[aarch64][vect] Support V8QI->V8HI WIDEN_ patterns

In the case where 8 out of every 16 elements are widened using a
widening pattern and the next 8 are skipped, the patterns are not
recognized. This is because they are normally used in a pair, such  as
VEC_WIDEN_MINUS_HI/LO, to achieve a v16qi->v16hi conversion for example.
This patch adds support for V8QI->V8HI patterns.

gcc/ChangeLog:

	PR tree-optimization/98772
	* optabs-tree.c (supportable_half_widening_operation): New function
	to check for supportable V8QI->V8HI widening patterns.
	* optabs-tree.h (supportable_half_widening_operation): New function.
	* tree-vect-stmts.c (vect_create_half_widening_stmts): New function
	to create promotion stmts for V8QI->V8HI widening patterns.
	(vectorizable_conversion): Add case for V8QI->V8HI.

gcc/testsuite/ChangeLog:

	PR tree-optimization/98772
	* gcc.target/aarch64/pr98772.c: New test.
This commit is contained in:
Joel Hutton 2021-02-11 14:59:26 +00:00
parent ff6903288d
commit 4af29981ab
4 changed files with 314 additions and 8 deletions

View File

@ -277,6 +277,75 @@ optab_for_tree_code (enum tree_code code, const_tree type,
}
}
/* Check whether an operation represented by CODE is a 'half' widening operation
in which the input vector type has half the number of bits of the output
vector type e.g. V8QI->V8HI.
This is handled by widening the inputs using NOP_EXPRs then using a
non-widening stmt e.g. MINUS_EXPR. RTL fusing converts these to the widening
hardware instructions if supported.
The more typical case (handled in supportable_widening_operation) is where
the input vector type has the same number of bits as the output vector type.
In this case half the elements of the input vectors must be processed at a
time into respective vector outputs with elements twice as wide i.e. a
'hi'/'lo' pair using codes such as VEC_WIDEN_MINUS_HI/LO.
Supported widening operations:
WIDEN_MINUS_EXPR
WIDEN_PLUS_EXPR
WIDEN_MULT_EXPR
WIDEN_LSHIFT_EXPR
Output:
- CODE1 - The non-widened code, which will be used after the inputs are
converted to the wide type. */
bool
supportable_half_widening_operation (enum tree_code code, tree vectype_out,
tree vectype_in, enum tree_code *code1)
{
machine_mode m1,m2;
enum tree_code dummy_code;
optab op;
gcc_assert (VECTOR_TYPE_P (vectype_out) && VECTOR_TYPE_P (vectype_in));
m1 = TYPE_MODE (vectype_out);
m2 = TYPE_MODE (vectype_in);
if (!VECTOR_MODE_P (m1) || !VECTOR_MODE_P (m2))
return false;
if (maybe_ne (TYPE_VECTOR_SUBPARTS (vectype_in),
TYPE_VECTOR_SUBPARTS (vectype_out)))
return false;
switch (code)
{
case WIDEN_LSHIFT_EXPR:
*code1 = LSHIFT_EXPR;
break;
case WIDEN_MINUS_EXPR:
*code1 = MINUS_EXPR;
break;
case WIDEN_PLUS_EXPR:
*code1 = PLUS_EXPR;
break;
case WIDEN_MULT_EXPR:
*code1 = MULT_EXPR;
break;
default:
return false;
}
if (!supportable_convert_operation (NOP_EXPR, vectype_out, vectype_in,
&dummy_code))
return false;
op = optab_for_tree_code (*code1, vectype_out, optab_vector);
return (optab_handler (op, TYPE_MODE (vectype_out)) != CODE_FOR_nothing);
}
/* Function supportable_convert_operation
Check whether an operation represented by the code CODE is a

View File

@ -36,6 +36,9 @@ enum optab_subtype
the second argument. The third argument distinguishes between the types of
vector shifts and rotates. */
optab optab_for_tree_code (enum tree_code, const_tree, enum optab_subtype);
bool
supportable_half_widening_operation (enum tree_code, tree, tree,
enum tree_code *);
bool supportable_convert_operation (enum tree_code, tree, tree,
enum tree_code *);
bool expand_vec_cmp_expr_p (tree, tree, enum tree_code);

View File

@ -0,0 +1,155 @@
/* { dg-do run } */
/* { dg-options "-O3 -save-temps" } */
#include <stdint.h>
#include <string.h>
#define DSIZE 16
#define PIXSIZE 64
extern void
wplus (uint16_t *d, uint8_t *restrict pix1, uint8_t *restrict pix2 )
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] + pix2[x];
pix1 += 16;
pix2 += 16;
}
}
extern void __attribute__((optimize (0)))
wplus_no_opt (uint16_t *d, uint8_t *restrict pix1, uint8_t *restrict pix2 )
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] + pix2[x];
pix1 += 16;
pix2 += 16;
}
}
extern void
wminus (uint16_t *d, uint8_t *restrict pix1, uint8_t *restrict pix2 )
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] - pix2[x];
pix1 += 16;
pix2 += 16;
}
}
extern void __attribute__((optimize (0)))
wminus_no_opt (uint16_t *d, uint8_t *restrict pix1, uint8_t *restrict pix2 )
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] - pix2[x];
pix1 += 16;
pix2 += 16;
}
}
extern void
wmult (uint16_t *d, uint8_t *restrict pix1, uint8_t *restrict pix2 )
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] * pix2[x];
pix1 += 16;
pix2 += 16;
}
}
extern void __attribute__((optimize (0)))
wmult_no_opt (uint16_t *d, uint8_t *restrict pix1, uint8_t *restrict pix2 )
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] * pix2[x];
pix1 += 16;
pix2 += 16;
}
}
extern void
wlshift (uint16_t *d, uint8_t *restrict pix1)
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] << 8;
pix1 += 16;
}
}
extern void __attribute__((optimize (0)))
wlshift_no_opt (uint16_t *d, uint8_t *restrict pix1)
{
for (int y = 0; y < 4; y++ )
{
for (int x = 0; x < 4; x++ )
d[x + y*4] = pix1[x] << 8;
pix1 += 16;
}
}
void __attribute__((optimize (0)))
init_arrays (uint16_t *d_a, uint16_t *d_b, uint8_t *pix1, uint8_t *pix2)
{
for (int i = 0; i < DSIZE; i++)
{
d_a[i] = (1074 * i)%17;
d_b[i] = (1074 * i)%17;
}
for (int i = 0; i < PIXSIZE; i++)
{
pix1[i] = (1024 * i)%17;
pix2[i] = (1024 * i)%17;
}
}
/* Don't optimize main so we don't get confused over where the vector
instructions are generated. */
__attribute__((optimize (0)))
int main ()
{
uint16_t d_a[DSIZE];
uint16_t d_b[DSIZE];
uint8_t pix1[PIXSIZE];
uint8_t pix2[PIXSIZE];
init_arrays (d_a, d_b, pix1, pix2);
wplus (d_a, pix1, pix2);
wplus_no_opt (d_b, pix1, pix2);
if (memcmp (d_a,d_b, DSIZE) != 0)
return 1;
init_arrays (d_a, d_b, pix1, pix2);
wminus (d_a, pix1, pix2);
wminus_no_opt (d_b, pix1, pix2);
if (memcmp (d_a,d_b, DSIZE) != 0)
return 2;
init_arrays (d_a, d_b, pix1, pix2);
wmult (d_a, pix1, pix2);
wmult_no_opt (d_b, pix1, pix2);
if (memcmp (d_a,d_b, DSIZE) != 0)
return 3;
init_arrays (d_a, d_b, pix1, pix2);
wlshift (d_a, pix1);
wlshift_no_opt (d_b, pix1);
if (memcmp (d_a,d_b, DSIZE) != 0)
return 4;
}
/* { dg-final { scan-assembler-times "uaddl\\tv" 2 } } */
/* { dg-final { scan-assembler-times "usubl\\tv" 2 } } */
/* { dg-final { scan-assembler-times "umull\\tv" 2 } } */
/* { dg-final { scan-assembler-times "shl\\tv" 2 } } */

View File

@ -4544,6 +4544,64 @@ vect_create_vectorized_promotion_stmts (vec_info *vinfo,
*vec_oprnds0 = vec_tmp;
}
/* Create vectorized promotion stmts for widening stmts using only half the
potential vector size for input. */
static void
vect_create_half_widening_stmts (vec_info *vinfo,
vec<tree> *vec_oprnds0,
vec<tree> *vec_oprnds1,
stmt_vec_info stmt_info, tree vec_dest,
gimple_stmt_iterator *gsi,
enum tree_code code1,
int op_type)
{
int i;
tree vop0, vop1;
gimple *new_stmt1;
gimple *new_stmt2;
gimple *new_stmt3;
vec<tree> vec_tmp = vNULL;
vec_tmp.create (vec_oprnds0->length ());
FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
{
tree new_tmp1, new_tmp2, new_tmp3, out_type;
gcc_assert (op_type == binary_op);
vop1 = (*vec_oprnds1)[i];
/* Widen the first vector input. */
out_type = TREE_TYPE (vec_dest);
new_tmp1 = make_ssa_name (out_type);
new_stmt1 = gimple_build_assign (new_tmp1, NOP_EXPR, vop0);
vect_finish_stmt_generation (vinfo, stmt_info, new_stmt1, gsi);
if (VECTOR_TYPE_P (TREE_TYPE (vop1)))
{
/* Widen the second vector input. */
new_tmp2 = make_ssa_name (out_type);
new_stmt2 = gimple_build_assign (new_tmp2, NOP_EXPR, vop1);
vect_finish_stmt_generation (vinfo, stmt_info, new_stmt2, gsi);
/* Perform the operation. With both vector inputs widened. */
new_stmt3 = gimple_build_assign (vec_dest, code1, new_tmp1, new_tmp2);
}
else
{
/* Perform the operation. With the single vector input widened. */
new_stmt3 = gimple_build_assign (vec_dest, code1, new_tmp1, vop1);
}
new_tmp3 = make_ssa_name (vec_dest, new_stmt3);
gimple_assign_set_lhs (new_stmt3, new_tmp3);
vect_finish_stmt_generation (vinfo, stmt_info, new_stmt3, gsi);
/* Store the results for the next step. */
vec_tmp.quick_push (new_tmp3);
}
vec_oprnds0->release ();
*vec_oprnds0 = vec_tmp;
}
/* Check if STMT_INFO performs a conversion operation that can be vectorized.
If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized
@ -4696,7 +4754,13 @@ vectorizable_conversion (vec_info *vinfo,
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
if (known_eq (nunits_out, nunits_in))
modifier = NONE;
if (code == WIDEN_MINUS_EXPR
|| code == WIDEN_PLUS_EXPR
|| code == WIDEN_LSHIFT_EXPR
|| code == WIDEN_MULT_EXPR)
modifier = WIDEN;
else
modifier = NONE;
else if (multiple_p (nunits_out, nunits_in))
modifier = NARROW;
else
@ -4742,9 +4806,18 @@ vectorizable_conversion (vec_info *vinfo,
return false;
case WIDEN:
if (supportable_widening_operation (vinfo, code, stmt_info, vectype_out,
vectype_in, &code1, &code2,
&multi_step_cvt, &interm_types))
if (known_eq (nunits_in, nunits_out))
{
if (!supportable_half_widening_operation (code, vectype_out,
vectype_in, &code1))
goto unsupported;
gcc_assert (!(multi_step_cvt && op_type == binary_op));
break;
}
if (supportable_widening_operation (vinfo, code, stmt_info,
vectype_out, vectype_in, &code1,
&code2, &multi_step_cvt,
&interm_types))
{
/* Binary widening operation can only be supported directly by the
architecture. */
@ -4980,10 +5053,16 @@ vectorizable_conversion (vec_info *vinfo,
c1 = codecvt1;
c2 = codecvt2;
}
vect_create_vectorized_promotion_stmts (vinfo, &vec_oprnds0,
&vec_oprnds1, stmt_info,
this_dest, gsi,
c1, c2, op_type);
if (known_eq (nunits_out, nunits_in))
vect_create_half_widening_stmts (vinfo, &vec_oprnds0,
&vec_oprnds1, stmt_info,
this_dest, gsi,
c1, op_type);
else
vect_create_vectorized_promotion_stmts (vinfo, &vec_oprnds0,
&vec_oprnds1, stmt_info,
this_dest, gsi,
c1, c2, op_type);
}
FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)