diff --git a/gcc/config/m68k/m68k.h b/gcc/config/m68k/m68k.h new file mode 100644 index 00000000000..2fea1a12357 --- /dev/null +++ b/gcc/config/m68k/m68k.h @@ -0,0 +1,1726 @@ +/* Definitions of target machine for GNU compiler. Sun 68000/68020 version. + Copyright (C) 1987, 1988 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + + +/* Note that some other tm.h files include this one and then override + many of the definitions that relate to assembler syntax. */ + + +/* Names to predefine in the preprocessor for this target machine. */ + +/* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */ + +/* Print subsidiary information on the compiler version in use. */ +#ifdef MOTOROLA +#define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)"); +#else +#define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)"); +#endif + +/* Define SUPPORT_SUN_FPA to include support for generating code for + the Sun Floating Point Accelerator, an optional product for Sun 3 + machines. By default, it is not defined. Avoid defining it unless + you need to output code for the Sun3+FPA architecture, as it has the + effect of slowing down the register set operations in hard-reg-set.h + (total number of registers will exceed number of bits in a long, + if defined, causing the set operations to expand to loops). + SUPPORT_SUN_FPA is typically defined in sun3.h. */ + +/* Run-time compilation parameters selecting different hardware subsets. */ + +extern int target_flags; + +/* Macros used in the machine description to test the flags. */ + +/* Compile for a 68020 (not a 68000 or 68010). */ +#define TARGET_68020 (target_flags & 1) + +/* Compile 68881 insns for floating point (not library calls). */ +#define TARGET_68881 (target_flags & 2) + +/* Compile using 68020 bitfield insns. */ +#define TARGET_BITFIELD (target_flags & 4) + +/* Compile using rtd insn calling sequence. + This will not work unless you use prototypes at least + for all functions that can take varying numbers of args. */ +#define TARGET_RTD (target_flags & 8) + +/* Compile passing first two args in regs 0 and 1. + This exists only to test compiler features that will + be needed for RISC chips. It is not usable + and is not intended to be usable on this cpu. */ +#define TARGET_REGPARM (target_flags & 020) + +/* Compile with 16-bit `int'. */ +#define TARGET_SHORT (target_flags & 040) + +/* Compile with special insns for Sun FPA. */ +#ifdef SUPPORT_SUN_FPA +#define TARGET_FPA (target_flags & 0100) +#else +#define TARGET_FPA 0 +#endif + +/* Compile (actually, link) for Sun SKY board. */ +#define TARGET_SKY (target_flags & 0200) + +/* Optimize for 68040. + The 68040 will execute all 68030 and 68881/2 instrcutions, but some + of them must be emulated in software by the OS. When TARGET_68040 is + turned on, these instructions won't be used. This code will still + run on a 68030 and 68881/2. */ +#define TARGET_68040 (target_flags & 0400) + +/* Support 68040 fp instructions. */ +#define TARGET_68040_ONLY (target_flags & 01000) + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +#define TARGET_SWITCHES \ + { { "68020", 5}, \ + { "c68020", 5}, \ + { "68881", 2}, \ + { "bitfield", 4}, \ + { "68000", -5}, \ + { "c68000", -5}, \ + { "soft-float", -0102}, \ + { "nobitfield", -4}, \ + { "rtd", 8}, \ + { "nortd", -8}, \ + { "short", 040}, \ + { "noshort", -040}, \ + { "fpa", 0100}, \ + { "nofpa", -0100}, \ + { "sky", 0200}, \ + { "nosky", -0200}, \ + { "68040", 0407}, \ + { "68030", -01400}, \ + { "68030", 7}, \ + { "68040-only", 01000}, \ + { "", TARGET_DEFAULT}} +/* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */ + +#ifdef SUPPORT_SUN_FPA +/* Blow away 68881 flag silently on TARGET_FPA (since we can't clear + any bits in TARGET_SWITCHES above) */ +#define OVERRIDE_OPTIONS \ +{ \ + if (TARGET_FPA) target_flags &= ~2; \ + if (! TARGET_68020 && flag_pic == 2) \ + error("-fPIC is not currently supported on the 68000 or 68010\n"); \ +} +#else +#define OVERRIDE_OPTIONS \ +{ \ + if (! TARGET_68020 && flag_pic == 2) \ + error("-fPIC is not currently supported on the 68000 or 68010\n"); \ +} +#endif /* defined SUPPORT_SUN_FPA */ + +/* target machine storage layout */ + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. + This is true for 68020 insns such as bfins and bfexts. + We make it true always by avoiding using the single-bit insns + except in special cases with constant bit numbers. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on the 68000. */ +#define BYTES_BIG_ENDIAN 1 + +/* Define this if most significant word of a multiword number is the lowest + numbered. */ +/* For 68000 we can decide arbitrarily + since there are no machine instructions for them. + So let's be consistent. */ +#define WORDS_BIG_ENDIAN 1 + +/* number of bits in an addressible storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32) + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 16 + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 16 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 16 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 16 + +/* Define this if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT + +#define SELECT_RTX_SECTION(MODE, X) \ +{ \ + if (!flag_pic) \ + readonly_data_section(); \ + else if (LEGITIMATE_PIC_OPERAND_P (X)) \ + readonly_data_section(); \ + else \ + data_section(); \ +} + +/* Define number of bits in most basic integer type. + (If undefined, default is BITS_PER_WORD). */ + +#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32) + +/* Define these to avoid dependence on meaning of `int'. + Note that WCHAR_TYPE_SIZE is used in cexp.y, + where TARGET_SHORT is not available. */ + +#define WCHAR_TYPE "long int" +#define WCHAR_TYPE_SIZE 32 + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + For the 68000, we give the data registers numbers 0-7, + the address registers numbers 010-017, + and the 68881 floating point registers numbers 020-027. */ +#ifndef SUPPORT_SUN_FPA +#define FIRST_PSEUDO_REGISTER 24 +#else +#define FIRST_PSEUDO_REGISTER 56 +#endif + +/* This defines the register which is used to hold the offset table for PIC. */ +#define PIC_OFFSET_TABLE_REGNUM 13 + +/* Used to output a (use pic_offset_table_rtx) so that we + always save/restore a5 in functions that use PIC relocation + at *any* time during the compilation process. */ +#define FINALIZE_PIC finalize_pic() + +#ifndef SUPPORT_SUN_FPA + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + On the 68000, only the stack pointer is such. */ + +#define FIXED_REGISTERS \ + {/* Data registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + \ + /* Address registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 1, \ + \ + /* Floating point registers \ + (if available). */ \ + 0, 0, 0, 0, 0, 0, 0, 0 } + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ +#define CALL_USED_REGISTERS \ + {1, 1, 0, 0, 0, 0, 0, 0, \ + 1, 1, 0, 0, 0, 0, 0, 1, \ + 1, 1, 0, 0, 0, 0, 0, 0 } + +#else /* SUPPORT_SUN_FPA */ + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + On the 68000, only the stack pointer is such. */ + +/* fpa0 is also reserved so that it can be used to move shit back and + forth between high fpa regs and everything else. */ + +#define FIXED_REGISTERS \ + {/* Data registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + \ + /* Address registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 1, \ + \ + /* Floating point registers \ + (if available). */ \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + \ + /* Sun3 FPA registers. */ \ + 1, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0 } + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ +#define CALL_USED_REGISTERS \ + {1, 1, 0, 0, 0, 0, 0, 0, \ + 1, 1, 0, 0, 0, 0, 0, 1, \ + 1, 1, 0, 0, 0, 0, 0, 0, \ + /* FPA registers. */ \ + 1, 1, 1, 1, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0 } + +#endif /* defined SUPPORT_SUN_FPA */ + + +/* Make sure everything's fine if we *don't* have a given processor. + This assumes that putting a register in fixed_regs will keep the + compiler's mitts completely off it. We don't bother to zero it out + of register classes. If neither TARGET_FPA or TARGET_68881 is set, + the compiler won't touch since no instructions that use these + registers will be valid. + + Reserve PIC_OFFSET_TABLE_REGNUM (a5) for doing PIC relocation if + position independent code is being generated by making it a + fixed register */ + +#ifndef SUPPORT_SUN_FPA + +#define CONDITIONAL_REGISTER_USAGE \ +{ \ + if (flag_pic) \ + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ +} + +#else /* defined SUPPORT_SUN_FPA */ + +#define CONDITIONAL_REGISTER_USAGE \ +{ \ + int i; \ + HARD_REG_SET x; \ + if (!TARGET_FPA) \ + { \ + COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \ + if (TEST_HARD_REG_BIT (x, i)) \ + fixed_regs[i] = call_used_regs[i] = 1; \ + } \ + if (TARGET_FPA) \ + { \ + COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \ + if (TEST_HARD_REG_BIT (x, i)) \ + fixed_regs[i] = call_used_regs[i] = 1; \ + } \ + if (flag_pic) \ + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ +} + +#endif /* defined SUPPORT_SUN_FPA */ + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + On the 68000, ordinary registers hold 32 bits worth; + for the 68881 registers, a single register is always enough for + anything that can be stored in them at all. */ +#define HARD_REGNO_NREGS(REGNO, MODE) \ + ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +#ifndef SUPPORT_SUN_FPA + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On the 68000, the cpu registers can hold any mode but the 68881 registers + can hold only SFmode or DFmode. The 68881 registers can't hold anything + if 68881 use is disabled. */ + +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + (((REGNO) < 16) \ + || ((REGNO) < 24 \ + && TARGET_68881 \ + && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT))) + +#else /* defined SUPPORT_SUN_FPA */ + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On the 68000, the cpu registers can hold any mode but the 68881 registers + can hold only SFmode or DFmode. And the 68881 registers can't hold anything + if 68881 use is disabled. However, the Sun FPA register can + (apparently) hold whatever you feel like putting in them. + If using the fpa, don't put a double in d7/a0. */ + +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ +(((REGNO) < 16 \ + && !(TARGET_FPA \ + && GET_MODE_CLASS ((MODE)) != MODE_INT \ + && GET_MODE_UNIT_SIZE ((MODE)) > 4 \ + && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \ + && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \ + || ((REGNO) < 24 \ + ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ + : ((REGNO) < 56 ? TARGET_FPA : 0))) + +#endif /* defined SUPPORT_SUN_FPA */ + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ + (! TARGET_68881 \ + || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \ + == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* m68000 pc isn't overloaded on a register. */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 15 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 14 + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +#define FRAME_POINTER_REQUIRED 0 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 14 + +/* Register in which static-chain is passed to a function. */ +#define STATIC_CHAIN_REGNUM 8 + +/* Register in which address to store a structure value + is passed to a function. */ +#define STRUCT_VALUE_REGNUM 9 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +/* The 68000 has three kinds of registers, so eight classes would be + a complete set. One of them is not needed. */ + +#ifndef SUPPORT_SUN_FPA + +enum reg_class { + NO_REGS, DATA_REGS, + ADDR_REGS, FP_REGS, + GENERAL_REGS, DATA_OR_FP_REGS, + ADDR_OR_FP_REGS, ALL_REGS, + LIM_REG_CLASSES }; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ + { "NO_REGS", "DATA_REGS", \ + "ADDR_REGS", "FP_REGS", \ + "GENERAL_REGS", "DATA_OR_FP_REGS", \ + "ADDR_OR_FP_REGS", "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ \ + 0x00000000, /* NO_REGS */ \ + 0x000000ff, /* DATA_REGS */ \ + 0x0000ff00, /* ADDR_REGS */ \ + 0x00ff0000, /* FP_REGS */ \ + 0x0000ffff, /* GENERAL_REGS */ \ + 0x00ff00ff, /* DATA_OR_FP_REGS */ \ + 0x00ffff00, /* ADDR_OR_FP_REGS */ \ + 0x00ffffff, /* ALL_REGS */ \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +#define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1) + +#else /* defined SUPPORT_SUN_FPA */ + +/* + * Notes on final choices: + * + * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything + * else. + * 2) Removed all unions that involve address registers with + * floating point registers (left in unions of address and data with + * floating point). + * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS. + * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS. + * 4) Left in everything else. + */ +enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS, + FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS, + DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS, + GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS, + LIM_REG_CLASSES }; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ + { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \ + "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \ + "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \ + "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ \ + {0, 0}, /* NO_REGS */ \ + {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \ + {0xff000000, 0x00ffffff}, /* FPA_REGS */ \ + {0x00ff0000, 0x00000000}, /* FP_REGS */ \ + {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \ + {0x000000ff, 0x00000000}, /* DATA_REGS */ \ + {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \ + {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \ + {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\ + {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \ + {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \ + {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\ + {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\ + {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +extern enum reg_class regno_reg_class[]; +#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3]) + +#endif /* SUPPORT_SUN_FPA */ + +/* The class value for index registers, and the one for base regs. */ + +#define INDEX_REG_CLASS GENERAL_REGS +#define BASE_REG_CLASS ADDR_REGS + +/* Get reg_class from a letter such as appears in the machine description. + We do a trick here to modify the effective constraints on the + machine description; we zorch the constraint letters that aren't + appropriate for a specific target. This allows us to guarantee + that a specific kind of register will not be used for a given target + without fiddling with the register classes above. */ + +#ifndef SUPPORT_SUN_FPA + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'a' ? ADDR_REGS : \ + ((C) == 'd' ? DATA_REGS : \ + ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \ + NO_REGS) : \ + NO_REGS))) + +#else /* defined SUPPORT_SUN_FPA */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'a' ? ADDR_REGS : \ + ((C) == 'd' ? DATA_REGS : \ + ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \ + NO_REGS) : \ + ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \ + NO_REGS) : \ + ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \ + NO_REGS) : \ + NO_REGS))))) + +#endif /* defined SUPPORT_SUN_FPA */ + +/* The letters I, J, K, L and M in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + For the 68000, `I' is used for the range 1 to 8 + allowed as immediate shift counts and in addq. + `J' is used for the range of signed numbers that fit in 16 bits. + `K' is for numbers that moveq can't handle. + `L' is for range -8 to -1, range of values that can be added with subq. */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \ + (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \ + (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \ + (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0) + +/* + * A small bit of explanation: + * "G" defines all of the floating constants that are *NOT* 68881 + * constants. this is so 68881 constants get reloaded and the + * fpmovecr is used. "H" defines *only* the class of constants that + * the fpa can use, because these can be gotten at in any fpa + * instruction and there is no need to force reloads. + */ +#ifndef SUPPORT_SUN_FPA +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 ) +#else /* defined SUPPORT_SUN_FPA */ +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \ + (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0) +#endif /* defined SUPPORT_SUN_FPA */ + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + On the 68000 series, use a data reg if possible when the + value is a constant in the range where moveq could be used + and we ensure that QImodes are reloaded into data regs. + Also, if a floating constant needs reloading, put it in memory + if possible. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + ((GET_CODE (X) == CONST_INT \ + && (unsigned) (INTVAL (X) + 0x80) < 0x100 \ + && (CLASS) != ADDR_REGS) \ + ? DATA_REGS \ + : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \ + ? DATA_REGS \ + : (GET_CODE (X) == CONST_DOUBLE \ + && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ + ? NO_REGS \ + : (CLASS)) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. */ +/* On the 68000, this is the size of MODE in words, + except in the FP regs, where a single reg is always enough. */ +#ifndef SUPPORT_SUN_FPA + +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((CLASS) == FP_REGS ? 1 \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Moves between fp regs and other regs are two insns. */ +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ + || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \ + ? 4 : 2) + +#else /* defined SUPPORT_SUN_FPA */ + +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Moves between fp regs and other regs are two insns. */ +/* Likewise for high fpa regs and other regs. */ +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ + || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \ + || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \ + || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \ + ? 4 : 2) + +#endif /* define SUPPORT_SUN_FPA */ + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Nonzero if we need to generate stack-probe insns. + On most systems they are not needed. + When they are needed, define this as the stack offset to probe at. */ +#define NEED_PROBE 0 + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ +#define STARTING_FRAME_OFFSET 0 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On the 68000, sp@- in a byte insn really pushes a word. */ +#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) + +/* Offset of first parameter from the argument pointer register value. */ +#define FIRST_PARM_OFFSET(FNDECL) 8 + +/* Value is the number of byte of arguments automatically + popped when returning from a subroutine call. + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. + + On the 68000, the RTS insn cannot pop anything. + On the 68010, the RTD insn may be used to pop them if the number + of args is fixed, but if the number is variable then the caller + must pop them all. RTD can't be used for library calls now + because the library is compiled with the Unix compiler. + Use of RTD is a selectable option, since it is incompatible with + standard Unix calling sequences. If the option is not selected, + the caller must always pop the args. */ + +#define RETURN_POPS_ARGS(FUNTYPE,SIZE) \ + ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \ + && (TYPE_ARG_TYPES (FUNTYPE) == 0 \ + || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \ + == void_type_node))) \ + ? (SIZE) : 0) + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. */ + +/* On the 68000 the return value is in D0 regardless. */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, TYPE_MODE (VALTYPE), 0) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +/* On the 68000 the return value is in D0 regardless. */ + +#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0) + +/* 1 if N is a possible register number for a function value. + On the 68000, d0 is the only register thus used. */ + +#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) + +/* Define this if PCC uses the nonreentrant convention for returning + structure and union values. */ + +#define PCC_STATIC_STRUCT_RETURN + +/* 1 if N is a possible register number for function argument passing. + On the 68000, no registers are used in this way. */ + +#define FUNCTION_ARG_REGNO_P(N) 0 + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the m68k, this is a single integer, which is a number of bytes + of arguments scanned so far. */ + +#define CUMULATIVE_ARGS int + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On the m68k, the offset starts at 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ + ((CUM) = 0) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + ((CUM) += ((MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ + : (int_size_in_bytes (TYPE) + 3) & ~3)) + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). */ + +/* On the 68000 all args are pushed, except if -mregparm is specified + then the first two words of arguments are passed in d0, d1. + *NOTE* -mregparm does not work. + It exists only to test register calling conventions. */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ +((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0) + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ +((TARGET_REGPARM && (CUM) < 8 \ + && 8 < ((CUM) + ((MODE) == BLKmode \ + ? int_size_in_bytes (TYPE) \ + : GET_MODE_SIZE (MODE)))) \ + ? 2 - (CUM) / 4 : 0) + +/* Generate the assembly code for function entry. */ +#define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ + asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO)) + +/* Output assembler code to FILE to initialize this source file's + basic block profiling info, if that has not already been done. */ + +#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \ + asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \ + LABELNO, LABELNO); + +/* Output assembler code to FILE to increment the entry-count for + the BLOCKNO'th basic block in this source file. */ + +#define BLOCK_PROFILER(FILE, BLOCKNO) \ + asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO) + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ + +#define EXIT_IGNORE_STACK 1 + +/* Generate the assembly code for function exit. */ +#define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE) + +/* This is a hook for other tm files to change. */ +/* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */ + +/* Determine if the epilogue should be output as RTL. + You should override this if you define FUNCTION_EXTRA_EPILOGUE. */ +#define USE_RETURN_INSN use_return_insn () + +/* Store in the variable DEPTH the initial difference between the + frame pointer reg contents and the stack pointer reg contents, + as of the start of the function body. This depends on the layout + of the fixed parts of the stack frame and on how registers are saved. + + On the 68k, if we have a frame, we must add one word to its length + to allow for the place that a6 is stored when we do have a frame pointer. + Otherwise, we would need to compute the offset from the frame pointer + of a local variable as a function of frame_pointer_needed, which + is hard. */ + +#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ +{ int regno; \ + int offset = -4; \ + for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \ + if (regs_ever_live[regno] && ! call_used_regs[regno]) \ + offset += 12; \ + for (regno = 0; regno < 16; regno++) \ + if (regs_ever_live[regno] && ! call_used_regs[regno]) \ + offset += 4; \ + (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \ + + (get_frame_size () == 0 ? 0 : 4)); \ +} + +/* Output assembler code for a block containing the constant parts + of a trampoline, leaving space for the variable parts. */ + +/* On the 68k, the trampoline looks like this: + mov @#.,a0 + jsr @#__trampoline + jsr @#__trampoline + .long STATIC + .long FUNCTION +The reason for having three jsr insns is so that an entire line +of the instruction cache is filled in a predictable way +that will always be the same. */ + +#define TRAMPOLINE_TEMPLATE(FILE) \ +{ \ + ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x207c)); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4ef9)); \ + ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "__trampoline")); \ + ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4ef9)); \ + ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "__trampoline")); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ +} + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE 26 + +/* Alignment required for a trampoline. 16 is used to find the + beginning of a line in the instruction cache. */ + +#define TRAMPOLINE_ALIGN 16 + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ +{ \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), TRAMP); \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 18)), CXT); \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 22)), FNADDR); \ +} + +/* This is the library routine that is used + to transfer control from the trampoline + to the actual nested function. */ + +/* A colon is used with no explicit operands + to cause the template string to be scanned for %-constructs. */ +/* The function name __transfer_from_trampoline is not actually used. + The function definition just permits use of "asm with operands" + (though the operand list is empty). */ +#define TRANSFER_FROM_TRAMPOLINE \ +void \ +__transfer_from_trampoline () \ +{ \ + register char *a0 asm ("%a0"); \ + asm ("___trampoline:"); \ + asm volatile ("mov%.l %0,%@" : : "m" (a0[22])); \ + asm volatile ("mov%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \ + asm ("rts":); \ +} + +/* Addressing modes, and classification of registers for them. */ + +#define HAVE_POST_INCREMENT +/* #define HAVE_POST_DECREMENT */ + +#define HAVE_PRE_DECREMENT +/* #define HAVE_PRE_INCREMENT */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) \ +((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) +#define REGNO_OK_FOR_BASE_P(REGNO) \ +(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8) +#define REGNO_OK_FOR_DATA_P(REGNO) \ +((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) +#define REGNO_OK_FOR_FP_P(REGNO) \ +(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8) +#ifdef SUPPORT_SUN_FPA +#define REGNO_OK_FOR_FPA_P(REGNO) \ +(((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56)) +#endif + +/* Now macros that check whether X is a register and also, + strictly, whether it is in a specified class. + + These macros are specific to the 68000, and may be used only + in code for printing assembler insns and in conditions for + define_optimization. */ + +/* 1 if X is a data register. */ + +#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X))) + +/* 1 if X is an fp register. */ + +#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) + +/* 1 if X is an address register */ + +#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) + +#ifdef SUPPORT_SUN_FPA +/* 1 if X is a register in the Sun FPA. */ +#define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X))) +#else +/* Answer must be no if we don't have an FPA. */ +#define FPA_REG_P(X) 0 +#endif + +/* Maximum number of registers that can appear in a valid memory address. */ + +#define MAX_REGS_PER_ADDRESS 2 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_CONSTANT_P(X) 1 + +/* Nonzero if the constant value X is a legitimate general operand + when generating PIC code. It is given that flag_pic is on and + that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_PIC_OPERAND_P(X) \ + (! symbolic_operand (X, VOIDmode)) + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8) +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0) + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + When generating PIC, an address involving a SYMBOL_REF is legitimate + if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF. + We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses, + and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF. + + Likewise for a LABEL_REF when generating PIC. + + The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */ + +#define INDIRECTABLE_1_ADDRESS_P(X) \ + ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \ + || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ + || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ + && REG_P (XEXP (X, 0)) \ + && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ + || (GET_CODE (X) == PLUS \ + && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000) \ + || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \ + && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \ + || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \ + && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF)) \ + +#if 0 +/* This should replace the last two (non-pic) lines + except that Sun's assembler does not seem to handle such operands. */ + && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \ + : (GET_CODE (XEXP (X, 1)) == CONST_INT \ + && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)))) +#endif + + +#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ +{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; } + +#define GO_IF_INDEXABLE_BASE(X, ADDR) \ +{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \ + if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; } + +#define GO_IF_INDEXING(X, ADDR) \ +{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \ + { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \ + if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \ + { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } } + +#define GO_IF_INDEXED_ADDRESS(X, ADDR) \ +{ GO_IF_INDEXING (X, ADDR); \ + if (GET_CODE (X) == PLUS) \ + { if (GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \ + { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \ + if (GET_CODE (XEXP (X, 0)) == CONST_INT \ + && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \ + { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } } + +#define LEGITIMATE_INDEX_REG_P(X) \ + ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ + || (GET_CODE (X) == SIGN_EXTEND \ + && GET_CODE (XEXP (X, 0)) == REG \ + && GET_MODE (XEXP (X, 0)) == HImode \ + && REG_OK_FOR_INDEX_P (XEXP (X, 0)))) + +#define LEGITIMATE_INDEX_P(X) \ + (LEGITIMATE_INDEX_REG_P (X) \ + || (TARGET_68020 && GET_CODE (X) == MULT \ + && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (INTVAL (XEXP (X, 1)) == 2 \ + || INTVAL (XEXP (X, 1)) == 4 \ + || INTVAL (XEXP (X, 1)) == 8))) + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \ + GO_IF_INDEXED_ADDRESS (X, ADDR); } + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the 68000, we handle X+REG by loading X into a register R and + using R+REG. R will go in an address reg and indexing will be used. + However, if REG is a broken-out memory address or multiplication, + nothing needs to be done because REG can certainly go in an address reg. */ + +#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; } +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ register int ch = (X) != (OLDX); \ + if (GET_CODE (X) == PLUS) \ + { int copied = 0; \ + if (GET_CODE (XEXP (X, 0)) == MULT) \ + { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \ + if (GET_CODE (XEXP (X, 1)) == MULT) \ + { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \ + if (ch && GET_CODE (XEXP (X, 1)) == REG \ + && GET_CODE (XEXP (X, 0)) == REG) \ + goto WIN; \ + if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \ + if (GET_CODE (XEXP (X, 0)) == REG \ + || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \ + && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \ + && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \ + { register rtx temp = gen_reg_rtx (Pmode); \ + register rtx val = force_operand (XEXP (X, 1), 0); \ + emit_move_insn (temp, val); \ + COPY_ONCE (X); \ + XEXP (X, 1) = temp; \ + goto WIN; } \ + else if (GET_CODE (XEXP (X, 1)) == REG \ + || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \ + && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \ + && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \ + { register rtx temp = gen_reg_rtx (Pmode); \ + register rtx val = force_operand (XEXP (X, 0), 0); \ + emit_move_insn (temp, val); \ + COPY_ONCE (X); \ + XEXP (X, 0) = temp; \ + goto WIN; }}} + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + On the 68000, only predecrement and postincrement address depend thus + (the amount of decrement or increment being the length of the operand). */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ + if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE HImode + +/* Define this if the tablejump instruction expects the table + to contain offsets from the address of the table. + Do not define this if the table should contain absolute addresses. */ +#define CASE_VECTOR_PC_RELATIVE + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 1 + +/* Don't cse the address of the function being compiled. */ +#define NO_RECURSIVE_FUNCTION_CSE + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Define this if zero-extension is slow (more than one real instruction). */ +#define SLOW_ZERO_EXTEND + +/* Nonzero if access to memory by bytes is slow and undesirable. */ +#define SLOW_BYTE_ACCESS 0 + +/* Define if shifts truncate the shift count + which implies one can omit a sign-extension or zero-extension + of a shift count. */ +#define SHIFT_COUNT_TRUNCATED + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* We assume that the store-condition-codes instructions store 0 for false + and some other value for true. This is the value stored for true. */ + +#define STORE_FLAG_VALUE -1 + +/* When a prototype says `char' or `short', really pass an `int'. */ +#define PROMOTE_PROTOTYPES + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* A function address in a call instruction + is a byte address (for indexing purposes) + so give the MEM rtx a byte's mode. */ +#define FUNCTION_MODE QImode + +/* Compute the cost of computing a constant rtl expression RTX + whose rtx-code is CODE. The body of this macro is a portion + of a switch statement. If the code is computed here, + return it with a return statement. Otherwise, break from the switch. */ + +#define CONST_COSTS(RTX,CODE) \ + case CONST_INT: \ + /* Constant zero is super cheap due to clr instruction. */ \ + if (RTX == const0_rtx) return 0; \ + /* Constants between -128 and 127 are cheap due to moveq */ \ + if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \ + /* Constants between -136 and 254 are easily generated */ \ + /* by intelligent uses of moveq, add[q], and subq */ \ + if (INTVAL (RTX) >= -136 && INTVAL (RTX) <= 254) return 2; \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + return 3; \ + case CONST_DOUBLE: \ + return 5; + +/* Compute the cost of various arithmetic operations. + These are vaguely right for a 68020. */ +/* The costs for long multiply have been adjusted to + work properly in synth_mult on the 68020, + relative to an average of the time for add and the time for shift, + taking away a little more because sometimes move insns are needed. */ + +#define RTX_COSTS(X,CODE) \ + case PLUS: \ + /* An lea costs about three times as much as a simple add. */ \ + if (GET_MODE (X) == SImode \ + && GET_CODE (XEXP (X, 0)) == REG \ + && GET_CODE (XEXP (X, 1)) == MULT \ + && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \ + && GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT \ + && (INTVAL (XEXP (XEXP (X, 1), 1)) == 2 \ + || INTVAL (XEXP (XEXP (X, 1), 1)) == 4 \ + || INTVAL (XEXP (XEXP (X, 1), 1)) == 8)) \ + return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \ + break; \ + case ASHIFT: \ + case ASHIFTRT: \ + case LSHIFT: \ + case LSHIFTRT: \ + /* A shift by a big integer takes an extra instruction. */ \ + if (GET_CODE (XEXP (X, 1)) == CONST_INT \ + && !(INTVAL (XEXP (X, 1)) > 0 \ + && INTVAL (XEXP (X, 1)) <= 8)) \ + return COSTS_N_INSNS (3); /* lsr #i,dn */ \ + break; \ + case MULT: \ + if (GET_CODE (XEXP (x, 1)) == CONST_INT \ + && exact_log2 (INTVAL (XEXP (x, 1))) >= 0) \ + total = 2; \ + else if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \ + return COSTS_N_INSNS (8); /* mul.w */ \ + else \ + return COSTS_N_INSNS (13); /* mul.l */ \ + break; \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \ + return COSTS_N_INSNS (27); /* div.w */ \ + return COSTS_N_INSNS (43); /* div.l */ + +/* Tell final.c how to eliminate redundant test instructions. */ + +/* Here we define machine-dependent flags and fields in cc_status + (see `conditions.h'). */ + +/* Set if the cc value is actually in the 68881, so a floating point + conditional branch must be output. */ +#define CC_IN_68881 04000 + +/* Store in cc_status the expressions that the condition codes will + describe after execution of an instruction whose pattern is EXP. + Do not alter them if the instruction would not alter the cc's. */ + +/* On the 68000, all the insns to store in an address register fail to + set the cc's. However, in some cases these instructions can make it + possibly invalid to use the saved cc's. In those cases we clear out + some or all of the saved cc's so they won't be used. */ + +#define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN) + +#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ +{ if (cc_prev_status.flags & CC_IN_68881) \ + return FLOAT; \ + if (cc_prev_status.flags & CC_NO_OVERFLOW) \ + return NO_OV; \ + return NORMAL; } + +/* Control the assembler format that we output. */ + +/* Output at beginning of assembler file. */ + +#define ASM_FILE_START(FILE) \ + fprintf (FILE, "#NO_APP\n"); + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "#APP\n" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "#NO_APP\n" + +/* Output before read-only data. */ + +#define TEXT_SECTION_ASM_OP ".text" + +/* Output before writable data. */ + +#define DATA_SECTION_ASM_OP ".data" + +/* Here are four prefixes that are used by asm_fprintf to + facilitate customization for alternate assembler syntaxes. + Machines with no likelihood of an alternate syntax need not + define these and need not use asm_fprintf. */ + +/* The prefix for register names. Note that REGISTER_NAMES + is supposed to include this prefix. */ + +#define REGISTER_PREFIX "" + +/* The prefix for local labels. You should be able to define this as + an empty string, or any arbitrary string (such as ".", ".L%", etc) + without having to make any other changes to account for the specific + definition. Note it is a string literal, not interpreted by printf + and friends. */ + +#define LOCAL_LABEL_PREFIX "" + +/* The prefix to add to user-visible assembler symbols. */ + +#define USER_LABEL_PREFIX "_" + +/* The prefix for immediate operands. */ + +#define IMMEDIATE_PREFIX "#" + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +#ifndef SUPPORT_SUN_FPA + +#define REGISTER_NAMES \ +{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ + "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ + "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" } + +#else /* SUPPORTED_SUN_FPA */ + +#define REGISTER_NAMES \ +{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ + "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ + "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \ + "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \ + "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \ + "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \ + "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" } + +#endif /* defined SUPPORT_SUN_FPA */ + +/* How to renumber registers for dbx and gdb. + On the Sun-3, the floating point registers have numbers + 18 to 25, not 16 to 23 as they do in the compiler. */ + +#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) + +/* This is how to output a command to make the user-level label named NAME + defined for reference from other files. */ + +#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ + do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) + +/* This is how to output a reference to a user-level label named NAME. + `assemble_name' uses this. */ + +#define ASM_OUTPUT_LABELREF(FILE,NAME) \ + asm_fprintf (FILE, "%U%s", NAME) + +/* This is how to output an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. */ + +#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ + asm_fprintf (FILE, "%L%s%d:\n", PREFIX, NUM) + +/* This is how to store into the string LABEL + the symbol_ref name of an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. + This is suitable for output with `assemble_name'. */ + +#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ + sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM) + +/* This is how to output an assembler line defining a `double' constant. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ + fprintf (FILE, "\t.double 0r%.20g\n", (VALUE)) + +/* This is how to output an assembler line defining a `float' constant. */ + +/* Sun's assembler can't handle floating constants written as floating. + However, when cross-compiling, always use that in case format differs. */ + +#ifdef CROSS_COMPILE + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ + fprintf (FILE, "\t.float 0r%.10g\n", (VALUE)) + +#else + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ +do { union { float f; long l;} tem; \ + tem.f = (VALUE); \ + fprintf (FILE, "\t.long 0x%x\n", tem.l); \ + } while (0) + +#endif /* not CROSS_COMPILER */ + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE,VALUE) \ +( fprintf (FILE, "\t.long "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* Likewise for `char' and `short' constants. */ + +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "\t.word "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_CHAR(FILE,VALUE) \ +( fprintf (FILE, "\t.byte "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* This is how to output an assembler line for a numeric constant byte. */ + +#define ASM_OUTPUT_BYTE(FILE,VALUE) \ + fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) + +/* This is how to output an insn to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ + asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO]) + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ + asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO]) + +/* This is how to output an element of a case-vector that is absolute. + (The 68000 does not use such vectors, + but we must define this macro anyway.) */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + asm_fprintf (FILE, "\t.long %LL%d\n", VALUE) + +/* This is how to output an element of a case-vector that is relative. */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ + asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL) + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) == 1) \ + fprintf (FILE, "\t.even\n"); \ + else if ((LOG) != 0) \ + abort (); + +#define ASM_OUTPUT_SKIP(FILE,SIZE) \ + fprintf (FILE, "\t.skip %u\n", (SIZE)) + +/* This says how to output an assembler line + to define a global common symbol. */ + +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ +( fputs (".comm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%u\n", (ROUNDED))) + +/* This says how to output an assembler line + to define a local common symbol. */ + +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ +( fputs (".lcomm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%u\n", (ROUNDED))) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Output a float value (represented as a C double) as an immediate operand. + This macro is a 68k-specific macro. */ +#define ASM_OUTPUT_FLOAT_OPERAND(FILE,VALUE) \ + asm_fprintf (FILE, "%I0r%.9g", (VALUE)) + +/* Output a double value (represented as a C double) as an immediate operand. + This macro is a 68k-specific macro. */ +#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \ + asm_fprintf (FILE, "%I0r%.20g", (VALUE)) + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. + + On the 68000, we use several CODE characters: + '.' for dot needed in Motorola-style opcode names. + '-' for an operand pushing on the stack: + sp@-, -(sp) or -(%sp) depending on the style of syntax. + '+' for an operand pushing on the stack: + sp@+, (sp)+ or (%sp)+ depending on the style of syntax. + '@' for a reference to the top word on the stack: + sp@, (sp) or (%sp) depending on the style of syntax. + '#' for an immediate operand prefix (# in MIT and Motorola syntax + but & in SGS syntax). + '!' for the cc register (used in an `and to cc' insn). + '$' for the letter `s' in an op code, but only on the 68040. + '&' for the letter `d' in an op code, but only on the 68040. + + 'b' for byte insn (no effect, on the Sun; this is for the ISI). + 'd' to force memory addressing to be absolute, not relative. + 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex) + 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather + than directly). Second part of 'y' below. + 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex), + or print pair of registers as rx:ry. + 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs + CONST_DOUBLE's as SunFPA constant RAM registers if + possible, so it should not be used except for the SunFPA. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \ + || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \ + || (CODE) == '$' || (CODE) == '&') + +#ifdef HOST_WORDS_BIG_ENDIAN +#define PRINT_OPERAND_EXTRACT_FLOAT(X) \ + u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); +#else +#define PRINT_OPERAND_EXTRACT_FLOAT(X) \ + u.i[0] = CONST_DOUBLE_HIGH (X); u.i[1] = CONST_DOUBLE_LOW (X); +#endif + +#ifdef CROSS_COMPILER +#define PRINT_OPERAND_PRINT_FLOAT(CODE, FILE) \ + ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f); +#else +#define PRINT_OPERAND_PRINT_FLOAT(CODE, FILE) \ +{ if (CODE == 'f') \ + ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f); \ + else \ + asm_fprintf (FILE, "%I0x%x", u1.i); } +#endif + +/* A C compound statement to output to stdio stream STREAM the + assembler syntax for an instruction operand X. X is an RTL + expression. + + CODE is a value that can be used to specify one of several ways + of printing the operand. It is used when identical operands + must be printed differently depending on the context. CODE + comes from the `%' specification that was used to request + printing of the operand. If the specification was just `%DIGIT' + then CODE is 0; if the specification was `%LTR DIGIT' then CODE + is the ASCII code for LTR. + + If X is a register, this macro should print the register's name. + The names can be found in an array `reg_names' whose type is + `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'. + + When the machine description has a specification `%PUNCT' (a `%' + followed by a punctuation character), this macro is called with + a null pointer for X and the punctuation character for CODE. + + See m68k.c for the m68k specific codes. */ + +#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) + +/* A C compound statement to output to stdio stream STREAM the + assembler syntax for an instruction operand that is a memory + reference whose address is ADDR. ADDR is an RTL expression. + + On some machines, the syntax for a symbolic address depends on + the section that the address refers to. On these machines, + define the macro `ENCODE_SECTION_INFO' to store the information + into the `symbol_ref', and then check for it here. */ + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) + + +/* Define functions defined in aux-output.c and used in templates. */ + +extern char *output_move_double (); +extern char *output_move_const_single (); +extern char *output_move_const_double (); +extern char *output_btst (); + +/* +Local variables: +version-control: t +End: +*/