machmode.h (GET_MODE_UNIT_PRECISION): New macro.

gcc/
	* machmode.h (GET_MODE_UNIT_PRECISION): New macro.
	* simplify-rtx.c (simplify_truncation): New function,
	extracted from simplify_subreg and (in small part) from
	simplify_unary_operation_1.
	(simplify_unary_operation_1) <TRUNCATE>: Use it.  Remove sign bit
	test for !TRULY_NOOP_TRUNCATION_MODES_P.
	(simplify_subreg): Use simplify_truncate for lowpart subregs
	where both the inner and outer modes are scalar integers.
	* config/mips/mips.c (mips_truncated_op_cost): New function.
	(mips_rtx_costs): Adjust test for BADDU.
	* config/mips/mips.md (*baddu_di<mode>): Push truncates to operands.

From-SVN: r192186
This commit is contained in:
Richard Sandiford 2012-10-07 19:17:37 +00:00 committed by Richard Sandiford
parent ed901e4c61
commit 40c5ed5b5a
5 changed files with 275 additions and 200 deletions

View File

@ -1,3 +1,17 @@
2012-10-07 Richard Sandiford <rdsandiford@googlemail.com>
* machmode.h (GET_MODE_UNIT_PRECISION): New macro.
* simplify-rtx.c (simplify_truncation): New function,
extracted from simplify_subreg and (in small part) from
simplify_unary_operation_1.
(simplify_unary_operation_1) <TRUNCATE>: Use it. Remove sign bit
test for !TRULY_NOOP_TRUNCATION_MODES_P.
(simplify_subreg): Use simplify_truncate for lowpart subregs
where both the inner and outer modes are scalar integers.
* config/mips/mips.c (mips_truncated_op_cost): New function.
(mips_rtx_costs): Adjust test for BADDU.
* config/mips/mips.md (*baddu_di<mode>): Push truncates to operands.
2012-10-07 Jan Hubicka <jh@suse.cz>
* ipa-inline-analysis.c (do_estimate_edge_time): Return actual

View File

@ -3557,6 +3557,17 @@ mips_set_reg_reg_cost (enum machine_mode mode)
}
}
/* Return the cost of an operand X that can be trucated for free.
SPEED says whether we're optimizing for size or speed. */
static int
mips_truncated_op_cost (rtx x, bool speed)
{
if (GET_CODE (x) == TRUNCATE)
x = XEXP (x, 0);
return set_src_cost (x, speed);
}
/* Implement TARGET_RTX_COSTS. */
static bool
@ -3937,12 +3948,13 @@ mips_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
case ZERO_EXTEND:
if (outer_code == SET
&& ISA_HAS_BADDU
&& (GET_CODE (XEXP (x, 0)) == TRUNCATE
|| GET_CODE (XEXP (x, 0)) == SUBREG)
&& GET_MODE (XEXP (x, 0)) == QImode
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
&& GET_CODE (XEXP (x, 0)) == PLUS)
{
*total = set_src_cost (XEXP (XEXP (x, 0), 0), speed);
rtx plus = XEXP (x, 0);
*total = (COSTS_N_INSNS (1)
+ mips_truncated_op_cost (XEXP (plus, 0), speed)
+ mips_truncated_op_cost (XEXP (plus, 1), speed));
return true;
}
*total = mips_zero_extend_cost (mode, XEXP (x, 0));

View File

@ -1306,9 +1306,8 @@
(define_insn "*baddu_di<mode>"
[(set (match_operand:GPR 0 "register_operand" "=d")
(zero_extend:GPR
(truncate:QI
(plus:DI (match_operand:DI 1 "register_operand" "d")
(match_operand:DI 2 "register_operand" "d")))))]
(plus:QI (truncate:QI (match_operand:DI 1 "register_operand" "d"))
(truncate:QI (match_operand:DI 2 "register_operand" "d")))))]
"ISA_HAS_BADDU && TARGET_64BIT"
"baddu\\t%0,%1,%2"
[(set_attr "alu_type" "add")])

View File

@ -217,6 +217,11 @@ extern const unsigned char mode_inner[NUM_MACHINE_MODES];
#define GET_MODE_UNIT_BITSIZE(MODE) \
((unsigned short) (GET_MODE_UNIT_SIZE (MODE) * BITS_PER_UNIT))
#define GET_MODE_UNIT_PRECISION(MODE) \
(GET_MODE_INNER (MODE) == VOIDmode \
? GET_MODE_PRECISION (MODE) \
: GET_MODE_PRECISION (GET_MODE_INNER (MODE)))
/* Get the number of units in the object. */
extern const unsigned char mode_nunits[NUM_MACHINE_MODES];

View File

@ -564,6 +564,212 @@ simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
}
/* Try to simplify a MODE truncation of OP, which has OP_MODE.
Only handle cases where the truncated value is inherently an rvalue.
RTL provides two ways of truncating a value:
1. a lowpart subreg. This form is only a truncation when both
the outer and inner modes (here MODE and OP_MODE respectively)
are scalar integers, and only then when the subreg is used as
an rvalue.
It is only valid to form such truncating subregs if the
truncation requires no action by the target. The onus for
proving this is on the creator of the subreg -- e.g. the
caller to simplify_subreg or simplify_gen_subreg -- and typically
involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
2. a TRUNCATE. This form handles both scalar and compound integers.
The first form is preferred where valid. However, the TRUNCATE
handling in simplify_unary_operation turns the second form into the
first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
so it is generally safe to form rvalue truncations using:
simplify_gen_unary (TRUNCATE, ...)
and leave simplify_unary_operation to work out which representation
should be used.
Because of the proof requirements on (1), simplify_truncation must
also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
regardless of whether the outer truncation came from a SUBREG or a
TRUNCATE. For example, if the caller has proven that an SImode
truncation of:
(and:DI X Y)
is a no-op and can be represented as a subreg, it does not follow
that SImode truncations of X and Y are also no-ops. On a target
like 64-bit MIPS that requires SImode values to be stored in
sign-extended form, an SImode truncation of:
(and:DI (reg:DI X) (const_int 63))
is trivially a no-op because only the lower 6 bits can be set.
However, X is still an arbitrary 64-bit number and so we cannot
assume that truncating it too is a no-op. */
static rtx
simplify_truncation (enum machine_mode mode, rtx op,
enum machine_mode op_mode)
{
unsigned int precision = GET_MODE_UNIT_PRECISION (mode);
unsigned int op_precision = GET_MODE_UNIT_PRECISION (op_mode);
gcc_assert (precision <= op_precision);
/* Optimize truncations of zero and sign extended values. */
if (GET_CODE (op) == ZERO_EXTEND
|| GET_CODE (op) == SIGN_EXTEND)
{
/* There are three possibilities. If MODE is the same as the
origmode, we can omit both the extension and the subreg.
If MODE is not larger than the origmode, we can apply the
truncation without the extension. Finally, if the outermode
is larger than the origmode, we can just extend to the appropriate
mode. */
enum machine_mode origmode = GET_MODE (XEXP (op, 0));
if (mode == origmode)
return XEXP (op, 0);
else if (precision <= GET_MODE_UNIT_PRECISION (origmode))
return simplify_gen_unary (TRUNCATE, mode,
XEXP (op, 0), origmode);
else
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (op, 0), origmode);
}
/* Simplify (truncate:SI (op:DI (x:DI) (y:DI)))
to (op:SI (truncate:SI (x:DI)) (truncate:SI (x:DI))). */
if (GET_CODE (op) == PLUS
|| GET_CODE (op) == MINUS
|| GET_CODE (op) == MULT)
{
rtx op0 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0), op_mode);
if (op0)
{
rtx op1 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 1), op_mode);
if (op1)
return simplify_gen_binary (GET_CODE (op), mode, op0, op1);
}
}
/* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
/* Ensure that OP_MODE is at least twice as wide as MODE
to avoid the possibility that an outer LSHIFTRT shifts by more
than the sign extension's sign_bit_copies and introduces zeros
into the high bits of the result. */
&& 2 * precision <= op_precision
&& CONST_INT_P (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
&& INTVAL (XEXP (op, 1)) < precision)
return simplify_gen_binary (ASHIFTRT, mode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& CONST_INT_P (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
&& INTVAL (XEXP (op, 1)) < precision)
return simplify_gen_binary (LSHIFTRT, mode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
to (ashift:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if (GET_CODE (op) == ASHIFT
&& CONST_INT_P (XEXP (op, 1))
&& (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|| GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
&& INTVAL (XEXP (op, 1)) < precision)
return simplify_gen_binary (ASHIFT, mode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Recognize a word extraction from a multi-word subreg. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (mode)
&& SCALAR_INT_MODE_P (op_mode)
&& precision >= BITS_PER_WORD
&& 2 * precision <= op_precision
&& CONST_INT_P (XEXP (op, 1))
&& (INTVAL (XEXP (op, 1)) & (precision - 1)) == 0
&& INTVAL (XEXP (op, 1)) >= 0
&& INTVAL (XEXP (op, 1)) < op_precision)
{
int byte = subreg_lowpart_offset (mode, op_mode);
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
return simplify_gen_subreg (mode, XEXP (op, 0), op_mode,
(WORDS_BIG_ENDIAN
? byte - shifted_bytes
: byte + shifted_bytes));
}
/* If we have a TRUNCATE of a right shift of MEM, make a new MEM
and try replacing the TRUNCATE and shift with it. Don't do this
if the MEM has a mode-dependent address. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (op_mode)
&& MEM_P (XEXP (op, 0))
&& CONST_INT_P (XEXP (op, 1))
&& (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (mode)) == 0
&& INTVAL (XEXP (op, 1)) > 0
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (op_mode)
&& ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0),
MEM_ADDR_SPACE (XEXP (op, 0)))
&& ! MEM_VOLATILE_P (XEXP (op, 0))
&& (GET_MODE_SIZE (mode) >= UNITS_PER_WORD
|| WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
{
int byte = subreg_lowpart_offset (mode, op_mode);
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
return adjust_address_nv (XEXP (op, 0), mode,
(WORDS_BIG_ENDIAN
? byte - shifted_bytes
: byte + shifted_bytes));
}
/* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
(OP:SI foo:SI) if OP is NEG or ABS. */
if ((GET_CODE (op) == ABS
|| GET_CODE (op) == NEG)
&& (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (XEXP (op, 0), 0), mode);
/* (truncate:A (subreg:B (truncate:C X) 0)) is
(truncate:A X). */
if (GET_CODE (op) == SUBREG
&& SCALAR_INT_MODE_P (mode)
&& SCALAR_INT_MODE_P (op_mode)
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op)))
&& GET_CODE (SUBREG_REG (op)) == TRUNCATE
&& subreg_lowpart_p (op))
return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
GET_MODE (XEXP (SUBREG_REG (op), 0)));
/* (truncate:A (truncate:B X)) is (truncate:A X). */
if (GET_CODE (op) == TRUNCATE)
return simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
return NULL_RTX;
}
/* Try to simplify a unary operation CODE whose output mode is to be
MODE with input operand OP whose mode was originally OP_MODE.
Return zero if no simplification can be made. */
@ -815,50 +1021,34 @@ simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
break;
case TRUNCATE:
/* We can't handle truncation to a partial integer mode here
because we don't know the real bitsize of the partial
integer mode. */
/* Don't optimize (lshiftrt (mult ...)) as it would interfere
with the umulXi3_highpart patterns. */
if (GET_CODE (op) == LSHIFTRT
&& GET_CODE (XEXP (op, 0)) == MULT)
break;
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
break;
{
if (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op)))
return rtl_hooks.gen_lowpart_no_emit (mode, op);
/* We can't handle truncation to a partial integer mode here
because we don't know the real bitsize of the partial
integer mode. */
break;
}
/* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
if ((GET_CODE (op) == SIGN_EXTEND
|| GET_CODE (op) == ZERO_EXTEND)
&& GET_MODE (XEXP (op, 0)) == mode)
return XEXP (op, 0);
/* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
(OP:SI foo:SI) if OP is NEG or ABS. */
if ((GET_CODE (op) == ABS
|| GET_CODE (op) == NEG)
&& (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (XEXP (op, 0), 0), mode);
/* (truncate:A (subreg:B (truncate:C X) 0)) is
(truncate:A X). */
if (GET_CODE (op) == SUBREG
&& GET_CODE (SUBREG_REG (op)) == TRUNCATE
&& subreg_lowpart_p (op))
return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
GET_MODE (XEXP (SUBREG_REG (op), 0)));
if (GET_MODE (op) != VOIDmode)
{
temp = simplify_truncation (mode, op, GET_MODE (op));
if (temp)
return temp;
}
/* If we know that the value is already truncated, we can
replace the TRUNCATE with a SUBREG. Note that this is also
valid if TRULY_NOOP_TRUNCATION is false for the corresponding
modes we just have to apply a different definition for
truncation. But don't do this for an (LSHIFTRT (MULT ...))
since this will cause problems with the umulXi3_highpart
patterns. */
if ((TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
? (num_sign_bit_copies (op, GET_MODE (op))
> (unsigned int) (GET_MODE_PRECISION (GET_MODE (op))
- GET_MODE_PRECISION (mode)))
: truncated_to_mode (mode, op))
&& ! (GET_CODE (op) == LSHIFTRT
&& GET_CODE (XEXP (op, 0)) == MULT))
replace the TRUNCATE with a SUBREG. */
if (GET_MODE_NUNITS (mode) == 1
&& (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
|| truncated_to_mode (mode, op)))
return rtl_hooks.gen_lowpart_no_emit (mode, op);
/* A truncate of a comparison can be replaced with a subreg if
@ -5596,14 +5786,6 @@ simplify_subreg (enum machine_mode outermode, rtx op,
return NULL_RTX;
}
/* Merge implicit and explicit truncations. */
if (GET_CODE (op) == TRUNCATE
&& GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
&& subreg_lowpart_offset (outermode, innermode) == byte)
return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
/* SUBREG of a hard register => just change the register number
and/or mode. If the hard register is not valid in that mode,
suppress this simplification. If the hard register is the stack,
@ -5689,160 +5871,23 @@ simplify_subreg (enum machine_mode outermode, rtx op,
return NULL_RTX;
}
/* Optimize SUBREG truncations of zero and sign extended values. */
if ((GET_CODE (op) == ZERO_EXTEND
|| GET_CODE (op) == SIGN_EXTEND)
&& SCALAR_INT_MODE_P (innermode)
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode))
/* A SUBREG resulting from a zero extension may fold to zero if
it extracts higher bits that the ZERO_EXTEND's source bits. */
if (GET_CODE (op) == ZERO_EXTEND)
{
unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
/* If we're requesting the lowpart of a zero or sign extension,
there are three possibilities. If the outermode is the same
as the origmode, we can omit both the extension and the subreg.
If the outermode is not larger than the origmode, we can apply
the truncation without the extension. Finally, if the outermode
is larger than the origmode, but both are integer modes, we
can just extend to the appropriate mode. */
if (bitpos == 0)
{
enum machine_mode origmode = GET_MODE (XEXP (op, 0));
if (outermode == origmode)
return XEXP (op, 0);
if (GET_MODE_PRECISION (outermode) <= GET_MODE_PRECISION (origmode))
return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
subreg_lowpart_offset (outermode,
origmode));
if (SCALAR_INT_MODE_P (outermode))
return simplify_gen_unary (GET_CODE (op), outermode,
XEXP (op, 0), origmode);
}
/* A SUBREG resulting from a zero extension may fold to zero if
it extracts higher bits that the ZERO_EXTEND's source bits. */
if (GET_CODE (op) == ZERO_EXTEND
&& bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
if (bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
return CONST0_RTX (outermode);
}
/* Simplify (subreg:SI (op:DI ((x:DI) (y:DI)), 0)
to (op:SI (subreg:SI (x:DI) 0) (subreg:SI (x:DI) 0)), where
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == PLUS
|| GET_CODE (op) == MINUS
|| GET_CODE (op) == MULT)
&& SCALAR_INT_MODE_P (outermode)
if (SCALAR_INT_MODE_P (outermode)
&& SCALAR_INT_MODE_P (innermode)
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
&& byte == subreg_lowpart_offset (outermode, innermode))
{
rtx op0 = simplify_gen_subreg (outermode, XEXP (op, 0),
innermode, byte);
if (op0)
{
rtx op1 = simplify_gen_subreg (outermode, XEXP (op, 1),
innermode, byte);
if (op1)
return simplify_gen_binary (GET_CODE (op), outermode, op0, op1);
}
}
/* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (outermode)
&& SCALAR_INT_MODE_P (innermode)
/* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
to avoid the possibility that an outer LSHIFTRT shifts by more
than the sign extension's sign_bit_copies and introduces zeros
into the high bits of the result. */
&& (2 * GET_MODE_PRECISION (outermode)) <= GET_MODE_PRECISION (innermode)
&& CONST_INT_P (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
return simplify_gen_binary (ASHIFTRT, outermode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (outermode)
&& SCALAR_INT_MODE_P (innermode)
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
&& CONST_INT_P (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
return simplify_gen_binary (LSHIFTRT, outermode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
to (ashift:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if (GET_CODE (op) == ASHIFT
&& SCALAR_INT_MODE_P (outermode)
&& SCALAR_INT_MODE_P (innermode)
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
&& CONST_INT_P (XEXP (op, 1))
&& (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|| GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
return simplify_gen_binary (ASHIFT, outermode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Recognize a word extraction from a multi-word subreg. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (innermode)
&& GET_MODE_PRECISION (outermode) >= BITS_PER_WORD
&& GET_MODE_PRECISION (innermode) >= (2 * GET_MODE_PRECISION (outermode))
&& CONST_INT_P (XEXP (op, 1))
&& (INTVAL (XEXP (op, 1)) & (GET_MODE_PRECISION (outermode) - 1)) == 0
&& INTVAL (XEXP (op, 1)) >= 0
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (innermode)
&& byte == subreg_lowpart_offset (outermode, innermode))
{
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
return simplify_gen_subreg (outermode, XEXP (op, 0), innermode,
(WORDS_BIG_ENDIAN
? byte - shifted_bytes
: byte + shifted_bytes));
}
/* If we have a lowpart SUBREG of a right shift of MEM, make a new MEM
and try replacing the SUBREG and shift with it. Don't do this if
the MEM has a mode-dependent address or if we would be widening it. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (innermode)
&& MEM_P (XEXP (op, 0))
&& CONST_INT_P (XEXP (op, 1))
&& GET_MODE_SIZE (outermode) < GET_MODE_SIZE (GET_MODE (op))
&& (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (outermode)) == 0
&& INTVAL (XEXP (op, 1)) > 0
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (innermode)
&& ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0),
MEM_ADDR_SPACE (XEXP (op, 0)))
&& ! MEM_VOLATILE_P (XEXP (op, 0))
&& byte == subreg_lowpart_offset (outermode, innermode)
&& (GET_MODE_SIZE (outermode) >= UNITS_PER_WORD
|| WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
{
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
return adjust_address_nv (XEXP (op, 0), outermode,
(WORDS_BIG_ENDIAN
? byte - shifted_bytes
: byte + shifted_bytes));
rtx tem = simplify_truncation (outermode, op, innermode);
if (tem)
return tem;
}
return NULL_RTX;