Modified Files:
ChangeLog generated/matmul_c4.c generated/matmul_c8.c generated/matmul_i4.c generated/matmul_i8.c generated/matmul_r4.c generated/matmul_r8.c m4/matmul.m4 2004-11-18 Victor Leikehman <lei@il.ibm.com> * m4/matmul.m4: Loops reordered to improve cache behavior. * generated/matmul_??.c: Regenerated. From-SVN: r90853
This commit is contained in:
parent
d7518354cd
commit
410d3bbaa2
@ -1,3 +1,8 @@
|
||||
2004-11-18 Victor Leikehman <lei@il.ibm.com>
|
||||
|
||||
* m4/matmul.m4: Loops reordered to improve cache behavior.
|
||||
* generated/matmul_??.c: Regenerated.
|
||||
|
||||
2004-11-10 Paul Brook <paul@codesourcery.com>
|
||||
|
||||
PR fortran/18218
|
||||
|
@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
__matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
|
||||
{
|
||||
GFC_COMPLEX_4 *abase;
|
||||
GFC_COMPLEX_4 *bbase;
|
||||
GFC_COMPLEX_4 *dest;
|
||||
GFC_COMPLEX_4 res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
GFC_COMPLEX_4 *pa;
|
||||
GFC_COMPLEX_4 *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -95,8 +104,10 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -104,65 +115,88 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
GFC_COMPLEX_4 *bbase_y;
|
||||
GFC_COMPLEX_4 *dest_y;
|
||||
GFC_COMPLEX_4 *abase_n;
|
||||
GFC_COMPLEX_4 bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (GFC_COMPLEX_4) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
__matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b)
|
||||
{
|
||||
GFC_COMPLEX_8 *abase;
|
||||
GFC_COMPLEX_8 *bbase;
|
||||
GFC_COMPLEX_8 *dest;
|
||||
GFC_COMPLEX_8 res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
GFC_COMPLEX_8 *pa;
|
||||
GFC_COMPLEX_8 *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -95,8 +104,10 @@ __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b)
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -104,65 +115,88 @@ __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b)
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
GFC_COMPLEX_8 *bbase_y;
|
||||
GFC_COMPLEX_8 *dest_y;
|
||||
GFC_COMPLEX_8 *abase_n;
|
||||
GFC_COMPLEX_8 bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (GFC_COMPLEX_8) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
__matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b)
|
||||
{
|
||||
GFC_INTEGER_4 *abase;
|
||||
GFC_INTEGER_4 *bbase;
|
||||
GFC_INTEGER_4 *dest;
|
||||
GFC_INTEGER_4 res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
GFC_INTEGER_4 *pa;
|
||||
GFC_INTEGER_4 *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -95,8 +104,10 @@ __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b)
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -104,65 +115,88 @@ __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b)
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
GFC_INTEGER_4 *bbase_y;
|
||||
GFC_INTEGER_4 *dest_y;
|
||||
GFC_INTEGER_4 *abase_n;
|
||||
GFC_INTEGER_4 bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (GFC_INTEGER_4) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
__matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
|
||||
{
|
||||
GFC_INTEGER_8 *abase;
|
||||
GFC_INTEGER_8 *bbase;
|
||||
GFC_INTEGER_8 *dest;
|
||||
GFC_INTEGER_8 res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
GFC_INTEGER_8 *pa;
|
||||
GFC_INTEGER_8 *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -95,8 +104,10 @@ __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -104,65 +115,88 @@ __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
GFC_INTEGER_8 *bbase_y;
|
||||
GFC_INTEGER_8 *dest_y;
|
||||
GFC_INTEGER_8 *abase_n;
|
||||
GFC_INTEGER_8 bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (GFC_INTEGER_8) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
__matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
|
||||
{
|
||||
GFC_REAL_4 *abase;
|
||||
GFC_REAL_4 *bbase;
|
||||
GFC_REAL_4 *dest;
|
||||
GFC_REAL_4 res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
GFC_REAL_4 *pa;
|
||||
GFC_REAL_4 *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -95,8 +104,10 @@ __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -104,65 +115,88 @@ __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
GFC_REAL_4 *bbase_y;
|
||||
GFC_REAL_4 *dest_y;
|
||||
GFC_REAL_4 *abase_n;
|
||||
GFC_REAL_4 bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (GFC_REAL_4) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
__matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
|
||||
{
|
||||
GFC_REAL_8 *abase;
|
||||
GFC_REAL_8 *bbase;
|
||||
GFC_REAL_8 *dest;
|
||||
GFC_REAL_8 res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
GFC_REAL_8 *pa;
|
||||
GFC_REAL_8 *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -95,8 +104,10 @@ __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -104,65 +115,88 @@ __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
GFC_REAL_8 *bbase_y;
|
||||
GFC_REAL_8 *dest_y;
|
||||
GFC_REAL_8 *abase_n;
|
||||
GFC_REAL_8 bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (GFC_REAL_8) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,38 +21,47 @@ Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "libgfortran.h"'
|
||||
include(iparm.m4)dnl
|
||||
|
||||
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||||
Either a or b can be rank 1. In this case x or y is 1. */
|
||||
/* This is a C version of the following fortran pseudo-code. The key
|
||||
point is the loop order -- we access all arrays column-first, which
|
||||
improves the performance enough to boost galgel spec score by 50%.
|
||||
|
||||
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
||||
C = 0
|
||||
DO J=1,N
|
||||
DO K=1,COUNT
|
||||
DO I=1,M
|
||||
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
||||
*/
|
||||
|
||||
void
|
||||
`__matmul_'rtype_code (rtype * retarray, rtype * a, rtype * b)
|
||||
{
|
||||
rtype_name *abase;
|
||||
rtype_name *bbase;
|
||||
rtype_name *dest;
|
||||
rtype_name res;
|
||||
index_type rxstride;
|
||||
index_type rystride;
|
||||
index_type xcount;
|
||||
index_type ycount;
|
||||
index_type xstride;
|
||||
index_type ystride;
|
||||
index_type x;
|
||||
index_type y;
|
||||
|
||||
rtype_name *pa;
|
||||
rtype_name *pb;
|
||||
index_type astride;
|
||||
index_type bstride;
|
||||
index_type count;
|
||||
index_type n;
|
||||
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
||||
index_type x, y, n, count, xcount, ycount;
|
||||
|
||||
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||||
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||||
|
||||
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
||||
|
||||
Either A or B (but not both) can be rank 1:
|
||||
|
||||
o One-dimensional argument A is implicitly treated as a row matrix
|
||||
dimensioned [1,count], so xcount=1.
|
||||
|
||||
o One-dimensional argument B is implicitly treated as a column matrix
|
||||
dimensioned [count, 1], so ycount=1.
|
||||
*/
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
@ -97,8 +106,10 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||||
{
|
||||
rxstride = retarray->dim[0].stride;
|
||||
rystride = rxstride;
|
||||
/* One-dimensional result may be addressed in the code below
|
||||
either as a row or a column matrix. We want both cases to
|
||||
work. */
|
||||
rxstride = rystride = retarray->dim[0].stride;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -106,65 +117,88 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
||||
rystride = retarray->dim[1].stride;
|
||||
}
|
||||
|
||||
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||||
one. */
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||||
{
|
||||
astride = a->dim[0].stride;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
xstride = 0;
|
||||
rxstride = 0;
|
||||
/* Treat it as a a row matrix A[1,count]. */
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = 1;
|
||||
|
||||
xcount = 1;
|
||||
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
else
|
||||
{
|
||||
astride = a->dim[1].stride;
|
||||
axstride = a->dim[0].stride;
|
||||
aystride = a->dim[1].stride;
|
||||
|
||||
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||||
xstride = a->dim[0].stride;
|
||||
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||||
}
|
||||
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
|
||||
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = 0;
|
||||
rystride = 0;
|
||||
/* Treat it as a column matrix B[count,1] */
|
||||
bxstride = b->dim[0].stride;
|
||||
|
||||
/* bystride should never be used for 1-dimensional b.
|
||||
in case it is we want it to cause a segfault, rather than
|
||||
an incorrect result. */
|
||||
bystride = 0xDEADBEEF;
|
||||
ycount = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
bstride = b->dim[0].stride;
|
||||
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||||
ystride = b->dim[1].stride;
|
||||
bxstride = b->dim[0].stride;
|
||||
bystride = b->dim[1].stride;
|
||||
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||||
}
|
||||
|
||||
assert (a->base == 0);
|
||||
assert (b->base == 0);
|
||||
assert (retarray->base == 0);
|
||||
|
||||
abase = a->data;
|
||||
bbase = b->data;
|
||||
dest = retarray->data;
|
||||
|
||||
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
||||
{
|
||||
rtype_name *bbase_y;
|
||||
rtype_name *dest_y;
|
||||
rtype_name *abase_n;
|
||||
rtype_name bbase_yn;
|
||||
|
||||
memset (dest, 0, (sizeof (rtype_name) * size0(retarray)));
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
{
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
/* Do the summation for this element. For real and integer types
|
||||
this is the same as DOT_PRODUCT. For complex types we use do
|
||||
a*b, not conjg(a)*b. */
|
||||
pa = abase;
|
||||
pb = bbase;
|
||||
res = 0;
|
||||
|
||||
bbase_y = bbase + y*bystride;
|
||||
dest_y = dest + y*rystride;
|
||||
for (n = 0; n < count; n++)
|
||||
{
|
||||
res += *pa * *pb;
|
||||
pa += astride;
|
||||
pb += bstride;
|
||||
abase_n = abase + n*aystride;
|
||||
bbase_yn = bbase_y[n];
|
||||
for (x = 0; x < xcount; x++)
|
||||
{
|
||||
dest_y[x] += abase_n[x] * bbase_yn;
|
||||
}
|
||||
|
||||
*dest = res;
|
||||
|
||||
dest += rxstride;
|
||||
abase += xstride;
|
||||
}
|
||||
abase -= xstride * xcount;
|
||||
bbase += ystride;
|
||||
dest += rystride - (rxstride * xcount);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
dest[x*rxstride + y*rystride] = (rtype_name)0;
|
||||
|
||||
for (y = 0; y < ycount; y++)
|
||||
for (n = 0; n < count; n++)
|
||||
for (x = 0; x < xcount; x++)
|
||||
/* dest[x,y] += a[x,n] * b[n,y] */
|
||||
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user