into
output_float_FMT_G, use FDTOA for F format.
(write_float): Increase buffer due to F format.
2012-03-14 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
* intrinsics/c99_functions.c [__sgi__ && !HAVE_COMPLEX_H]: Remove.

View File

@ -453,7 +453,7 @@ get_internal_unit (st_parameter_dt *dtp)
iunit->flags.decimal = DECIMAL_POINT;
iunit->flags.encoding = ENCODING_DEFAULT;
iunit->flags.async = ASYNC_NO;
iunit->flags.round = ROUND_COMPATIBLE;
iunit->flags.round = ROUND_UNSPECIFIED;
/* Initialize the data transfer parameters. */
@ -543,7 +543,7 @@ init_units (void)
u->flags.decimal = DECIMAL_POINT;
u->flags.encoding = ENCODING_DEFAULT;
u->flags.async = ASYNC_NO;
u->flags.round = ROUND_COMPATIBLE;
u->flags.round = ROUND_UNSPECIFIED;
u->recl = options.default_recl;
u->endfile = NO_ENDFILE;
@ -573,7 +573,7 @@ init_units (void)
u->flags.decimal = DECIMAL_POINT;
u->flags.encoding = ENCODING_DEFAULT;
u->flags.async = ASYNC_NO;
u->flags.round = ROUND_COMPATIBLE;
u->flags.round = ROUND_UNSPECIFIED;
u->recl = options.default_recl;
u->endfile = AT_ENDFILE;
@ -603,7 +603,7 @@ init_units (void)
u->flags.decimal = DECIMAL_POINT;
u->flags.encoding = ENCODING_DEFAULT;
u->flags.async = ASYNC_NO;
u->flags.round = ROUND_COMPATIBLE;
u->flags.round = ROUND_UNSPECIFIED;
u->recl = options.default_recl;
u->endfile = AT_ENDFILE;

View File

@ -1,4 +1,5 @@
/* Copyright (C) 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
/* Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.
Contributed by Andy Vaught
Write float code factoring to this file by Jerry DeLisle
F2003 I/O support contributed by Jerry DeLisle
@ -59,11 +60,60 @@ calculate_sign (st_parameter_dt *dtp, int negative_flag)
}
/* Determine the precision except for EN format. For G format,
determines an upper bound to be used for sizing the buffer. */
static int
determine_precision (st_parameter_dt * dtp, const fnode * f, int len)
{
int precision = f->u.real.d;
switch (f->format)
{
case FMT_F:
case FMT_G:
precision += dtp->u.p.scale_factor;
break;
case FMT_ES:
/* Scale factor has no effect on output. */
break;
case FMT_E:
case FMT_D:
/* See F2008 10.7.2.3.3.6 */
if (dtp->u.p.scale_factor <= 0)
precision += dtp->u.p.scale_factor - 1;
break;
default:
return -1;
}
/* If the scale factor has a large negative value, we must do our
own rounding? Use ROUND='NEAREST', which should be what snprintf
is using as well. */
if (precision < 0 &&
(dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED
|| dtp->u.p.current_unit->round_status == ROUND_PROCDEFINED))
dtp->u.p.current_unit->round_status = ROUND_NEAREST;
/* Add extra guard digits up to at least full precision when we do
our own rounding. */
if (dtp->u.p.current_unit->round_status != ROUND_UNSPECIFIED
&& dtp->u.p.current_unit->round_status != ROUND_PROCDEFINED)
{
precision += 2 * len + 4;
if (precision < 0)
precision = 0;
}
return precision;
}
/* Output a real number according to its format which is FMT_G free. */
static try
output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
int sign_bit, bool zero_flag, int ndigits, int edigits)
output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
int nprinted, int precision, int sign_bit, bool zero_flag)
{
char *out;
char *digits;
@ -80,6 +130,7 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
int nzero_real;
int leadzero;
int nblanks;
int ndigits, edigits;
sign_t sign;
ft = f->format;
@ -96,50 +147,97 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
sign = calculate_sign (dtp, sign_bit);
/* The following code checks the given string has punctuation in the correct
places. Uncomment if needed for debugging.
if (d != 0 && ((buffer[2] != '.' && buffer[2] != ',')
|| buffer[ndigits + 2] != 'e'))
internal_error (&dtp->common, "printf is broken"); */
/* Calculate total number of digits. */
if (ft == FMT_F)
ndigits = nprinted - 2;
else
ndigits = precision + 1;
/* Read the exponent back in. */
e = atoi (&buffer[ndigits + 3]) + 1;
if (ft != FMT_F)
e = atoi (&buffer[ndigits + 3]) + 1;
else
e = 0;
/* Make sure zero comes out as 0.0e0. */
if (zero_flag)
e = 0;
/* Normalize the fractional component. */
buffer[2] = buffer[1];
digits = &buffer[2];
if (ft != FMT_F)
{
buffer[2] = buffer[1];
digits = &buffer[2];
}
else
digits = &buffer[1];
/* Figure out where to place the decimal point. */
switch (ft)
{
case FMT_F:
if (d == 0 && e <= 0 && p == 0)
nbefore = ndigits - precision;
/* Make sure the decimal point is a '.'; depending on the
locale, this might not be the case otherwise. */
digits[nbefore] = '.';
if (digits[0] == '0' && nbefore == 1)
{
memmove (digits + 1, digits, ndigits - 1);
digits[0] = '0';
e++;
digits++;
nbefore--;
ndigits--;
}
nbefore = e + p;
if (nbefore < 0)
//printf("nbefore: %d, digits: %s\n", nbefore, digits);
if (p != 0)
{
nzero = -nbefore;
nzero_real = nzero;
if (nzero > d)
nzero = d;
nafter = d - nzero;
nbefore = 0;
if (p > 0)
{
memmove (digits + nbefore, digits + nbefore + 1, p);
digits[nbefore + p] = '.';
nbefore += p;
nafter = d - p;
if (nafter < 0)
nafter = 0;
nafter = d;
nzero = nzero_real = 0;
//printf("digits: %s\n", digits);
}
else /* p < 0 */
{
if (nbefore + p >= 0)
{
nzero = 0;
memmove (digits + nbefore + p + 1, digits + nbefore + p, -p);
nbefore += p;
digits[nbefore] = '.';
nafter = d;
}
else
{
nzero = -(nbefore + p);
memmove (digits + 1, digits, nbefore);
digits++;
nafter = d + nbefore;
nbefore = 0;
}
nzero_real = nzero;
if (nzero > d)
nzero = d;
}
}
else
{
nzero = 0;
nzero = nzero_real = 0;
nafter = d;
}
expchar = 0;
/* If we need to do rounding ourselves, get rid of the dot by
moving the fractional part. */
if (dtp->u.p.current_unit->round_status != ROUND_UNSPECIFIED
&& dtp->u.p.current_unit->round_status != ROUND_PROCDEFINED)
memmove (digits + nbefore, digits + nbefore + 1, ndigits - nbefore);
//printf("nbefore after p handling: %d, digits: %s\n", nbefore, digits);
break;
case FMT_E:
@ -222,10 +320,16 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
if (zero_flag)
goto skip;
/* Round the value. The value being rounded is an unsigned magnitude.
The ROUND_COMPATIBLE is rounding away from zero when there is a tie. */
/* Round the value. The value being rounded is an unsigned magnitude. */
switch (dtp->u.p.current_unit->round_status)
{
/* For processor defined and unspecified rounding we use
snprintf to print the exact number of digits needed, and thus
let snprintf handle the rounding. On system claiming support
for IEEE 754, this ought to be round to nearest, ties to
even, corresponding to the Fortran ROUND='NEAREST'. */
case ROUND_PROCDEFINED:
case ROUND_UNSPECIFIED:
case ROUND_ZERO: /* Do nothing and truncation occurs. */
goto skip;
case ROUND_UP:
@ -240,6 +344,7 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
/* Round compatible unless there is a tie. A tie is a 5 with
all trailing zero's. */
i = nafter + nbefore;
//printf("I = %d, digits = %s, nbefore = %d\n", i, digits, nbefore);
if (digits[i] == '5')
{
for(i++ ; i < ndigits; i++)
@ -262,9 +367,8 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
goto skip;
}
}
/* Fall through. */
case ROUND_PROCDEFINED:
case ROUND_UNSPECIFIED:
/* Fall through. */
/* The ROUND_COMPATIBLE is rounding away from zero when there is a tie. */
case ROUND_COMPATIBLE:
rchar = '5';
goto do_rnd;
@ -300,6 +404,7 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
else if (nbefore + nafter < ndigits)
{
i = ndigits = nbefore + nafter;
//printf("i: %d, digits: %s, nbefore: %d, nafter: %d\n", i, digits, nbefore, nafter);
if (digits[i] >= rchar)
{
/* Propagate the carry. */
@ -384,7 +489,7 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
rounding completed above. */
for (i = 0; i < ndigits; i++)
{
if (digits[i] != '0')
if (digits[i] != '0' && digits[i] != '.')
break;
}
@ -502,6 +607,10 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
/* Output the decimal point. */
*(out4++) = dtp->u.p.current_unit->decimal_status
== DECIMAL_POINT ? '.' : ',';
if (ft == FMT_F
&& (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED
|| dtp->u.p.current_unit->round_status == ROUND_PROCDEFINED))
digits++;
/* Output leading zeros after the decimal point. */
if (nzero > 0)
@ -590,6 +699,10 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
/* Output the decimal point. */
*(out++) = dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? '.' : ',';
if (ft == FMT_F
&& (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED
|| dtp->u.p.current_unit->round_status == ROUND_PROCDEFINED))
digits++;
/* Output leading zeros after the decimal point. */
if (nzero > 0)
@ -634,9 +747,6 @@ output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size,
dtp->u.p.no_leading_blank = 0;
}
#undef STR
#undef STR1
#undef MIN_FIELD_WIDTH
return SUCCESS;
}
@ -798,6 +908,61 @@ CALCULATE_EXP(16)
#endif
#undef CALCULATE_EXP
/* Define a macro to build code for write_float. */
/* Note: Before output_float is called, snprintf is used to print to buffer the
number in the format +D.DDDDe+ddd.
# The result will always contain a decimal point, even if no
digits follow it
- The converted value is to be left adjusted on the field boundary
+ A sign (+ or -) always be placed before a number
* prec is used as the precision
e format: [-]d.ddde±dd where there is one digit before the
decimal-point character and the number of digits after it is
equal to the precision. The exponent always contains at least two
digits; if the value is zero, the exponent is 00. */
#define TOKENPASTE(x, y) TOKENPASTE2(x, y)
#define TOKENPASTE2(x, y) x ## y
#define DTOA(suff,prec,val) TOKENPASTE(DTOA2,suff)(prec,val)
#define DTOA2(prec,val) \
snprintf (buffer, size, "%+-#.*e", (prec), (val))
#define DTOA2L(prec,val) \
snprintf (buffer, size, "%+-#.*Le", (prec), (val))
#if defined(GFC_REAL_16_IS_FLOAT128)
#define DTOA2Q(prec,val) \
__qmath_(quadmath_snprintf) (buffer, size, "%+-#.*Qe", (prec), (val))
#endif
#define FDTOA(suff,prec,val) TOKENPASTE(FDTOA2,suff)(prec,val)
/* For F format, we print to the buffer with f format. */
#define FDTOA2(prec,val) \
snprintf (buffer, size, "%+-#.*f", (prec), (val))
#define FDTOA2L(prec,val) \
snprintf (buffer, size, "%+-#.*Lf", (prec), (val))
#if defined(GFC_REAL_16_IS_FLOAT128)
#define FDTOA2Q(prec,val) \
__qmath_(quadmath_snprintf) (buffer, size, "%+-#.*Qf", \
(prec), (val))
#endif
/* Generate corresponding I/O format for FMT_G and output.
The rules to translate FMT_G to FMT_E or FMT_F from DEC fortran
LRM (table 11-2, Chapter 11, "I/O Formatting", P11-25) is:
@ -817,26 +982,25 @@ CALCULATE_EXP(16)
for rounding modes adjustment, r, See Fortran F2008 10.7.5.2.2
the asm volatile is required for 32-bit x86 platforms. */
#define OUTPUT_FLOAT_FMT_G(x) \
#define OUTPUT_FLOAT_FMT_G(x,y) \
static void \
output_float_FMT_G_ ## x (st_parameter_dt *dtp, const fnode *f, \
GFC_REAL_ ## x m, char *buffer, size_t size, \
int sign_bit, bool zero_flag, int ndigits, \
int edigits, int comp_d) \
int sign_bit, bool zero_flag, int comp_d) \
{ \
int e = f->u.real.e;\
int d = f->u.real.d;\
int w = f->u.real.w;\
fnode *newf;\
fnode newf;\
GFC_REAL_ ## x rexp_d, r = 0.5;\
int low, high, mid;\
int ubound, lbound;\
char *p, pad = ' ';\
int save_scale_factor, nb = 0;\
try result;\
int nprinted, precision;\
\
save_scale_factor = dtp->u.p.scale_factor;\
newf = (fnode *) get_mem (sizeof (fnode));\
\
switch (dtp->u.p.current_unit->round_status)\
{\
@ -858,11 +1022,13 @@ output_float_FMT_G_ ## x (st_parameter_dt *dtp, const fnode *f, \
|| ((m == 0.0) && !(compile_options.allow_std\
& (GFC_STD_F2003 | GFC_STD_F2008))))\
{ \
newf->format = FMT_E;\
newf->u.real.w = w;\
newf->u.real.d = d - comp_d;\
newf->u.real.e = e;\
newf.format = FMT_E;\
newf.u.real.w = w;\
newf.u.real.d = d - comp_d;\
newf.u.real.e = e;\
nb = 0;\
precision = determine_precision (dtp, &newf, x);\
nprinted = DTOA(y,precision,m); \
goto finish;\
}\
\
@ -905,17 +1071,18 @@ output_float_FMT_G_ ## x (st_parameter_dt *dtp, const fnode *f, \
\
nb = e <= 0 ? 4 : e + 2;\
nb = nb >= w ? w - 1 : nb;\
newf->format = FMT_F;\
newf->u.real.w = w - nb;\
newf->u.real.d = m == 0.0 ? d - 1 : -(mid - d - 1) ;\
newf.format = FMT_F;\
newf.u.real.w = w - nb;\
newf.u.real.d = m == 0.0 ? d - 1 : -(mid - d - 1) ;\
dtp->u.p.scale_factor = 0;\
precision = determine_precision (dtp, &newf, x); \
nprinted = FDTOA(y,precision,m); \
\
finish:\
result = output_float (dtp, newf, buffer, size, sign_bit, zero_flag, \
ndigits, edigits);\
result = output_float (dtp, &newf, buffer, size, nprinted, precision,\
sign_bit, zero_flag);\
dtp->u.p.scale_factor = save_scale_factor;\
\
free (newf);\
\
if (nb > 0 && !dtp->u.p.g0_no_blanks)\
{\
@ -934,59 +1101,96 @@ output_float_FMT_G_ ## x (st_parameter_dt *dtp, const fnode *f, \
}\
}\
OUTPUT_FLOAT_FMT_G(4)
OUTPUT_FLOAT_FMT_G(4,)
OUTPUT_FLOAT_FMT_G(8)
OUTPUT_FLOAT_FMT_G(8,)
#ifdef HAVE_GFC_REAL_10
OUTPUT_FLOAT_FMT_G(10)
OUTPUT_FLOAT_FMT_G(10,L)
#endif
#ifdef HAVE_GFC_REAL_16
OUTPUT_FLOAT_FMT_G(16)
# ifdef GFC_REAL_16_IS_FLOAT128
OUTPUT_FLOAT_FMT_G(16,Q)
#else
OUTPUT_FLOAT_FMT_G(16,L)
#endif
#endif
#undef OUTPUT_FLOAT_FMT_G
/* Define a macro to build code for write_float. */
/* EN format is tricky since the number of significant digits depends
on the magnitude. Solve it by first printing a temporary value and
figure out the number of significant digits from the printed
exponent. */
/* Note: Before output_float is called, snprintf is used to print to buffer the
number in the format +D.DDDDe+ddd. For an N digit exponent, this gives us
(MIN_FIELD_WIDTH-5)-N digits after the decimal point, plus another one
before the decimal point.
#define EN_PREC(x,y)\
{\
GFC_REAL_ ## x tmp; \
tmp = * (GFC_REAL_ ## x *)source; \
if (isfinite (tmp)) \
nprinted = DTOA(y,0,tmp); \
else\
nprinted = -1;\
}\
# The result will always contain a decimal point, even if no
digits follow it
static int
determine_en_precision (st_parameter_dt *dtp, const fnode *f,
const char *source, int len)
{
int nprinted;
char buffer[10];
const size_t size = 10;
- The converted value is to be left adjusted on the field boundary
switch (len)
{
case 4:
EN_PREC(4,)
break;
+ A sign (+ or -) always be placed before a number
case 8:
EN_PREC(8,)
break;
MIN_FIELD_WIDTH minimum field width
* (ndigits-1) is used as the precision
e format: [-]d.ddde±dd where there is one digit before the
decimal-point character and the number of digits after it is
equal to the precision. The exponent always contains at least two
digits; if the value is zero, the exponent is 00. */
#define DTOA \
snprintf (buffer, size, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \
"e", ndigits - 1, tmp);
#define DTOAL \
snprintf (buffer, size, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \
"Le", ndigits - 1, tmp);
#if defined(GFC_REAL_16_IS_FLOAT128)
#define DTOAQ \
__qmath_(quadmath_snprintf) (buffer, sizeof buffer, \
"%+-#" STR(MIN_FIELD_WIDTH) ".*" \
"Qe", ndigits - 1, tmp);
#ifdef HAVE_GFC_REAL_10
case 10:
EN_PREC(10,L)
break;
#endif
#ifdef HAVE_GFC_REAL_16
case 16:
# ifdef GFC_REAL_16_IS_FLOAT128
EN_PREC(16,Q)
# else
EN_PREC(16,L)
# endif
break;
#endif
default:
internal_error (NULL, "bad real kind");
}
if (nprinted == -1)
return -1;
int e = atoi (&buffer[5]);
int nbefore; /* digits before decimal point - 1. */
if (e >= 0)
nbefore = e % 3;
else
{
nbefore = (-e) % 3;
if (nbefore != 0)
nbefore = 3 - nbefore;
}
int prec = f->u.real.d + nbefore;
if (dtp->u.p.current_unit->round_status != ROUND_UNSPECIFIED
&& dtp->u.p.current_unit->round_status != ROUND_PROCDEFINED)
prec += 2 * len + 4;
return prec;
}
#define WRITE_FLOAT(x,y)\
{\
@ -1000,15 +1204,18 @@ __qmath_(quadmath_snprintf) (buffer, sizeof buffer, \
}\
tmp = sign_bit ? -tmp : tmp;\
zero_flag = (tmp == 0.0);\
\
DTOA ## y\
\
if (f->format != FMT_G)\
output_float (dtp, f, buffer, size, sign_bit, zero_flag, ndigits, \
edigits);\
else \
if (f->format == FMT_G)\
output_float_FMT_G_ ## x (dtp, f, tmp, buffer, size, sign_bit, \
zero_flag, ndigits, edigits, comp_d);\
zero_flag, comp_d);\
else\
{\
if (f->format == FMT_F)\
nprinted = FDTOA(y,precision,tmp); \
else\
nprinted = DTOA(y,precision,tmp); \
output_float (dtp, f, buffer, size, nprinted, precision,\
sign_bit, zero_flag);\
}\
}\
/* Output a real number according to its format. */
@ -1017,29 +1224,21 @@ static void
write_float (st_parameter_dt *dtp, const fnode *f, const char *source, \
int len, int comp_d)
{
#if defined(HAVE_GFC_REAL_16) || __LDBL_DIG__ > 18
# define MIN_FIELD_WIDTH 49
#else
# define MIN_FIELD_WIDTH 32
#endif
#define STR(x) STR1(x)
#define STR1(x) #x
/* This must be large enough to accurately hold any value. */
char buffer[MIN_FIELD_WIDTH+1];
int sign_bit, ndigits, edigits;
int sign_bit, nprinted;
int precision; /* Precision for snprintf call. */
bool zero_flag;
size_t size;
size = MIN_FIELD_WIDTH+1;
if (f->format != FMT_EN)
precision = determine_precision (dtp, f, len);
else
precision = determine_en_precision (dtp, f, source, len);
/* printf pads blanks for us on the exponent so we just need it big enough
to handle the largest number of exponent digits expected. */
edigits=4;
/* Always convert at full precision to avoid double rounding. */
ndigits = MIN_FIELD_WIDTH - 4 - edigits;
/* 4932 is the maximum exponent of long double and quad precision, 3
extra characters for the sign, the decimal point, and the
trailing null, and finally some extra digits depending on the
requested precision. */
const size_t size = 4932 + 3 + precision;
char buffer[size];
switch (len)
{