[multiple changes]

2004-06-12  Paolo Carlini  <pcarlini@suse.de>

	* include/ext/algorithm: Trivial formatting fixes.
	* include/ext/functional: Likewise.
	* include/ext/hash_fun.h: Likewise.
	* include/ext/iterator: Likewise.

2004-06-12  Paolo Carlini  <pcarlini@suse.de>

	* include/bits/basic_string.tcc (find(const _CharT*, size_type,
	size_type)): Reimplement using std::search.
	* src/string-inst.cc: Instantiate std::search for char/wchar_t.

2004-06-12  Dhruv Matani  <dhruvbird@gmx.net>

	* testsuite/performance/21_strings/string_find.cc: New.

From-SVN: r83022
This commit is contained in:
Paolo Carlini 2004-06-12 08:10:24 +00:00
parent 019c8e8087
commit 4a787fa8bf
8 changed files with 628 additions and 401 deletions

View File

@ -1,3 +1,20 @@
2004-06-12 Paolo Carlini <pcarlini@suse.de>
* include/ext/algorithm: Trivial formatting fixes.
* include/ext/functional: Likewise.
* include/ext/hash_fun.h: Likewise.
* include/ext/iterator: Likewise.
2004-06-12 Paolo Carlini <pcarlini@suse.de>
* include/bits/basic_string.tcc (find(const _CharT*, size_type,
size_type)): Reimplement using std::search.
* src/string-inst.cc: Instantiate std::search for char/wchar_t.
2004-06-12 Dhruv Matani <dhruvbird@gmx.net>
* testsuite/performance/21_strings/string_find.cc: New.
2004-06-10 Aaron W. LaFramboise <aaronraolete36@aaronwl.com>
* include/bits/istream.tcc (istream::ignore): Fix for -Wuninitialized.

View File

@ -685,12 +685,17 @@ namespace std
find(const _CharT* __s, size_type __pos, size_type __n) const
{
__glibcxx_requires_string_len(__s, __n);
size_type __ret = npos;
const size_type __size = this->size();
const _CharT* __data = _M_data();
for (; __pos + __n <= __size; ++__pos)
if (traits_type::compare(__data + __pos, __s, __n) == 0)
return __pos;
return npos;
if (__pos + __n <= __size)
{
const _CharT* __data = _M_data();
const _CharT* __p = std::search(__data + __pos, __data + __size,
__s, __s + __n, traits_type::eq);
if (__p != __data + __size || __n == 0)
__ret = __p - __data;
}
return __ret;
}
template<typename _CharT, typename _Traits, typename _Alloc>
@ -698,8 +703,8 @@ namespace std
basic_string<_CharT, _Traits, _Alloc>::
find(_CharT __c, size_type __pos) const
{
const size_type __size = this->size();
size_type __ret = npos;
const size_type __size = this->size();
if (__pos < __size)
{
const _CharT* __data = _M_data();

View File

@ -1,6 +1,6 @@
// Algorithm extensions -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -84,11 +84,12 @@ namespace __gnu_cxx
_OutputIterator __result,
input_iterator_tag)
{
for ( ; __count > 0; --__count) {
*__result = *__first;
++__first;
++__result;
}
for ( ; __count > 0; --__count)
{
*__result = *__first;
++__first;
++__result;
}
return pair<_InputIterator, _OutputIterator>(__first, __result);
}
@ -99,8 +100,9 @@ namespace __gnu_cxx
random_access_iterator_tag)
{
_RAIterator __last = __first + __count;
return pair<_RAIterator, _OutputIterator>(__last,
std::copy(__first, __last, __result));
return pair<_RAIterator, _OutputIterator>(__last, std::copy(__first,
__last,
__result));
}
/**
@ -132,23 +134,24 @@ namespace __gnu_cxx
template<typename _InputIterator1, typename _InputIterator2>
int
__lexicographical_compare_3way(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2)
__lexicographical_compare_3way(_InputIterator1 __first1,
_InputIterator1 __last1,
_InputIterator2 __first2,
_InputIterator2 __last2)
{
while (__first1 != __last1 && __first2 != __last2) {
if (*__first1 < *__first2)
return -1;
if (*__first2 < *__first1)
return 1;
++__first1;
++__first2;
}
if (__first2 == __last2) {
while (__first1 != __last1 && __first2 != __last2)
{
if (*__first1 < *__first2)
return -1;
if (*__first2 < *__first1)
return 1;
++__first1;
++__first2;
}
if (__first2 == __last2)
return !(__first1 == __last1);
}
else {
else
return -1;
}
}
inline int
@ -169,11 +172,10 @@ namespace __gnu_cxx
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return __lexicographical_compare_3way(
(const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
return __lexicographical_compare_3way((const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else
return __lexicographical_compare_3way((const unsigned char*) __first1,
(const unsigned char*) __last1,
@ -198,8 +200,10 @@ namespace __gnu_cxx
*/
template<typename _InputIterator1, typename _InputIterator2>
int
lexicographical_compare_3way(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2)
lexicographical_compare_3way(_InputIterator1 __first1,
_InputIterator1 __last1,
_InputIterator2 __first2,
_InputIterator2 __last2)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
@ -211,12 +215,12 @@ namespace __gnu_cxx
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
return __lexicographical_compare_3way(__first1, __last1, __first2, __last2);
return __lexicographical_compare_3way(__first1, __last1, __first2,
__last2);
}
// count and count_if: this version, whose return type is void, was present
// in the HP STL, and is retained as an extension for backward compatibility.
template<typename _InputIterator, typename _Tp, typename _Size>
void
count(_InputIterator __first, _InputIterator __last,
@ -259,7 +263,8 @@ namespace __gnu_cxx
* @ingroup SGIextensions
* @doctodo
*/
template<typename _ForwardIterator, typename _OutputIterator, typename _Distance>
template<typename _ForwardIterator, typename _OutputIterator,
typename _Distance>
_OutputIterator
random_sample_n(_ForwardIterator __first, _ForwardIterator __last,
_OutputIterator __out, const _Distance __n)
@ -273,16 +278,17 @@ namespace __gnu_cxx
_Distance __remaining = std::distance(__first, __last);
_Distance __m = min(__n, __remaining);
while (__m > 0) {
if ((std::rand() % __remaining) < __m) {
while (__m > 0)
{
if ((std::rand() % __remaining) < __m)
{
*__out = *__first;
++__out;
--__m;
}
--__remaining;
++__first;
}
--__remaining;
++__first;
}
return __out;
}
@ -291,8 +297,8 @@ namespace __gnu_cxx
* @ingroup SGIextensions
* @doctodo
*/
template<typename _ForwardIterator, typename _OutputIterator, typename _Distance,
typename _RandomNumberGenerator>
template<typename _ForwardIterator, typename _OutputIterator,
typename _Distance, typename _RandomNumberGenerator>
_OutputIterator
random_sample_n(_ForwardIterator __first, _ForwardIterator __last,
_OutputIterator __out, const _Distance __n,
@ -309,20 +315,22 @@ namespace __gnu_cxx
_Distance __remaining = std::distance(__first, __last);
_Distance __m = min(__n, __remaining);
while (__m > 0) {
if (__rand(__remaining) < __m) {
while (__m > 0)
{
if (__rand(__remaining) < __m)
{
*__out = *__first;
++__out;
--__m;
}
--__remaining;
++__first;
}
--__remaining;
++__first;
}
return __out;
}
template<typename _InputIterator, typename _RandomAccessIterator, typename _Distance>
template<typename _InputIterator, typename _RandomAccessIterator,
typename _Distance>
_RandomAccessIterator
__random_sample(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __out,
@ -333,14 +341,14 @@ namespace __gnu_cxx
for ( ; __first != __last && __m < __n; ++__m, ++__first)
__out[__m] = *__first;
while (__first != __last) {
++__t;
_Distance __M = std::rand() % (__t);
if (__M < __n)
__out[__M] = *__first;
++__first;
}
while (__first != __last)
{
++__t;
_Distance __M = std::rand() % (__t);
if (__M < __n)
__out[__M] = *__first;
++__first;
}
return __out + __m;
}
@ -361,14 +369,14 @@ namespace __gnu_cxx
for ( ; __first != __last && __m < __n; ++__m, ++__first)
__out[__m] = *__first;
while (__first != __last) {
++__t;
_Distance __M = __rand(__t);
if (__M < __n)
__out[__M] = *__first;
++__first;
}
while (__first != __last)
{
++__t;
_Distance __M = __rand(__t);
if (__M < __n)
__out[__M] = *__first;
++__first;
}
return __out + __m;
}
@ -380,7 +388,8 @@ namespace __gnu_cxx
template<typename _InputIterator, typename _RandomAccessIterator>
inline _RandomAccessIterator
random_sample(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __out_first, _RandomAccessIterator __out_last)
_RandomAccessIterator __out_first,
_RandomAccessIterator __out_last)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
@ -402,7 +411,8 @@ namespace __gnu_cxx
typename _RandomNumberGenerator>
inline _RandomAccessIterator
random_sample(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __out_first, _RandomAccessIterator __out_last,
_RandomAccessIterator __out_first,
_RandomAccessIterator __out_last,
_RandomNumberGenerator& __rand)
{
// concept requirements
@ -427,7 +437,8 @@ namespace __gnu_cxx
is_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
// concept requirements
__glibcxx_function_requires(_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_RandomAccessIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
@ -446,7 +457,8 @@ namespace __gnu_cxx
_StrictWeakOrdering __comp)
{
// concept requirements
__glibcxx_function_requires(_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_StrictWeakOrdering,
typename iterator_traits<_RandomAccessIterator>::value_type,
typename iterator_traits<_RandomAccessIterator>::value_type>)
@ -478,11 +490,9 @@ namespace __gnu_cxx
return true;
_ForwardIterator __next = __first;
for (++__next; __next != __last; __first = __next, ++__next) {
for (++__next; __next != __last; __first = __next, ++__next)
if (*__next < *__first)
return false;
}
return true;
}
@ -493,7 +503,8 @@ namespace __gnu_cxx
*/
template<typename _ForwardIterator, typename _StrictWeakOrdering>
bool
is_sorted(_ForwardIterator __first, _ForwardIterator __last, _StrictWeakOrdering __comp)
is_sorted(_ForwardIterator __first, _ForwardIterator __last,
_StrictWeakOrdering __comp)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
@ -506,11 +517,9 @@ namespace __gnu_cxx
return true;
_ForwardIterator __next = __first;
for (++__next; __next != __last; __first = __next, ++__next) {
for (++__next; __next != __last; __first = __next, ++__next)
if (__comp(*__next, *__first))
return false;
}
return true;
}
} // namespace __gnu_cxx

View File

@ -1,6 +1,6 @@
// Functional extensions -*- C++ -*-
// Copyright (C) 2002 Free Software Foundation, Inc.
// Copyright (C) 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -68,328 +68,359 @@
namespace __gnu_cxx
{
using std::unary_function;
using std::binary_function;
using std::mem_fun1_t;
using std::const_mem_fun1_t;
using std::mem_fun1_ref_t;
using std::const_mem_fun1_ref_t;
using std::unary_function;
using std::binary_function;
using std::mem_fun1_t;
using std::const_mem_fun1_t;
using std::mem_fun1_ref_t;
using std::const_mem_fun1_ref_t;
/** The @c identity_element functions are not part of the C++ standard; SGI
* provided them as an extension. Its argument is an operation, and its
* return value is the identity element for that operation. It is overloaded
* for addition and multiplication, and you can overload it for your own
* nefarious operations.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Tp> inline _Tp identity_element(std::plus<_Tp>) {
return _Tp(0);
}
/// An \link SGIextensions SGI extension \endlink.
template <class _Tp> inline _Tp identity_element(std::multiplies<_Tp>) {
return _Tp(1);
}
/** @} */
/** The @c identity_element functions are not part of the C++ standard; SGI
* provided them as an extension. Its argument is an operation, and its
* return value is the identity element for that operation. It is overloaded
* for addition and multiplication, and you can overload it for your own
* nefarious operations.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Tp>
inline _Tp
identity_element(std::plus<_Tp>)
{ return _Tp(0); }
/** As an extension to the binders, SGI provided composition functors and
* wrapper functions to aid in their creation. The @c unary_compose
* functor is constructed from two functions/functors, @c f and @c g.
* Calling @c operator() with a single argument @c x returns @c f(g(x)).
* The function @c compose1 takes the two functions and constructs a
* @c unary_compose variable for you.
*
* @c binary_compose is constructed from three functors, @c f, @c g1,
* and @c g2. Its @c operator() returns @c f(g1(x),g2(x)). The function
* @compose2 takes f, g1, and g2, and constructs the @c binary_compose
* instance for you. For example, if @c f returns an int, then
* \code
* int answer = (compose2(f,g1,g2))(x);
* \endcode
* is equivalent to
* \code
* int temp1 = g1(x);
* int temp2 = g2(x);
* int answer = f(temp1,temp2);
* \endcode
* But the first form is more compact, and can be passed around as a
* functor to other algorithms.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2>
class unary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type>
{
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
public:
unary_compose(const _Operation1& __x, const _Operation2& __y)
: _M_fn1(__x), _M_fn2(__y) {}
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_fn1(_M_fn2(__x));
}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Tp>
inline _Tp
identity_element(std::multiplies<_Tp>)
{ return _Tp(1); }
/** @} */
/** As an extension to the binders, SGI provided composition functors and
* wrapper functions to aid in their creation. The @c unary_compose
* functor is constructed from two functions/functors, @c f and @c g.
* Calling @c operator() with a single argument @c x returns @c f(g(x)).
* The function @c compose1 takes the two functions and constructs a
* @c unary_compose variable for you.
*
* @c binary_compose is constructed from three functors, @c f, @c g1,
* and @c g2. Its @c operator() returns @c f(g1(x),g2(x)). The function
* @compose2 takes f, g1, and g2, and constructs the @c binary_compose
* instance for you. For example, if @c f returns an int, then
* \code
* int answer = (compose2(f,g1,g2))(x);
* \endcode
* is equivalent to
* \code
* int temp1 = g1(x);
* int temp2 = g2(x);
* int answer = f(temp1,temp2);
* \endcode
* But the first form is more compact, and can be passed around as a
* functor to other algorithms.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2>
class unary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type>
{
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2>
inline unary_compose<_Operation1,_Operation2>
compose1(const _Operation1& __fn1, const _Operation2& __fn2)
{
return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);
}
public:
unary_compose(const _Operation1& __x, const _Operation2& __y)
: _M_fn1(__x), _M_fn2(__y) {}
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2, class _Operation3>
class binary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type> {
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
_Operation3 _M_fn3;
public:
binary_compose(const _Operation1& __x, const _Operation2& __y,
const _Operation3& __z)
: _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_fn1(_M_fn2(__x), _M_fn3(__x));
}
};
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const
{ return _M_fn1(_M_fn2(__x)); }
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2, class _Operation3>
inline binary_compose<_Operation1, _Operation2, _Operation3>
compose2(const _Operation1& __fn1, const _Operation2& __fn2,
const _Operation3& __fn3)
{
return binary_compose<_Operation1,_Operation2,_Operation3>
(__fn1, __fn2, __fn3);
}
/** @} */
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2>
inline unary_compose<_Operation1, _Operation2>
compose1(const _Operation1& __fn1, const _Operation2& __fn2)
{ return unary_compose<_Operation1,_Operation2>(__fn1, __fn2); }
/** As an extension, SGI provided a functor called @c identity. When a
* functor is required but no operations are desired, this can be used as a
* pass-through. Its @c operator() returns its argument unchanged.
*
* @addtogroup SGIextensions
*/
template <class _Tp> struct identity : public std::_Identity<_Tp> {};
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2, class _Operation3>
class binary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type>
{
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
_Operation3 _M_fn3;
public:
binary_compose(const _Operation1& __x, const _Operation2& __y,
const _Operation3& __z)
: _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }
/** @c select1st and @c select2nd are extensions provided by SGI. Their
* @c operator()s
* take a @c std::pair as an argument, and return either the first member
* or the second member, respectively. They can be used (especially with
* the composition functors) to "strip" data from a sequence before
* performing the remainder of an algorithm.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Pair> struct select1st : public std::_Select1st<_Pair> {};
/// An \link SGIextensions SGI extension \endlink.
template <class _Pair> struct select2nd : public std::_Select2nd<_Pair> {};
/** @} */
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const
{ return _M_fn1(_M_fn2(__x), _M_fn3(__x)); }
};
// extension documented next
template <class _Arg1, class _Arg2>
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
_Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2, class _Operation3>
inline binary_compose<_Operation1, _Operation2, _Operation3>
compose2(const _Operation1& __fn1, const _Operation2& __fn2,
const _Operation3& __fn3)
{ return binary_compose<_Operation1, _Operation2, _Operation3>
(__fn1, __fn2, __fn3); }
/** @} */
template <class _Arg1, class _Arg2>
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
_Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
};
/** As an extension, SGI provided a functor called @c identity. When a
* functor is required but no operations are desired, this can be used as a
* pass-through. Its @c operator() returns its argument unchanged.
*
* @addtogroup SGIextensions
*/
template <class _Tp>
struct identity : public std::_Identity<_Tp> {};
/** The @c operator() of the @c project1st functor takes two arbitrary
* arguments and returns the first one, while @c project2nd returns the
* second one. They are extensions provided by SGI.
*
* @addtogroup SGIextensions
* @{
*/
/** @c select1st and @c select2nd are extensions provided by SGI. Their
* @c operator()s
* take a @c std::pair as an argument, and return either the first member
* or the second member, respectively. They can be used (especially with
* the composition functors) to "strip" data from a sequence before
* performing the remainder of an algorithm.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Pair>
struct select1st : public std::_Select1st<_Pair> {};
/// An \link SGIextensions SGI extension \endlink.
template <class _Arg1, class _Arg2>
struct project1st : public _Project1st<_Arg1, _Arg2> {};
/// An \link SGIextensions SGI extension \endlink.
template <class _Pair>
struct select2nd : public std::_Select2nd<_Pair> {};
/** @} */
/// An \link SGIextensions SGI extension \endlink.
template <class _Arg1, class _Arg2>
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
/** @} */
// extension documented next
template <class _Arg1, class _Arg2>
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1>
{
_Arg1
operator()(const _Arg1& __x, const _Arg2&) const
{ return __x; }
};
// extension documented next
template <class _Result>
struct _Constant_void_fun {
typedef _Result result_type;
result_type _M_val;
template <class _Arg1, class _Arg2>
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2>
{
_Arg2
operator()(const _Arg1&, const _Arg2& __y) const
{ return __y; }
};
_Constant_void_fun(const result_type& __v) : _M_val(__v) {}
const result_type& operator()() const { return _M_val; }
};
/** The @c operator() of the @c project1st functor takes two arbitrary
* arguments and returns the first one, while @c project2nd returns the
* second one. They are extensions provided by SGI.
*
* @addtogroup SGIextensions
* @{
*/
template <class _Result, class _Argument>
struct _Constant_unary_fun {
typedef _Argument argument_type;
typedef _Result result_type;
result_type _M_val;
/// An \link SGIextensions SGI extension \endlink.
template <class _Arg1, class _Arg2>
struct project1st : public _Project1st<_Arg1, _Arg2> {};
_Constant_unary_fun(const result_type& __v) : _M_val(__v) {}
const result_type& operator()(const _Argument&) const { return _M_val; }
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Arg1, class _Arg2>
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
/** @} */
template <class _Result, class _Arg1, class _Arg2>
struct _Constant_binary_fun {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
_Result _M_val;
// extension documented next
template <class _Result>
struct _Constant_void_fun
{
typedef _Result result_type;
result_type _M_val;
_Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
const result_type& operator()(const _Arg1&, const _Arg2&) const {
return _M_val;
}
};
_Constant_void_fun(const result_type& __v) : _M_val(__v) {}
/** These three functors are each constructed from a single arbitrary
* variable/value. Later, their @c operator()s completely ignore any
* arguments passed, and return the stored value.
* - @c constant_void_fun's @c operator() takes no arguments
* - @c constant_unary_fun's @c operator() takes one argument (ignored)
* - @c constant_binary_fun's @c operator() takes two arguments (ignored)
*
* The helper creator functions @c constant0, @c constant1, and
* @c constant2 each take a "result" argument and construct variables of
* the appropriate functor type.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
struct constant_void_fun : public _Constant_void_fun<_Result> {
constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}
};
const result_type&
operator()() const
{ return _M_val; }
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result,
class _Argument = _Result>
struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
{
constant_unary_fun(const _Result& __v)
: _Constant_unary_fun<_Result, _Argument>(__v) {}
};
template <class _Result, class _Argument>
struct _Constant_unary_fun
{
typedef _Argument argument_type;
typedef _Result result_type;
result_type _M_val;
_Constant_unary_fun(const result_type& __v) : _M_val(__v) {}
/// An \link SGIextensions SGI extension \endlink.
template <class _Result,
class _Arg1 = _Result,
class _Arg2 = _Arg1>
struct constant_binary_fun
: public _Constant_binary_fun<_Result, _Arg1, _Arg2>
{
constant_binary_fun(const _Result& __v)
: _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
};
const result_type&
operator()(const _Argument&) const
{ return _M_val; }
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_void_fun<_Result> constant0(const _Result& __val)
{
return constant_void_fun<_Result>(__val);
}
template <class _Result, class _Arg1, class _Arg2>
struct _Constant_binary_fun
{
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
_Result _M_val;
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
{
return constant_unary_fun<_Result,_Result>(__val);
}
_Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
const result_type&
operator()(const _Arg1&, const _Arg2&) const
{ return _M_val; }
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_binary_fun<_Result,_Result,_Result>
constant2(const _Result& __val)
{
return constant_binary_fun<_Result,_Result,_Result>(__val);
}
/** @} */
/** These three functors are each constructed from a single arbitrary
* variable/value. Later, their @c operator()s completely ignore any
* arguments passed, and return the stored value.
* - @c constant_void_fun's @c operator() takes no arguments
* - @c constant_unary_fun's @c operator() takes one argument (ignored)
* - @c constant_binary_fun's @c operator() takes two arguments (ignored)
*
* The helper creator functions @c constant0, @c constant1, and
* @c constant2 each take a "result" argument and construct variables of
* the appropriate functor type.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
struct constant_void_fun
: public _Constant_void_fun<_Result>
{
constant_void_fun(const _Result& __v)
: _Constant_void_fun<_Result>(__v) {}
};
/** The @c subtractive_rng class is documented on
* <a href="http://www.sgi.com/tech/stl/">SGI's site</a>.
* Note that this code assumes that @c int is 32 bits.
*
* @ingroup SGIextensions
*/
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
private:
unsigned int _M_table[55];
size_t _M_index1;
size_t _M_index2;
public:
/// Returns a number less than the argument.
unsigned int operator()(unsigned int __limit) {
_M_index1 = (_M_index1 + 1) % 55;
_M_index2 = (_M_index2 + 1) % 55;
_M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
return _M_table[_M_index1] % __limit;
}
/// An \link SGIextensions SGI extension \endlink.
template <class _Result, class _Argument = _Result>
struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
{
constant_unary_fun(const _Result& __v)
: _Constant_unary_fun<_Result, _Argument>(__v) {}
};
void _M_initialize(unsigned int __seed)
/// An \link SGIextensions SGI extension \endlink.
template <class _Result, class _Arg1 = _Result, class _Arg2 = _Arg1>
struct constant_binary_fun
: public _Constant_binary_fun<_Result, _Arg1, _Arg2>
{
constant_binary_fun(const _Result& __v)
: _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_void_fun<_Result>
constant0(const _Result& __val)
{ return constant_void_fun<_Result>(__val); }
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_unary_fun<_Result, _Result>
constant1(const _Result& __val)
{ return constant_unary_fun<_Result, _Result>(__val); }
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_binary_fun<_Result,_Result,_Result>
constant2(const _Result& __val)
{ return constant_binary_fun<_Result, _Result, _Result>(__val); }
/** @} */
/** The @c subtractive_rng class is documented on
* <a href="http://www.sgi.com/tech/stl/">SGI's site</a>.
* Note that this code assumes that @c int is 32 bits.
*
* @ingroup SGIextensions
*/
class subtractive_rng
: public unary_function<unsigned int, unsigned int>
{
unsigned int __k = 1;
_M_table[54] = __seed;
size_t __i;
for (__i = 0; __i < 54; __i++) {
size_t __ii = (21 * (__i + 1) % 55) - 1;
_M_table[__ii] = __k;
__k = __seed - __k;
__seed = _M_table[__ii];
private:
unsigned int _M_table[55];
size_t _M_index1;
size_t _M_index2;
public:
/// Returns a number less than the argument.
unsigned int
operator()(unsigned int __limit)
{
_M_index1 = (_M_index1 + 1) % 55;
_M_index2 = (_M_index2 + 1) % 55;
_M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
return _M_table[_M_index1] % __limit;
}
for (int __loop = 0; __loop < 4; __loop++) {
for (__i = 0; __i < 55; __i++)
void
_M_initialize(unsigned int __seed)
{
unsigned int __k = 1;
_M_table[54] = __seed;
size_t __i;
for (__i = 0; __i < 54; __i++)
{
size_t __ii = (21 * (__i + 1) % 55) - 1;
_M_table[__ii] = __k;
__k = __seed - __k;
__seed = _M_table[__ii];
}
for (int __loop = 0; __loop < 4; __loop++)
{
for (__i = 0; __i < 55; __i++)
_M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
}
_M_index1 = 0;
_M_index2 = 31;
}
_M_index1 = 0;
_M_index2 = 31;
}
/// Ctor allowing you to initialize the seed.
subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
/// Default ctor; initializes its state with some number you don't see.
subtractive_rng() { _M_initialize(161803398u); }
};
/// Ctor allowing you to initialize the seed.
subtractive_rng(unsigned int __seed)
{ _M_initialize(__seed); }
// Mem_fun adaptor helper functions mem_fun1 and mem_fun1_ref,
// provided for backward compatibility, they are no longer part of
// the C++ standard.
/// Default ctor; initializes its state with some number you don't see.
subtractive_rng()
{ _M_initialize(161803398u); }
};
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
// Mem_fun adaptor helper functions mem_fun1 and mem_fun1_ref,
// provided for backward compatibility, they are no longer part of
// the C++ standard.
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret, _Tp, _Arg>
mem_fun1(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret, _Tp, _Arg>
mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
} // namespace __gnu_cxx
#endif

View File

@ -1,6 +1,6 @@
// 'struct hash' from SGI -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -68,55 +68,105 @@ namespace __gnu_cxx
{
using std::size_t;
template <class _Key> struct hash { };
template<class _Key>
struct hash { };
inline size_t
__stl_hash_string(const char* __s)
{
unsigned long __h = 0;
for ( ; *__s; ++__s)
__h = 5*__h + *__s;
__h = 5 * __h + *__s;
return size_t(__h);
}
template<> struct hash<char*>
{
size_t operator()(const char* __s) const
{ return __stl_hash_string(__s); }
};
template<>
struct hash<char*>
{
size_t
operator()(const char* __s) const
{ return __stl_hash_string(__s); }
};
template<> struct hash<const char*>
{
size_t operator()(const char* __s) const
{ return __stl_hash_string(__s); }
};
template<>
struct hash<const char*>
{
size_t
operator()(const char* __s) const
{ return __stl_hash_string(__s); }
};
template<> struct hash<char>
{ size_t operator()(char __x) const { return __x; } };
template<>
struct hash<char>
{
size_t
operator()(char __x) const
{ return __x; }
};
template<> struct hash<unsigned char>
{ size_t operator()(unsigned char __x) const { return __x; } };
template<>
struct hash<unsigned char>
{
size_t
operator()(unsigned char __x) const
{ return __x; }
};
template<> struct hash<signed char>
{ size_t operator()(unsigned char __x) const { return __x; } };
template<>
struct hash<signed char>
{
size_t
operator()(unsigned char __x) const
{ return __x; }
};
template<> struct hash<short>
{ size_t operator()(short __x) const { return __x; } };
template<>
struct hash<short>
{
size_t
operator()(short __x) const
{ return __x; }
};
template<> struct hash<unsigned short>
{ size_t operator()(unsigned short __x) const { return __x; } };
template<>
struct hash<unsigned short>
{
size_t
operator()(unsigned short __x) const
{ return __x; }
};
template<> struct hash<int>
{ size_t operator()(int __x) const { return __x; } };
template<>
struct hash<int>
{
size_t
operator()(int __x) const
{ return __x; }
};
template<> struct hash<unsigned int>
{ size_t operator()(unsigned int __x) const { return __x; } };
template<>
struct hash<unsigned int>
{
size_t
operator()(unsigned int __x) const
{ return __x; }
};
template<> struct hash<long>
{ size_t operator()(long __x) const { return __x; } };
template<>
struct hash<long>
{
size_t
operator()(long __x) const
{ return __x; }
};
template<> struct hash<unsigned long>
{ size_t operator()(unsigned long __x) const { return __x; } };
template<>
struct hash<unsigned long>
{
size_t
operator()(unsigned long __x) const
{ return __x; }
};
} // namespace __gnu_cxx
#endif

View File

@ -1,6 +1,6 @@
// HP/SGI iterator extensions -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -81,7 +81,11 @@ namespace __gnu_cxx
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
while (__first != __last) { ++__first; ++__n; }
while (__first != __last)
{
++__first;
++__n;
}
}
template<typename _RandomAccessIterator, typename _Distance>
@ -90,7 +94,8 @@ namespace __gnu_cxx
_Distance& __n, std::random_access_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__n += __last - __first;
}

View File

@ -76,6 +76,11 @@ namespace std
C*
S::_S_construct(const C*, const C*, const allocator<C>&,
forward_iterator_tag);
// Used in str::find.
template
const C*
search(const C*, const C*, const C*, const C*, bool(*)(const C&, const C&));
} // namespace std
namespace __gnu_cxx

View File

@ -0,0 +1,105 @@
// Copyright (C) 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
#include <string>
#include <testsuite_performance.h>
void
test_pair(const std::string& s, const std::string& f, int n)
{
std::string::size_type sz = 0;
for (int i = 0; i < n; ++i)
sz = s.find(f);
}
int main()
{
using namespace std;
using namespace __gnu_test;
time_counter time;
resource_counter resource;
const unsigned int iterations = 2000000;
string s, f;
s = "aabbaabbaaxd adbffdadgaxaabbbddhatyaaaabbbaabbaabbcsy";
f = "aabbaabbc";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "1", time, resource);
clear_counters(time, resource);
f = "aabbb";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "2", time, resource);
clear_counters(time, resource);
f = "xd";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "3", time, resource);
clear_counters(time, resource);
s = "dhruv is a very very good boy ;-)";
f = "very";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "4", time, resource);
clear_counters(time, resource);
f = "bad";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "5", time, resource);
clear_counters(time, resource);
f = "extra irritating";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "6", time, resource);
clear_counters(time, resource);
s = "this is a very this is a very this is a verty this is a very "
"this is a very long sentence";
f = "this is a very long sentence";
start_counters(time, resource);
test_pair(s, f, iterations);
stop_counters(time, resource);
report_performance(__FILE__, "7", time, resource);
clear_counters(time, resource);
return 0;
}