re PR tree-optimization/46728 (GCC does not generate fmadd for pow (x, 0.75)+y on powerpc)
2011-06-06 Bill Schmidt <wschmidt@linux.vnet.ibm.com> PR tree-optimization/46728 * builtins.c (powi_table): Remove. (powi_lookup_cost): Remove. (powi_cost): Remove. (expand_powi_1): Remove. (expand_powi): Remove. (expand_builtin_pow_root): Remove. (expand_builtin_pow): Remove. (expand_builtin_powi): Eliminate handling of constant exponent. (expand_builtin): Use expand_builtin_mathfn_2 for BUILT_IN_POW. From-SVN: r174701
This commit is contained in:
parent
3598cabdae
commit
3906ea1b34
@ -1,3 +1,16 @@
|
||||
2011-06-06 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
|
||||
|
||||
PR tree-optimization/46728
|
||||
* builtins.c (powi_table): Remove.
|
||||
(powi_lookup_cost): Remove.
|
||||
(powi_cost): Remove.
|
||||
(expand_powi_1): Remove.
|
||||
(expand_powi): Remove.
|
||||
(expand_builtin_pow_root): Remove.
|
||||
(expand_builtin_pow): Remove.
|
||||
(expand_builtin_powi): Eliminate handling of constant exponent.
|
||||
(expand_builtin): Use expand_builtin_mathfn_2 for BUILT_IN_POW.
|
||||
|
||||
2011-06-06 Alexandre Oliva <aoliva@redhat.com>
|
||||
|
||||
* cprop.c (local_cprop_pass): Don't set changed for debug insns.
|
||||
|
473
gcc/builtins.c
473
gcc/builtins.c
@ -2823,451 +2823,6 @@ expand_builtin_int_roundingfn_2 (tree exp, rtx target)
|
||||
return target;
|
||||
}
|
||||
|
||||
/* To evaluate powi(x,n), the floating point value x raised to the
|
||||
constant integer exponent n, we use a hybrid algorithm that
|
||||
combines the "window method" with look-up tables. For an
|
||||
introduction to exponentiation algorithms and "addition chains",
|
||||
see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
|
||||
"Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
|
||||
3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
|
||||
Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
|
||||
|
||||
/* Provide a default value for POWI_MAX_MULTS, the maximum number of
|
||||
multiplications to inline before calling the system library's pow
|
||||
function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
|
||||
so this default never requires calling pow, powf or powl. */
|
||||
|
||||
#ifndef POWI_MAX_MULTS
|
||||
#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
|
||||
#endif
|
||||
|
||||
/* The size of the "optimal power tree" lookup table. All
|
||||
exponents less than this value are simply looked up in the
|
||||
powi_table below. This threshold is also used to size the
|
||||
cache of pseudo registers that hold intermediate results. */
|
||||
#define POWI_TABLE_SIZE 256
|
||||
|
||||
/* The size, in bits of the window, used in the "window method"
|
||||
exponentiation algorithm. This is equivalent to a radix of
|
||||
(1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
|
||||
#define POWI_WINDOW_SIZE 3
|
||||
|
||||
/* The following table is an efficient representation of an
|
||||
"optimal power tree". For each value, i, the corresponding
|
||||
value, j, in the table states than an optimal evaluation
|
||||
sequence for calculating pow(x,i) can be found by evaluating
|
||||
pow(x,j)*pow(x,i-j). An optimal power tree for the first
|
||||
100 integers is given in Knuth's "Seminumerical algorithms". */
|
||||
|
||||
static const unsigned char powi_table[POWI_TABLE_SIZE] =
|
||||
{
|
||||
0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
|
||||
4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
|
||||
8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
|
||||
12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
|
||||
16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
|
||||
20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
|
||||
24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
|
||||
28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
|
||||
32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
|
||||
36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
|
||||
40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
|
||||
44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
|
||||
48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
|
||||
52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
|
||||
56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
|
||||
60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
|
||||
64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
|
||||
68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
|
||||
72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
|
||||
76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
|
||||
80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
|
||||
84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
|
||||
88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
|
||||
92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
|
||||
96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
|
||||
100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
|
||||
104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
|
||||
108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
|
||||
112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
|
||||
116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
|
||||
120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
|
||||
124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
|
||||
};
|
||||
|
||||
|
||||
/* Return the number of multiplications required to calculate
|
||||
powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
|
||||
subroutine of powi_cost. CACHE is an array indicating
|
||||
which exponents have already been calculated. */
|
||||
|
||||
static int
|
||||
powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
|
||||
{
|
||||
/* If we've already calculated this exponent, then this evaluation
|
||||
doesn't require any additional multiplications. */
|
||||
if (cache[n])
|
||||
return 0;
|
||||
|
||||
cache[n] = true;
|
||||
return powi_lookup_cost (n - powi_table[n], cache)
|
||||
+ powi_lookup_cost (powi_table[n], cache) + 1;
|
||||
}
|
||||
|
||||
/* Return the number of multiplications required to calculate
|
||||
powi(x,n) for an arbitrary x, given the exponent N. This
|
||||
function needs to be kept in sync with expand_powi below. */
|
||||
|
||||
static int
|
||||
powi_cost (HOST_WIDE_INT n)
|
||||
{
|
||||
bool cache[POWI_TABLE_SIZE];
|
||||
unsigned HOST_WIDE_INT digit;
|
||||
unsigned HOST_WIDE_INT val;
|
||||
int result;
|
||||
|
||||
if (n == 0)
|
||||
return 0;
|
||||
|
||||
/* Ignore the reciprocal when calculating the cost. */
|
||||
val = (n < 0) ? -n : n;
|
||||
|
||||
/* Initialize the exponent cache. */
|
||||
memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
|
||||
cache[1] = true;
|
||||
|
||||
result = 0;
|
||||
|
||||
while (val >= POWI_TABLE_SIZE)
|
||||
{
|
||||
if (val & 1)
|
||||
{
|
||||
digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
|
||||
result += powi_lookup_cost (digit, cache)
|
||||
+ POWI_WINDOW_SIZE + 1;
|
||||
val >>= POWI_WINDOW_SIZE;
|
||||
}
|
||||
else
|
||||
{
|
||||
val >>= 1;
|
||||
result++;
|
||||
}
|
||||
}
|
||||
|
||||
return result + powi_lookup_cost (val, cache);
|
||||
}
|
||||
|
||||
/* Recursive subroutine of expand_powi. This function takes the array,
|
||||
CACHE, of already calculated exponents and an exponent N and returns
|
||||
an RTX that corresponds to CACHE[1]**N, as calculated in mode MODE. */
|
||||
|
||||
static rtx
|
||||
expand_powi_1 (enum machine_mode mode, unsigned HOST_WIDE_INT n, rtx *cache)
|
||||
{
|
||||
unsigned HOST_WIDE_INT digit;
|
||||
rtx target, result;
|
||||
rtx op0, op1;
|
||||
|
||||
if (n < POWI_TABLE_SIZE)
|
||||
{
|
||||
if (cache[n])
|
||||
return cache[n];
|
||||
|
||||
target = gen_reg_rtx (mode);
|
||||
cache[n] = target;
|
||||
|
||||
op0 = expand_powi_1 (mode, n - powi_table[n], cache);
|
||||
op1 = expand_powi_1 (mode, powi_table[n], cache);
|
||||
}
|
||||
else if (n & 1)
|
||||
{
|
||||
target = gen_reg_rtx (mode);
|
||||
digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
|
||||
op0 = expand_powi_1 (mode, n - digit, cache);
|
||||
op1 = expand_powi_1 (mode, digit, cache);
|
||||
}
|
||||
else
|
||||
{
|
||||
target = gen_reg_rtx (mode);
|
||||
op0 = expand_powi_1 (mode, n >> 1, cache);
|
||||
op1 = op0;
|
||||
}
|
||||
|
||||
result = expand_mult (mode, op0, op1, target, 0);
|
||||
if (result != target)
|
||||
emit_move_insn (target, result);
|
||||
return target;
|
||||
}
|
||||
|
||||
/* Expand the RTL to evaluate powi(x,n) in mode MODE. X is the
|
||||
floating point operand in mode MODE, and N is the exponent. This
|
||||
function needs to be kept in sync with powi_cost above. */
|
||||
|
||||
static rtx
|
||||
expand_powi (rtx x, enum machine_mode mode, HOST_WIDE_INT n)
|
||||
{
|
||||
rtx cache[POWI_TABLE_SIZE];
|
||||
rtx result;
|
||||
|
||||
if (n == 0)
|
||||
return CONST1_RTX (mode);
|
||||
|
||||
memset (cache, 0, sizeof (cache));
|
||||
cache[1] = x;
|
||||
|
||||
result = expand_powi_1 (mode, (n < 0) ? -n : n, cache);
|
||||
|
||||
/* If the original exponent was negative, reciprocate the result. */
|
||||
if (n < 0)
|
||||
result = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
|
||||
result, NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Fold a builtin function call to pow, powf, or powl into a series of sqrts or
|
||||
cbrts. Return NULL_RTX if no simplification can be made or expand the tree
|
||||
if we can simplify it. */
|
||||
static rtx
|
||||
expand_builtin_pow_root (location_t loc, tree arg0, tree arg1, tree type,
|
||||
rtx subtarget)
|
||||
{
|
||||
if (TREE_CODE (arg1) == REAL_CST
|
||||
&& !TREE_OVERFLOW (arg1)
|
||||
&& flag_unsafe_math_optimizations)
|
||||
{
|
||||
enum machine_mode mode = TYPE_MODE (type);
|
||||
tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
|
||||
tree cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
|
||||
REAL_VALUE_TYPE c = TREE_REAL_CST (arg1);
|
||||
tree op = NULL_TREE;
|
||||
|
||||
if (sqrtfn)
|
||||
{
|
||||
/* Optimize pow (x, 0.5) into sqrt. */
|
||||
if (REAL_VALUES_EQUAL (c, dconsthalf))
|
||||
op = build_call_nofold_loc (loc, sqrtfn, 1, arg0);
|
||||
|
||||
/* Don't do this optimization if we don't have a sqrt insn. */
|
||||
else if (optab_handler (sqrt_optab, mode) != CODE_FOR_nothing)
|
||||
{
|
||||
REAL_VALUE_TYPE dconst1_4 = dconst1;
|
||||
REAL_VALUE_TYPE dconst3_4;
|
||||
SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
|
||||
|
||||
real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
|
||||
SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
|
||||
|
||||
/* Optimize pow (x, 0.25) into sqrt (sqrt (x)). Assume on most
|
||||
machines that a builtin sqrt instruction is smaller than a
|
||||
call to pow with 0.25, so do this optimization even if
|
||||
-Os. */
|
||||
if (REAL_VALUES_EQUAL (c, dconst1_4))
|
||||
{
|
||||
op = build_call_nofold_loc (loc, sqrtfn, 1, arg0);
|
||||
op = build_call_nofold_loc (loc, sqrtfn, 1, op);
|
||||
}
|
||||
|
||||
/* Optimize pow (x, 0.75) = sqrt (x) * sqrt (sqrt (x)) unless we
|
||||
are optimizing for space. */
|
||||
else if (optimize_insn_for_speed_p ()
|
||||
&& !TREE_SIDE_EFFECTS (arg0)
|
||||
&& REAL_VALUES_EQUAL (c, dconst3_4))
|
||||
{
|
||||
tree sqrt1 = build_call_expr_loc (loc, sqrtfn, 1, arg0);
|
||||
tree sqrt2 = builtin_save_expr (sqrt1);
|
||||
tree sqrt3 = build_call_expr_loc (loc, sqrtfn, 1, sqrt1);
|
||||
op = fold_build2_loc (loc, MULT_EXPR, type, sqrt2, sqrt3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check whether we can do cbrt insstead of pow (x, 1./3.) and
|
||||
cbrt/sqrts instead of pow (x, 1./6.). */
|
||||
if (cbrtfn && ! op
|
||||
&& (tree_expr_nonnegative_p (arg0) || !HONOR_NANS (mode)))
|
||||
{
|
||||
/* First try 1/3. */
|
||||
REAL_VALUE_TYPE dconst1_3
|
||||
= real_value_truncate (mode, dconst_third ());
|
||||
|
||||
if (REAL_VALUES_EQUAL (c, dconst1_3))
|
||||
op = build_call_nofold_loc (loc, cbrtfn, 1, arg0);
|
||||
|
||||
/* Now try 1/6. */
|
||||
else if (optimize_insn_for_speed_p ()
|
||||
&& optab_handler (sqrt_optab, mode) != CODE_FOR_nothing)
|
||||
{
|
||||
REAL_VALUE_TYPE dconst1_6 = dconst1_3;
|
||||
SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
|
||||
|
||||
if (REAL_VALUES_EQUAL (c, dconst1_6))
|
||||
{
|
||||
op = build_call_nofold_loc (loc, sqrtfn, 1, arg0);
|
||||
op = build_call_nofold_loc (loc, cbrtfn, 1, op);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (op)
|
||||
return expand_expr (op, subtarget, mode, EXPAND_NORMAL);
|
||||
}
|
||||
|
||||
return NULL_RTX;
|
||||
}
|
||||
|
||||
/* Expand a call to the pow built-in mathematical function. Return NULL_RTX if
|
||||
a normal call should be emitted rather than expanding the function
|
||||
in-line. EXP is the expression that is a call to the builtin
|
||||
function; if convenient, the result should be placed in TARGET. */
|
||||
|
||||
static rtx
|
||||
expand_builtin_pow (tree exp, rtx target, rtx subtarget)
|
||||
{
|
||||
tree arg0, arg1;
|
||||
tree fn, narg0;
|
||||
tree type = TREE_TYPE (exp);
|
||||
REAL_VALUE_TYPE cint, c, c2;
|
||||
HOST_WIDE_INT n;
|
||||
rtx op, op2;
|
||||
enum machine_mode mode = TYPE_MODE (type);
|
||||
|
||||
if (! validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE))
|
||||
return NULL_RTX;
|
||||
|
||||
arg0 = CALL_EXPR_ARG (exp, 0);
|
||||
arg1 = CALL_EXPR_ARG (exp, 1);
|
||||
|
||||
if (TREE_CODE (arg1) != REAL_CST
|
||||
|| TREE_OVERFLOW (arg1))
|
||||
return expand_builtin_mathfn_2 (exp, target, subtarget);
|
||||
|
||||
/* Handle constant exponents. */
|
||||
|
||||
/* For integer valued exponents we can expand to an optimal multiplication
|
||||
sequence using expand_powi. */
|
||||
c = TREE_REAL_CST (arg1);
|
||||
n = real_to_integer (&c);
|
||||
real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
|
||||
if (real_identical (&c, &cint)
|
||||
&& ((n >= -1 && n <= 2)
|
||||
|| (flag_unsafe_math_optimizations
|
||||
&& optimize_insn_for_speed_p ()
|
||||
&& powi_cost (n) <= POWI_MAX_MULTS)))
|
||||
{
|
||||
op = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
|
||||
if (n != 1)
|
||||
{
|
||||
op = force_reg (mode, op);
|
||||
op = expand_powi (op, mode, n);
|
||||
}
|
||||
return op;
|
||||
}
|
||||
|
||||
narg0 = builtin_save_expr (arg0);
|
||||
|
||||
/* If the exponent is not integer valued, check if it is half of an integer.
|
||||
In this case we can expand to sqrt (x) * x**(n/2). */
|
||||
fn = mathfn_built_in (type, BUILT_IN_SQRT);
|
||||
if (fn != NULL_TREE)
|
||||
{
|
||||
real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
|
||||
n = real_to_integer (&c2);
|
||||
real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
|
||||
if (real_identical (&c2, &cint)
|
||||
&& ((flag_unsafe_math_optimizations
|
||||
&& optimize_insn_for_speed_p ()
|
||||
&& powi_cost (n/2) <= POWI_MAX_MULTS)
|
||||
/* Even the c == 0.5 case cannot be done unconditionally
|
||||
when we need to preserve signed zeros, as
|
||||
pow (-0, 0.5) is +0, while sqrt(-0) is -0. */
|
||||
|| (!HONOR_SIGNED_ZEROS (mode) && n == 1)
|
||||
/* For c == 1.5 we can assume that x * sqrt (x) is always
|
||||
smaller than pow (x, 1.5) if sqrt will not be expanded
|
||||
as a call. */
|
||||
|| (n == 3
|
||||
&& optab_handler (sqrt_optab, mode) != CODE_FOR_nothing)))
|
||||
{
|
||||
tree call_expr = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 1,
|
||||
narg0);
|
||||
/* Use expand_expr in case the newly built call expression
|
||||
was folded to a non-call. */
|
||||
op = expand_expr (call_expr, subtarget, mode, EXPAND_NORMAL);
|
||||
if (n != 1)
|
||||
{
|
||||
op2 = expand_expr (narg0, subtarget, VOIDmode, EXPAND_NORMAL);
|
||||
op2 = force_reg (mode, op2);
|
||||
op2 = expand_powi (op2, mode, abs (n / 2));
|
||||
op = expand_simple_binop (mode, MULT, op, op2, NULL_RTX,
|
||||
0, OPTAB_LIB_WIDEN);
|
||||
/* If the original exponent was negative, reciprocate the
|
||||
result. */
|
||||
if (n < 0)
|
||||
op = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
|
||||
op, NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||||
}
|
||||
return op;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check whether we can do a series of sqrt or cbrt's instead of the pow
|
||||
call. */
|
||||
op = expand_builtin_pow_root (EXPR_LOCATION (exp), arg0, arg1, type,
|
||||
subtarget);
|
||||
if (op)
|
||||
return op;
|
||||
|
||||
/* Try if the exponent is a third of an integer. In this case
|
||||
we can expand to x**(n/3) * cbrt(x)**(n%3). As cbrt (x) is
|
||||
different from pow (x, 1./3.) due to rounding and behavior
|
||||
with negative x we need to constrain this transformation to
|
||||
unsafe math and positive x or finite math. */
|
||||
fn = mathfn_built_in (type, BUILT_IN_CBRT);
|
||||
if (fn != NULL_TREE
|
||||
&& flag_unsafe_math_optimizations
|
||||
&& (tree_expr_nonnegative_p (arg0)
|
||||
|| !HONOR_NANS (mode)))
|
||||
{
|
||||
REAL_VALUE_TYPE dconst3;
|
||||
real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
|
||||
real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
|
||||
real_round (&c2, mode, &c2);
|
||||
n = real_to_integer (&c2);
|
||||
real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
|
||||
real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
|
||||
real_convert (&c2, mode, &c2);
|
||||
if (real_identical (&c2, &c)
|
||||
&& ((optimize_insn_for_speed_p ()
|
||||
&& powi_cost (n/3) <= POWI_MAX_MULTS)
|
||||
|| n == 1))
|
||||
{
|
||||
tree call_expr = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 1,
|
||||
narg0);
|
||||
op = expand_builtin (call_expr, NULL_RTX, subtarget, mode, 0);
|
||||
if (abs (n) % 3 == 2)
|
||||
op = expand_simple_binop (mode, MULT, op, op, op,
|
||||
0, OPTAB_LIB_WIDEN);
|
||||
if (n != 1)
|
||||
{
|
||||
op2 = expand_expr (narg0, subtarget, VOIDmode, EXPAND_NORMAL);
|
||||
op2 = force_reg (mode, op2);
|
||||
op2 = expand_powi (op2, mode, abs (n / 3));
|
||||
op = expand_simple_binop (mode, MULT, op, op2, NULL_RTX,
|
||||
0, OPTAB_LIB_WIDEN);
|
||||
/* If the original exponent was negative, reciprocate the
|
||||
result. */
|
||||
if (n < 0)
|
||||
op = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
|
||||
op, NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||||
}
|
||||
return op;
|
||||
}
|
||||
}
|
||||
|
||||
/* Fall back to optab expansion. */
|
||||
return expand_builtin_mathfn_2 (exp, target, subtarget);
|
||||
}
|
||||
|
||||
/* Expand a call to the powi built-in mathematical function. Return NULL_RTX if
|
||||
a normal call should be emitted rather than expanding the function
|
||||
in-line. EXP is the expression that is a call to the builtin
|
||||
@ -3288,27 +2843,6 @@ expand_builtin_powi (tree exp, rtx target)
|
||||
arg1 = CALL_EXPR_ARG (exp, 1);
|
||||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||||
|
||||
/* Handle constant power. */
|
||||
|
||||
if (TREE_CODE (arg1) == INTEGER_CST
|
||||
&& !TREE_OVERFLOW (arg1))
|
||||
{
|
||||
HOST_WIDE_INT n = TREE_INT_CST_LOW (arg1);
|
||||
|
||||
/* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
|
||||
Otherwise, check the number of multiplications required. */
|
||||
if ((TREE_INT_CST_HIGH (arg1) == 0
|
||||
|| TREE_INT_CST_HIGH (arg1) == -1)
|
||||
&& ((n >= -1 && n <= 2)
|
||||
|| (optimize_insn_for_speed_p ()
|
||||
&& powi_cost (n) <= POWI_MAX_MULTS)))
|
||||
{
|
||||
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
||||
op0 = force_reg (mode, op0);
|
||||
return expand_powi (op0, mode, n);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit a libcall to libgcc. */
|
||||
|
||||
/* Mode of the 2nd argument must match that of an int. */
|
||||
@ -5862,12 +5396,6 @@ expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode,
|
||||
return target;
|
||||
break;
|
||||
|
||||
CASE_FLT_FN (BUILT_IN_POW):
|
||||
target = expand_builtin_pow (exp, target, subtarget);
|
||||
if (target)
|
||||
return target;
|
||||
break;
|
||||
|
||||
CASE_FLT_FN (BUILT_IN_POWI):
|
||||
target = expand_builtin_powi (exp, target);
|
||||
if (target)
|
||||
@ -5885,6 +5413,7 @@ expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode,
|
||||
CASE_FLT_FN (BUILT_IN_FMOD):
|
||||
CASE_FLT_FN (BUILT_IN_REMAINDER):
|
||||
CASE_FLT_FN (BUILT_IN_DREM):
|
||||
CASE_FLT_FN (BUILT_IN_POW):
|
||||
target = expand_builtin_mathfn_2 (exp, target, subtarget);
|
||||
if (target)
|
||||
return target;
|
||||
|
Loading…
Reference in New Issue
Block a user