runtime: copy mstats code from Go 1.7 runtime
This replaces mem.go and the C runtime_ReadMemStats function with the Go 1.7 mstats.go. The GCStats code is commented out for now. The corresponding gccgo code is in runtime/mgc0.c. The variables memstats and worldsema are shared between the Go code and the C code, but are not exported. To make this work, add temporary accessor functions acquireWorldsema, releaseWorldsema, getMstats (the latter known as mstats in the C code). Check the preemptoff field of m when allocating and when considering whether to start a GC. This works with the new stopTheWorld and startTheWorld functions in Go, which are essentially the Go 1.7 versions. Change the compiler to stack allocate closures when compiling the runtime package. Within the runtime packages closures do not escape. This is similar to what the gc compiler does, except that the gc compiler, when compiling the runtime package, gives an error if escape analysis shows that a closure does escape. I added this here because the Go version of ReadMemStats calls systemstack with a closure, and having that allocate memory was causing some tests that measure memory allocations to fail. Reviewed-on: https://go-review.googlesource.com/30972 From-SVN: r241124
This commit is contained in:
parent
5b1548fd79
commit
58f7dab40d
@ -1,4 +1,4 @@
|
||||
6c9070324d5b7c8483bc7c17b0a8faaa1fb1ae30
|
||||
681580a3afc687ba3ff9ef240c67e8630e4306e6
|
||||
|
||||
The first line of this file holds the git revision number of the last
|
||||
merge done from the gofrontend repository.
|
||||
|
@ -3026,6 +3026,21 @@ Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars,
|
||||
Struct_type* st = closure_var->var_value()->type()->deref()->struct_type();
|
||||
Expression* cv = Expression::make_struct_composite_literal(st, initializer,
|
||||
location);
|
||||
|
||||
// When compiling the runtime, closures do not escape. When escape
|
||||
// analysis becomes the default, and applies to closures, this
|
||||
// should be changed to make it an error if a closure escapes.
|
||||
if (this->gogo_->compiling_runtime()
|
||||
&& this->gogo_->package_name() == "runtime")
|
||||
{
|
||||
Temporary_statement* ctemp = Statement::make_temporary(st, cv, location);
|
||||
this->gogo_->add_statement(ctemp);
|
||||
Expression* ref = Expression::make_temporary_reference(ctemp, location);
|
||||
Expression* addr = Expression::make_unary(OPERATOR_AND, ref, location);
|
||||
addr->unary_expression()->set_does_not_escape();
|
||||
return addr;
|
||||
}
|
||||
|
||||
return Expression::make_heap_expression(cv, location);
|
||||
}
|
||||
|
||||
|
@ -1,77 +0,0 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
// Note: the MemStats struct should be kept in sync with
|
||||
// struct MStats in malloc.h
|
||||
|
||||
// A MemStats records statistics about the memory allocator.
|
||||
type MemStats struct {
|
||||
// General statistics.
|
||||
Alloc uint64 // bytes allocated and still in use
|
||||
TotalAlloc uint64 // bytes allocated (even if freed)
|
||||
Sys uint64 // bytes obtained from system (sum of XxxSys below)
|
||||
Lookups uint64 // number of pointer lookups
|
||||
Mallocs uint64 // number of mallocs
|
||||
Frees uint64 // number of frees
|
||||
|
||||
// Main allocation heap statistics.
|
||||
HeapAlloc uint64 // bytes allocated and still in use
|
||||
HeapSys uint64 // bytes obtained from system
|
||||
HeapIdle uint64 // bytes in idle spans
|
||||
HeapInuse uint64 // bytes in non-idle span
|
||||
HeapReleased uint64 // bytes released to the OS
|
||||
HeapObjects uint64 // total number of allocated objects
|
||||
|
||||
// Low-level fixed-size structure allocator statistics.
|
||||
// Inuse is bytes used now.
|
||||
// Sys is bytes obtained from system.
|
||||
StackInuse uint64 // bootstrap stacks
|
||||
StackSys uint64
|
||||
MSpanInuse uint64 // mspan structures
|
||||
MSpanSys uint64
|
||||
MCacheInuse uint64 // mcache structures
|
||||
MCacheSys uint64
|
||||
BuckHashSys uint64 // profiling bucket hash table
|
||||
GCSys uint64 // GC metadata
|
||||
OtherSys uint64 // other system allocations
|
||||
|
||||
// Garbage collector statistics.
|
||||
NextGC uint64 // next run in HeapAlloc time (bytes)
|
||||
LastGC uint64 // last run in absolute time (ns)
|
||||
PauseTotalNs uint64
|
||||
PauseNs [256]uint64 // circular buffer of recent GC pause times, most recent at [(NumGC+255)%256]
|
||||
PauseEnd [256]uint64 // circular buffer of recent GC pause end times
|
||||
NumGC uint32
|
||||
GCCPUFraction float64 // fraction of CPU time used by GC
|
||||
EnableGC bool
|
||||
DebugGC bool
|
||||
|
||||
// Per-size allocation statistics.
|
||||
// 61 is NumSizeClasses in the C code.
|
||||
BySize [61]struct {
|
||||
Size uint32
|
||||
Mallocs uint64
|
||||
Frees uint64
|
||||
}
|
||||
}
|
||||
|
||||
var Sizeof_C_MStats uintptr // filled in by malloc.goc
|
||||
|
||||
func init() {
|
||||
var memStats MemStats
|
||||
if Sizeof_C_MStats != unsafe.Sizeof(memStats) {
|
||||
println(Sizeof_C_MStats, unsafe.Sizeof(memStats))
|
||||
panic("MStats vs MemStatsType size mismatch")
|
||||
}
|
||||
}
|
||||
|
||||
// ReadMemStats populates m with memory allocator statistics.
|
||||
func ReadMemStats(m *MemStats)
|
||||
|
||||
// GC runs a garbage collection.
|
||||
func GC()
|
418
libgo/go/runtime/mstats.go
Normal file
418
libgo/go/runtime/mstats.go
Normal file
@ -0,0 +1,418 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Memory statistics
|
||||
|
||||
package runtime
|
||||
|
||||
import (
|
||||
"runtime/internal/atomic"
|
||||
"runtime/internal/sys"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
// Statistics.
|
||||
// If you edit this structure, also edit type MemStats below.
|
||||
type mstats struct {
|
||||
// General statistics.
|
||||
alloc uint64 // bytes allocated and not yet freed
|
||||
total_alloc uint64 // bytes allocated (even if freed)
|
||||
sys uint64 // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
|
||||
nlookup uint64 // number of pointer lookups
|
||||
nmalloc uint64 // number of mallocs
|
||||
nfree uint64 // number of frees
|
||||
|
||||
// Statistics about malloc heap.
|
||||
// protected by mheap.lock
|
||||
heap_alloc uint64 // bytes allocated and not yet freed (same as alloc above)
|
||||
heap_sys uint64 // bytes obtained from system
|
||||
heap_idle uint64 // bytes in idle spans
|
||||
heap_inuse uint64 // bytes in non-idle spans
|
||||
heap_released uint64 // bytes released to the os
|
||||
heap_objects uint64 // total number of allocated objects
|
||||
|
||||
// Statistics about allocation of low-level fixed-size structures.
|
||||
// Protected by FixAlloc locks.
|
||||
stacks_inuse uint64 // this number is included in heap_inuse above
|
||||
stacks_sys uint64 // always 0 in mstats
|
||||
mspan_inuse uint64 // mspan structures
|
||||
mspan_sys uint64
|
||||
mcache_inuse uint64 // mcache structures
|
||||
mcache_sys uint64
|
||||
buckhash_sys uint64 // profiling bucket hash table
|
||||
gc_sys uint64
|
||||
other_sys uint64
|
||||
|
||||
// Statistics about garbage collector.
|
||||
// Protected by mheap or stopping the world during GC.
|
||||
next_gc uint64 // next gc (in heap_live time)
|
||||
last_gc uint64 // last gc (in absolute time)
|
||||
pause_total_ns uint64
|
||||
pause_ns [256]uint64 // circular buffer of recent gc pause lengths
|
||||
pause_end [256]uint64 // circular buffer of recent gc end times (nanoseconds since 1970)
|
||||
numgc uint32
|
||||
gc_cpu_fraction float64 // fraction of CPU time used by GC
|
||||
enablegc bool
|
||||
debuggc bool
|
||||
|
||||
// Statistics about allocation size classes.
|
||||
|
||||
by_size [_NumSizeClasses]struct {
|
||||
size uint32
|
||||
nmalloc uint64
|
||||
nfree uint64
|
||||
}
|
||||
|
||||
// Statistics below here are not exported to Go directly.
|
||||
|
||||
tinyallocs uint64 // number of tiny allocations that didn't cause actual allocation; not exported to go directly
|
||||
|
||||
// heap_live is the number of bytes considered live by the GC.
|
||||
// That is: retained by the most recent GC plus allocated
|
||||
// since then. heap_live <= heap_alloc, since heap_alloc
|
||||
// includes unmarked objects that have not yet been swept (and
|
||||
// hence goes up as we allocate and down as we sweep) while
|
||||
// heap_live excludes these objects (and hence only goes up
|
||||
// between GCs).
|
||||
//
|
||||
// This is updated atomically without locking. To reduce
|
||||
// contention, this is updated only when obtaining a span from
|
||||
// an mcentral and at this point it counts all of the
|
||||
// unallocated slots in that span (which will be allocated
|
||||
// before that mcache obtains another span from that
|
||||
// mcentral). Hence, it slightly overestimates the "true" live
|
||||
// heap size. It's better to overestimate than to
|
||||
// underestimate because 1) this triggers the GC earlier than
|
||||
// necessary rather than potentially too late and 2) this
|
||||
// leads to a conservative GC rate rather than a GC rate that
|
||||
// is potentially too low.
|
||||
//
|
||||
// Whenever this is updated, call traceHeapAlloc() and
|
||||
// gcController.revise().
|
||||
heap_live uint64
|
||||
|
||||
// heap_scan is the number of bytes of "scannable" heap. This
|
||||
// is the live heap (as counted by heap_live), but omitting
|
||||
// no-scan objects and no-scan tails of objects.
|
||||
//
|
||||
// Whenever this is updated, call gcController.revise().
|
||||
heap_scan uint64
|
||||
|
||||
// heap_marked is the number of bytes marked by the previous
|
||||
// GC. After mark termination, heap_live == heap_marked, but
|
||||
// unlike heap_live, heap_marked does not change until the
|
||||
// next mark termination.
|
||||
heap_marked uint64
|
||||
|
||||
// heap_reachable is an estimate of the reachable heap bytes
|
||||
// at the end of the previous GC.
|
||||
heap_reachable uint64
|
||||
}
|
||||
|
||||
var memstats mstats
|
||||
|
||||
// A MemStats records statistics about the memory allocator.
|
||||
type MemStats struct {
|
||||
// General statistics.
|
||||
Alloc uint64 // bytes allocated and not yet freed
|
||||
TotalAlloc uint64 // bytes allocated (even if freed)
|
||||
Sys uint64 // bytes obtained from system (sum of XxxSys below)
|
||||
Lookups uint64 // number of pointer lookups
|
||||
Mallocs uint64 // number of mallocs
|
||||
Frees uint64 // number of frees
|
||||
|
||||
// Main allocation heap statistics.
|
||||
HeapAlloc uint64 // bytes allocated and not yet freed (same as Alloc above)
|
||||
HeapSys uint64 // bytes obtained from system
|
||||
HeapIdle uint64 // bytes in idle spans
|
||||
HeapInuse uint64 // bytes in non-idle span
|
||||
HeapReleased uint64 // bytes released to the OS
|
||||
HeapObjects uint64 // total number of allocated objects
|
||||
|
||||
// Low-level fixed-size structure allocator statistics.
|
||||
// Inuse is bytes used now.
|
||||
// Sys is bytes obtained from system.
|
||||
StackInuse uint64 // bytes used by stack allocator
|
||||
StackSys uint64
|
||||
MSpanInuse uint64 // mspan structures
|
||||
MSpanSys uint64
|
||||
MCacheInuse uint64 // mcache structures
|
||||
MCacheSys uint64
|
||||
BuckHashSys uint64 // profiling bucket hash table
|
||||
GCSys uint64 // GC metadata
|
||||
OtherSys uint64 // other system allocations
|
||||
|
||||
// Garbage collector statistics.
|
||||
NextGC uint64 // next collection will happen when HeapAlloc ≥ this amount
|
||||
LastGC uint64 // end time of last collection (nanoseconds since 1970)
|
||||
PauseTotalNs uint64
|
||||
PauseNs [256]uint64 // circular buffer of recent GC pause durations, most recent at [(NumGC+255)%256]
|
||||
PauseEnd [256]uint64 // circular buffer of recent GC pause end times
|
||||
NumGC uint32
|
||||
GCCPUFraction float64 // fraction of CPU time used by GC
|
||||
EnableGC bool
|
||||
DebugGC bool
|
||||
|
||||
// Per-size allocation statistics.
|
||||
// 61 is NumSizeClasses in the C code.
|
||||
BySize [61]struct {
|
||||
Size uint32
|
||||
Mallocs uint64
|
||||
Frees uint64
|
||||
}
|
||||
}
|
||||
|
||||
// Size of the trailing by_size array differs between Go and C,
|
||||
// and all data after by_size is local to runtime, not exported.
|
||||
// NumSizeClasses was changed, but we cannot change Go struct because of backward compatibility.
|
||||
// sizeof_C_MStats is what C thinks about size of Go struct.
|
||||
var sizeof_C_MStats = unsafe.Offsetof(memstats.by_size) + 61*unsafe.Sizeof(memstats.by_size[0])
|
||||
|
||||
func init() {
|
||||
var memStats MemStats
|
||||
if sizeof_C_MStats != unsafe.Sizeof(memStats) {
|
||||
println(sizeof_C_MStats, unsafe.Sizeof(memStats))
|
||||
throw("MStats vs MemStatsType size mismatch")
|
||||
}
|
||||
}
|
||||
|
||||
// ReadMemStats populates m with memory allocator statistics.
|
||||
func ReadMemStats(m *MemStats) {
|
||||
stopTheWorld("read mem stats")
|
||||
|
||||
systemstack(func() {
|
||||
readmemstats_m(m)
|
||||
})
|
||||
|
||||
startTheWorld()
|
||||
}
|
||||
|
||||
func readmemstats_m(stats *MemStats) {
|
||||
updatememstats(nil)
|
||||
|
||||
// Size of the trailing by_size array differs between Go and C,
|
||||
// NumSizeClasses was changed, but we cannot change Go struct because of backward compatibility.
|
||||
memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)
|
||||
|
||||
// Stack numbers are part of the heap numbers, separate those out for user consumption
|
||||
stats.StackSys += stats.StackInuse
|
||||
stats.HeapInuse -= stats.StackInuse
|
||||
stats.HeapSys -= stats.StackInuse
|
||||
}
|
||||
|
||||
// For gccgo this is in runtime/mgc0.c.
|
||||
func updatememstats(stats *gcstats)
|
||||
|
||||
/*
|
||||
For gccgo these are still in runtime/mgc0.c.
|
||||
|
||||
//go:linkname readGCStats runtime/debug.readGCStats
|
||||
func readGCStats(pauses *[]uint64) {
|
||||
systemstack(func() {
|
||||
readGCStats_m(pauses)
|
||||
})
|
||||
}
|
||||
|
||||
func readGCStats_m(pauses *[]uint64) {
|
||||
p := *pauses
|
||||
// Calling code in runtime/debug should make the slice large enough.
|
||||
if cap(p) < len(memstats.pause_ns)+3 {
|
||||
throw("short slice passed to readGCStats")
|
||||
}
|
||||
|
||||
// Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
|
||||
lock(&mheap_.lock)
|
||||
|
||||
n := memstats.numgc
|
||||
if n > uint32(len(memstats.pause_ns)) {
|
||||
n = uint32(len(memstats.pause_ns))
|
||||
}
|
||||
|
||||
// The pause buffer is circular. The most recent pause is at
|
||||
// pause_ns[(numgc-1)%len(pause_ns)], and then backward
|
||||
// from there to go back farther in time. We deliver the times
|
||||
// most recent first (in p[0]).
|
||||
p = p[:cap(p)]
|
||||
for i := uint32(0); i < n; i++ {
|
||||
j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
|
||||
p[i] = memstats.pause_ns[j]
|
||||
p[n+i] = memstats.pause_end[j]
|
||||
}
|
||||
|
||||
p[n+n] = memstats.last_gc
|
||||
p[n+n+1] = uint64(memstats.numgc)
|
||||
p[n+n+2] = memstats.pause_total_ns
|
||||
unlock(&mheap_.lock)
|
||||
*pauses = p[:n+n+3]
|
||||
}
|
||||
|
||||
//go:nowritebarrier
|
||||
func updatememstats(stats *gcstats) {
|
||||
if stats != nil {
|
||||
*stats = gcstats{}
|
||||
}
|
||||
for mp := allm; mp != nil; mp = mp.alllink {
|
||||
if stats != nil {
|
||||
src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats))
|
||||
dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats))
|
||||
for i, v := range src {
|
||||
dst[i] += v
|
||||
}
|
||||
mp.gcstats = gcstats{}
|
||||
}
|
||||
}
|
||||
|
||||
memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
|
||||
memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
|
||||
memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
|
||||
memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys
|
||||
|
||||
// Calculate memory allocator stats.
|
||||
// During program execution we only count number of frees and amount of freed memory.
|
||||
// Current number of alive object in the heap and amount of alive heap memory
|
||||
// are calculated by scanning all spans.
|
||||
// Total number of mallocs is calculated as number of frees plus number of alive objects.
|
||||
// Similarly, total amount of allocated memory is calculated as amount of freed memory
|
||||
// plus amount of alive heap memory.
|
||||
memstats.alloc = 0
|
||||
memstats.total_alloc = 0
|
||||
memstats.nmalloc = 0
|
||||
memstats.nfree = 0
|
||||
for i := 0; i < len(memstats.by_size); i++ {
|
||||
memstats.by_size[i].nmalloc = 0
|
||||
memstats.by_size[i].nfree = 0
|
||||
}
|
||||
|
||||
// Flush MCache's to MCentral.
|
||||
systemstack(flushallmcaches)
|
||||
|
||||
// Aggregate local stats.
|
||||
cachestats()
|
||||
|
||||
// Scan all spans and count number of alive objects.
|
||||
lock(&mheap_.lock)
|
||||
for i := uint32(0); i < mheap_.nspan; i++ {
|
||||
s := h_allspans[i]
|
||||
if s.state != mSpanInUse {
|
||||
continue
|
||||
}
|
||||
if s.sizeclass == 0 {
|
||||
memstats.nmalloc++
|
||||
memstats.alloc += uint64(s.elemsize)
|
||||
} else {
|
||||
memstats.nmalloc += uint64(s.allocCount)
|
||||
memstats.by_size[s.sizeclass].nmalloc += uint64(s.allocCount)
|
||||
memstats.alloc += uint64(s.allocCount) * uint64(s.elemsize)
|
||||
}
|
||||
}
|
||||
unlock(&mheap_.lock)
|
||||
|
||||
// Aggregate by size class.
|
||||
smallfree := uint64(0)
|
||||
memstats.nfree = mheap_.nlargefree
|
||||
for i := 0; i < len(memstats.by_size); i++ {
|
||||
memstats.nfree += mheap_.nsmallfree[i]
|
||||
memstats.by_size[i].nfree = mheap_.nsmallfree[i]
|
||||
memstats.by_size[i].nmalloc += mheap_.nsmallfree[i]
|
||||
smallfree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
|
||||
}
|
||||
memstats.nfree += memstats.tinyallocs
|
||||
memstats.nmalloc += memstats.nfree
|
||||
|
||||
// Calculate derived stats.
|
||||
memstats.total_alloc = memstats.alloc + mheap_.largefree + smallfree
|
||||
memstats.heap_alloc = memstats.alloc
|
||||
memstats.heap_objects = memstats.nmalloc - memstats.nfree
|
||||
}
|
||||
|
||||
//go:nowritebarrier
|
||||
func cachestats() {
|
||||
for i := 0; ; i++ {
|
||||
p := allp[i]
|
||||
if p == nil {
|
||||
break
|
||||
}
|
||||
c := p.mcache
|
||||
if c == nil {
|
||||
continue
|
||||
}
|
||||
purgecachedstats(c)
|
||||
}
|
||||
}
|
||||
|
||||
//go:nowritebarrier
|
||||
func flushallmcaches() {
|
||||
for i := 0; ; i++ {
|
||||
p := allp[i]
|
||||
if p == nil {
|
||||
break
|
||||
}
|
||||
c := p.mcache
|
||||
if c == nil {
|
||||
continue
|
||||
}
|
||||
c.releaseAll()
|
||||
stackcache_clear(c)
|
||||
}
|
||||
}
|
||||
|
||||
//go:nosplit
|
||||
func purgecachedstats(c *mcache) {
|
||||
// Protected by either heap or GC lock.
|
||||
h := &mheap_
|
||||
memstats.heap_scan += uint64(c.local_scan)
|
||||
c.local_scan = 0
|
||||
memstats.tinyallocs += uint64(c.local_tinyallocs)
|
||||
c.local_tinyallocs = 0
|
||||
memstats.nlookup += uint64(c.local_nlookup)
|
||||
c.local_nlookup = 0
|
||||
h.largefree += uint64(c.local_largefree)
|
||||
c.local_largefree = 0
|
||||
h.nlargefree += uint64(c.local_nlargefree)
|
||||
c.local_nlargefree = 0
|
||||
for i := 0; i < len(c.local_nsmallfree); i++ {
|
||||
h.nsmallfree[i] += uint64(c.local_nsmallfree[i])
|
||||
c.local_nsmallfree[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
// Atomically increases a given *system* memory stat. We are counting on this
|
||||
// stat never overflowing a uintptr, so this function must only be used for
|
||||
// system memory stats.
|
||||
//
|
||||
// The current implementation for little endian architectures is based on
|
||||
// xadduintptr(), which is less than ideal: xadd64() should really be used.
|
||||
// Using xadduintptr() is a stop-gap solution until arm supports xadd64() that
|
||||
// doesn't use locks. (Locks are a problem as they require a valid G, which
|
||||
// restricts their useability.)
|
||||
//
|
||||
// A side-effect of using xadduintptr() is that we need to check for
|
||||
// overflow errors.
|
||||
//go:nosplit
|
||||
func mSysStatInc(sysStat *uint64, n uintptr) {
|
||||
if sys.BigEndian != 0 {
|
||||
atomic.Xadd64(sysStat, int64(n))
|
||||
return
|
||||
}
|
||||
if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), n); val < n {
|
||||
print("runtime: stat overflow: val ", val, ", n ", n, "\n")
|
||||
exit(2)
|
||||
}
|
||||
}
|
||||
|
||||
// Atomically decreases a given *system* memory stat. Same comments as
|
||||
// mSysStatInc apply.
|
||||
//go:nosplit
|
||||
func mSysStatDec(sysStat *uint64, n uintptr) {
|
||||
if sys.BigEndian != 0 {
|
||||
atomic.Xadd64(sysStat, -int64(n))
|
||||
return
|
||||
}
|
||||
if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), uintptr(-int64(n))); val+n < n {
|
||||
print("runtime: stat underflow: val ", val, ", n ", n, "\n")
|
||||
exit(2)
|
||||
}
|
||||
}
|
@ -367,3 +367,51 @@ func typeBitsBulkBarrier(typ *_type, p, size uintptr) {}
|
||||
|
||||
// Here for gccgo until we port msize.go.
|
||||
func roundupsize(uintptr) uintptr
|
||||
|
||||
// Here for gccgo until we port mgc.go.
|
||||
func GC()
|
||||
|
||||
// Here for gccgo until we port proc.go.
|
||||
var worldsema uint32 = 1
|
||||
|
||||
func stopTheWorldWithSema()
|
||||
func startTheWorldWithSema()
|
||||
|
||||
// For gccgo to call from C code.
|
||||
//go:linkname acquireWorldsema runtime.acquireWorldsema
|
||||
func acquireWorldsema() {
|
||||
semacquire(&worldsema, false)
|
||||
}
|
||||
|
||||
// For gccgo to call from C code.
|
||||
//go:linkname releaseWorldsema runtime.releaseWorldsema
|
||||
func releaseWorldsema() {
|
||||
semrelease(&worldsema)
|
||||
}
|
||||
|
||||
// Here for gccgo until we port proc.go.
|
||||
func stopTheWorld(reason string) {
|
||||
semacquire(&worldsema, false)
|
||||
getg().m.preemptoff = reason
|
||||
getg().m.gcing = 1
|
||||
systemstack(stopTheWorldWithSema)
|
||||
}
|
||||
|
||||
// Here for gccgo until we port proc.go.
|
||||
func startTheWorld() {
|
||||
getg().m.gcing = 0
|
||||
getg().m.locks++
|
||||
systemstack(startTheWorldWithSema)
|
||||
// worldsema must be held over startTheWorldWithSema to ensure
|
||||
// gomaxprocs cannot change while worldsema is held.
|
||||
semrelease(&worldsema)
|
||||
getg().m.preemptoff = ""
|
||||
getg().m.locks--
|
||||
}
|
||||
|
||||
// For gccgo to call from C code, so that the C code and the Go code
|
||||
// can share the memstats variable for now.
|
||||
//go:linkname getMstats runtime.getMstats
|
||||
func getMstats() *mstats {
|
||||
return &memstats
|
||||
}
|
||||
|
@ -146,7 +146,7 @@ runtime_SetCPUProfileRate(intgo hz)
|
||||
runtime_lock(&lk);
|
||||
if(hz > 0) {
|
||||
if(prof == nil) {
|
||||
prof = runtime_SysAlloc(sizeof *prof, &mstats.other_sys);
|
||||
prof = runtime_SysAlloc(sizeof *prof, &mstats()->other_sys);
|
||||
if(prof == nil) {
|
||||
runtime_printf("runtime: cpu profiling cannot allocate memory\n");
|
||||
runtime_unlock(&lk);
|
||||
|
@ -489,33 +489,33 @@ dumpmemstats(void)
|
||||
int32 i;
|
||||
|
||||
dumpint(TagMemStats);
|
||||
dumpint(mstats.alloc);
|
||||
dumpint(mstats.total_alloc);
|
||||
dumpint(mstats.sys);
|
||||
dumpint(mstats.nlookup);
|
||||
dumpint(mstats.nmalloc);
|
||||
dumpint(mstats.nfree);
|
||||
dumpint(mstats.heap_alloc);
|
||||
dumpint(mstats.heap_sys);
|
||||
dumpint(mstats.heap_idle);
|
||||
dumpint(mstats.heap_inuse);
|
||||
dumpint(mstats.heap_released);
|
||||
dumpint(mstats.heap_objects);
|
||||
dumpint(mstats.stacks_inuse);
|
||||
dumpint(mstats.stacks_sys);
|
||||
dumpint(mstats.mspan_inuse);
|
||||
dumpint(mstats.mspan_sys);
|
||||
dumpint(mstats.mcache_inuse);
|
||||
dumpint(mstats.mcache_sys);
|
||||
dumpint(mstats.buckhash_sys);
|
||||
dumpint(mstats.gc_sys);
|
||||
dumpint(mstats.other_sys);
|
||||
dumpint(mstats.next_gc);
|
||||
dumpint(mstats.last_gc);
|
||||
dumpint(mstats.pause_total_ns);
|
||||
dumpint(mstats()->alloc);
|
||||
dumpint(mstats()->total_alloc);
|
||||
dumpint(mstats()->sys);
|
||||
dumpint(mstats()->nlookup);
|
||||
dumpint(mstats()->nmalloc);
|
||||
dumpint(mstats()->nfree);
|
||||
dumpint(mstats()->heap_alloc);
|
||||
dumpint(mstats()->heap_sys);
|
||||
dumpint(mstats()->heap_idle);
|
||||
dumpint(mstats()->heap_inuse);
|
||||
dumpint(mstats()->heap_released);
|
||||
dumpint(mstats()->heap_objects);
|
||||
dumpint(mstats()->stacks_inuse);
|
||||
dumpint(mstats()->stacks_sys);
|
||||
dumpint(mstats()->mspan_inuse);
|
||||
dumpint(mstats()->mspan_sys);
|
||||
dumpint(mstats()->mcache_inuse);
|
||||
dumpint(mstats()->mcache_sys);
|
||||
dumpint(mstats()->buckhash_sys);
|
||||
dumpint(mstats()->gc_sys);
|
||||
dumpint(mstats()->other_sys);
|
||||
dumpint(mstats()->next_gc);
|
||||
dumpint(mstats()->last_gc);
|
||||
dumpint(mstats()->pause_total_ns);
|
||||
for(i = 0; i < 256; i++)
|
||||
dumpint(mstats.pause_ns[i]);
|
||||
dumpint(mstats.numgc);
|
||||
dumpint(mstats()->pause_ns[i]);
|
||||
dumpint(mstats()->numgc);
|
||||
}
|
||||
|
||||
static void
|
||||
@ -615,11 +615,11 @@ runtime_debug_WriteHeapDump(uintptr fd)
|
||||
G *g;
|
||||
|
||||
// Stop the world.
|
||||
runtime_semacquire(&runtime_worldsema, false);
|
||||
runtime_acquireWorldsema();
|
||||
m = runtime_m();
|
||||
m->gcing = 1;
|
||||
m->locks++;
|
||||
runtime_stoptheworld();
|
||||
runtime_stopTheWorldWithSema();
|
||||
|
||||
// Update stats so we can dump them.
|
||||
// As a side effect, flushes all the MCaches so the MSpan.freelist
|
||||
@ -640,8 +640,8 @@ runtime_debug_WriteHeapDump(uintptr fd)
|
||||
|
||||
// Start up the world again.
|
||||
m->gcing = 0;
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_starttheworld();
|
||||
runtime_releaseWorldsema();
|
||||
runtime_startTheWorldWithSema();
|
||||
m->locks--;
|
||||
}
|
||||
|
||||
|
@ -51,12 +51,9 @@ package runtime
|
||||
|
||||
// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
|
||||
MHeap runtime_mheap;
|
||||
MStats mstats;
|
||||
|
||||
int32 runtime_checking;
|
||||
|
||||
extern MStats mstats; // defined in zruntime_def_$GOOS_$GOARCH.go
|
||||
|
||||
extern volatile intgo runtime_MemProfileRate
|
||||
__asm__ (GOSYM_PREFIX "runtime.MemProfileRate");
|
||||
|
||||
@ -81,6 +78,7 @@ runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
|
||||
MLink *v, *next;
|
||||
byte *tiny;
|
||||
bool incallback;
|
||||
MStats *pmstats;
|
||||
|
||||
if(size == 0) {
|
||||
// All 0-length allocations use this pointer.
|
||||
@ -105,7 +103,7 @@ runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
|
||||
flag |= FlagNoInvokeGC;
|
||||
}
|
||||
|
||||
if(runtime_gcwaiting() && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC)) {
|
||||
if(runtime_gcwaiting() && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC) && m->preemptoff.len == 0) {
|
||||
runtime_gosched();
|
||||
m = runtime_m();
|
||||
}
|
||||
@ -252,7 +250,8 @@ runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
|
||||
|
||||
m->locks--;
|
||||
|
||||
if(!(flag & FlagNoInvokeGC) && mstats.heap_alloc >= mstats.next_gc)
|
||||
pmstats = mstats();
|
||||
if(!(flag & FlagNoInvokeGC) && pmstats->heap_alloc >= pmstats->next_gc)
|
||||
runtime_gc(0);
|
||||
|
||||
if(incallback)
|
||||
@ -472,9 +471,9 @@ runtime_purgecachedstats(MCache *c)
|
||||
|
||||
// Protected by either heap or GC lock.
|
||||
h = &runtime_mheap;
|
||||
mstats.heap_alloc += (intptr)c->local_cachealloc;
|
||||
mstats()->heap_alloc += (intptr)c->local_cachealloc;
|
||||
c->local_cachealloc = 0;
|
||||
mstats.nlookup += c->local_nlookup;
|
||||
mstats()->nlookup += c->local_nlookup;
|
||||
c->local_nlookup = 0;
|
||||
h->largefree += c->local_largefree;
|
||||
c->local_largefree = 0;
|
||||
@ -486,13 +485,6 @@ runtime_purgecachedstats(MCache *c)
|
||||
}
|
||||
}
|
||||
|
||||
extern uintptr runtime_sizeof_C_MStats
|
||||
__asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");
|
||||
|
||||
// Size of the trailing by_size array differs between Go and C,
|
||||
// _NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
|
||||
// sizeof_C_MStats is what C thinks about size of Go struct.
|
||||
|
||||
// Initialized in mallocinit because it's defined in go/runtime/mem.go.
|
||||
|
||||
#define MaxArena32 (2U<<30)
|
||||
@ -508,8 +500,6 @@ runtime_mallocinit(void)
|
||||
uint64 i;
|
||||
bool reserved;
|
||||
|
||||
runtime_sizeof_C_MStats = sizeof(MStats) - (_NumSizeClasses - 61) * sizeof(mstats.by_size[0]);
|
||||
|
||||
p = nil;
|
||||
p_size = 0;
|
||||
arena_size = 0;
|
||||
@ -685,7 +675,7 @@ runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
|
||||
if(n <= (uintptr)(h->arena_end - h->arena_used)) {
|
||||
// Keep taking from our reservation.
|
||||
p = h->arena_used;
|
||||
runtime_SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
|
||||
runtime_SysMap(p, n, h->arena_reserved, &mstats()->heap_sys);
|
||||
h->arena_used += n;
|
||||
runtime_MHeap_MapBits(h);
|
||||
runtime_MHeap_MapSpans(h);
|
||||
@ -703,14 +693,14 @@ runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
|
||||
// try to get memory at a location chosen by the OS
|
||||
// and hope that it is in the range we allocated bitmap for.
|
||||
p_size = ROUND(n, PageSize) + PageSize;
|
||||
p = runtime_SysAlloc(p_size, &mstats.heap_sys);
|
||||
p = runtime_SysAlloc(p_size, &mstats()->heap_sys);
|
||||
if(p == nil)
|
||||
return nil;
|
||||
|
||||
if(p < h->arena_start || (uintptr)(p+p_size - h->arena_start) >= MaxArena32) {
|
||||
runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
|
||||
p, h->arena_start, h->arena_start+MaxArena32);
|
||||
runtime_SysFree(p, p_size, &mstats.heap_sys);
|
||||
runtime_SysFree(p, p_size, &mstats()->heap_sys);
|
||||
return nil;
|
||||
}
|
||||
|
||||
@ -763,7 +753,7 @@ runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
|
||||
runtime_lock(&persistent);
|
||||
persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align);
|
||||
if(persistent.pos + size > persistent.end) {
|
||||
persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats.other_sys);
|
||||
persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats()->other_sys);
|
||||
if(persistent.pos == nil) {
|
||||
runtime_unlock(&persistent);
|
||||
runtime_throw("runtime: cannot allocate memory");
|
||||
@ -773,10 +763,10 @@ runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
|
||||
p = persistent.pos;
|
||||
persistent.pos += size;
|
||||
runtime_unlock(&persistent);
|
||||
if(stat != &mstats.other_sys) {
|
||||
if(stat != &mstats()->other_sys) {
|
||||
// reaccount the allocation against provided stat
|
||||
runtime_xadd64(stat, size);
|
||||
runtime_xadd64(&mstats.other_sys, -(uint64)size);
|
||||
runtime_xadd64(&mstats()->other_sys, -(uint64)size);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
@ -83,7 +83,7 @@
|
||||
typedef struct MCentral MCentral;
|
||||
typedef struct MHeap MHeap;
|
||||
typedef struct mspan MSpan;
|
||||
typedef struct MStats MStats;
|
||||
typedef struct mstats MStats;
|
||||
typedef struct mlink MLink;
|
||||
typedef struct mtypes MTypes;
|
||||
typedef struct gcstats GCStats;
|
||||
@ -216,63 +216,10 @@ void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*
|
||||
void* runtime_FixAlloc_Alloc(FixAlloc *f);
|
||||
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
|
||||
|
||||
|
||||
// Statistics.
|
||||
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
|
||||
struct MStats
|
||||
{
|
||||
// General statistics.
|
||||
uint64 alloc; // bytes allocated and still in use
|
||||
uint64 total_alloc; // bytes allocated (even if freed)
|
||||
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
|
||||
uint64 nlookup; // number of pointer lookups
|
||||
uint64 nmalloc; // number of mallocs
|
||||
uint64 nfree; // number of frees
|
||||
|
||||
// Statistics about malloc heap.
|
||||
// protected by mheap.Lock
|
||||
uint64 heap_alloc; // bytes allocated and still in use
|
||||
uint64 heap_sys; // bytes obtained from system
|
||||
uint64 heap_idle; // bytes in idle spans
|
||||
uint64 heap_inuse; // bytes in non-idle spans
|
||||
uint64 heap_released; // bytes released to the OS
|
||||
uint64 heap_objects; // total number of allocated objects
|
||||
|
||||
// Statistics about allocation of low-level fixed-size structures.
|
||||
// Protected by FixAlloc locks.
|
||||
uint64 stacks_inuse; // bootstrap stacks
|
||||
uint64 stacks_sys;
|
||||
uint64 mspan_inuse; // MSpan structures
|
||||
uint64 mspan_sys;
|
||||
uint64 mcache_inuse; // MCache structures
|
||||
uint64 mcache_sys;
|
||||
uint64 buckhash_sys; // profiling bucket hash table
|
||||
uint64 gc_sys;
|
||||
uint64 other_sys;
|
||||
|
||||
// Statistics about garbage collector.
|
||||
// Protected by mheap or stopping the world during GC.
|
||||
uint64 next_gc; // next GC (in heap_alloc time)
|
||||
uint64 last_gc; // last GC (in absolute time)
|
||||
uint64 pause_total_ns;
|
||||
uint64 pause_ns[256];
|
||||
uint64 pause_end[256];
|
||||
uint32 numgc;
|
||||
float64 gc_cpu_fraction;
|
||||
bool enablegc;
|
||||
bool debuggc;
|
||||
|
||||
// Statistics about allocation size classes.
|
||||
struct {
|
||||
uint32 size;
|
||||
uint64 nmalloc;
|
||||
uint64 nfree;
|
||||
} by_size[_NumSizeClasses];
|
||||
};
|
||||
|
||||
extern MStats mstats
|
||||
__asm__ (GOSYM_PREFIX "runtime.memStats");
|
||||
void runtime_updatememstats(GCStats *stats);
|
||||
extern MStats *mstats(void)
|
||||
__asm__ (GOSYM_PREFIX "runtime.getMstats");
|
||||
void runtime_updatememstats(GCStats *stats)
|
||||
__asm__ (GOSYM_PREFIX "runtime.updatememstats");
|
||||
|
||||
// Size classes. Computed and initialized by InitSizes.
|
||||
//
|
||||
|
@ -9,7 +9,7 @@ runtime_SysAlloc(uintptr n)
|
||||
{
|
||||
void *p;
|
||||
|
||||
mstats.sys += n;
|
||||
mstats()->sys += n;
|
||||
errno = posix_memalign(&p, PageSize, n);
|
||||
if (errno > 0) {
|
||||
perror("posix_memalign");
|
||||
@ -29,7 +29,7 @@ runtime_SysUnused(void *v, uintptr n)
|
||||
void
|
||||
runtime_SysFree(void *v, uintptr n)
|
||||
{
|
||||
mstats.sys -= n;
|
||||
mstats()->sys -= n;
|
||||
free(v);
|
||||
}
|
||||
|
||||
|
@ -145,21 +145,6 @@ clearpools(void)
|
||||
}
|
||||
}
|
||||
|
||||
// Holding worldsema grants an M the right to try to stop the world.
|
||||
// The procedure is:
|
||||
//
|
||||
// runtime_semacquire(&runtime_worldsema);
|
||||
// m->gcing = 1;
|
||||
// runtime_stoptheworld();
|
||||
//
|
||||
// ... do stuff ...
|
||||
//
|
||||
// m->gcing = 0;
|
||||
// runtime_semrelease(&runtime_worldsema);
|
||||
// runtime_starttheworld();
|
||||
//
|
||||
uint32 runtime_worldsema = 1;
|
||||
|
||||
typedef struct Workbuf Workbuf;
|
||||
struct Workbuf
|
||||
{
|
||||
@ -1377,7 +1362,7 @@ getempty(Workbuf *b)
|
||||
runtime_lock(&work);
|
||||
if(work.nchunk < sizeof *b) {
|
||||
work.nchunk = 1<<20;
|
||||
work.chunk = runtime_SysAlloc(work.nchunk, &mstats.gc_sys);
|
||||
work.chunk = runtime_SysAlloc(work.nchunk, &mstats()->gc_sys);
|
||||
if(work.chunk == nil)
|
||||
runtime_throw("runtime: cannot allocate memory");
|
||||
}
|
||||
@ -1558,7 +1543,7 @@ runtime_queuefinalizer(void *p, FuncVal *fn, const FuncType *ft, const PtrType *
|
||||
runtime_lock(&finlock);
|
||||
if(finq == nil || finq->cnt == finq->cap) {
|
||||
if(finc == nil) {
|
||||
finc = runtime_persistentalloc(FinBlockSize, 0, &mstats.gc_sys);
|
||||
finc = runtime_persistentalloc(FinBlockSize, 0, &mstats()->gc_sys);
|
||||
finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
|
||||
finc->alllink = allfin;
|
||||
allfin = finc;
|
||||
@ -1755,7 +1740,7 @@ runtime_MSpan_Sweep(MSpan *s)
|
||||
runtime_MHeap_Free(&runtime_mheap, s, 1);
|
||||
c->local_nlargefree++;
|
||||
c->local_largefree += size;
|
||||
runtime_xadd64(&mstats.next_gc, -(uint64)(size * (gcpercent + 100)/100));
|
||||
runtime_xadd64(&mstats()->next_gc, -(uint64)(size * (gcpercent + 100)/100));
|
||||
res = true;
|
||||
} else {
|
||||
// Free small object.
|
||||
@ -1797,7 +1782,7 @@ runtime_MSpan_Sweep(MSpan *s)
|
||||
if(nfree > 0) {
|
||||
c->local_nsmallfree[cl] += nfree;
|
||||
c->local_cachealloc -= nfree * size;
|
||||
runtime_xadd64(&mstats.next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100));
|
||||
runtime_xadd64(&mstats()->next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100));
|
||||
res = runtime_MCentral_FreeSpan(&runtime_mheap.central[cl], s, nfree, head.next, end);
|
||||
//MCentral_FreeSpan updates sweepgen
|
||||
}
|
||||
@ -2010,6 +1995,7 @@ runtime_updatememstats(GCStats *stats)
|
||||
uint32 i;
|
||||
uint64 stacks_inuse, smallfree;
|
||||
uint64 *src, *dst;
|
||||
MStats *pmstats;
|
||||
|
||||
if(stats)
|
||||
runtime_memclr((byte*)stats, sizeof(*stats));
|
||||
@ -2024,11 +2010,12 @@ runtime_updatememstats(GCStats *stats)
|
||||
runtime_memclr((byte*)&mp->gcstats, sizeof(mp->gcstats));
|
||||
}
|
||||
}
|
||||
mstats.stacks_inuse = stacks_inuse;
|
||||
mstats.mcache_inuse = runtime_mheap.cachealloc.inuse;
|
||||
mstats.mspan_inuse = runtime_mheap.spanalloc.inuse;
|
||||
mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys +
|
||||
mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys;
|
||||
pmstats = mstats();
|
||||
pmstats->stacks_inuse = stacks_inuse;
|
||||
pmstats->mcache_inuse = runtime_mheap.cachealloc.inuse;
|
||||
pmstats->mspan_inuse = runtime_mheap.spanalloc.inuse;
|
||||
pmstats->sys = pmstats->heap_sys + pmstats->stacks_sys + pmstats->mspan_sys +
|
||||
pmstats->mcache_sys + pmstats->buckhash_sys + pmstats->gc_sys + pmstats->other_sys;
|
||||
|
||||
// Calculate memory allocator stats.
|
||||
// During program execution we only count number of frees and amount of freed memory.
|
||||
@ -2037,13 +2024,13 @@ runtime_updatememstats(GCStats *stats)
|
||||
// Total number of mallocs is calculated as number of frees plus number of alive objects.
|
||||
// Similarly, total amount of allocated memory is calculated as amount of freed memory
|
||||
// plus amount of alive heap memory.
|
||||
mstats.alloc = 0;
|
||||
mstats.total_alloc = 0;
|
||||
mstats.nmalloc = 0;
|
||||
mstats.nfree = 0;
|
||||
for(i = 0; i < nelem(mstats.by_size); i++) {
|
||||
mstats.by_size[i].nmalloc = 0;
|
||||
mstats.by_size[i].nfree = 0;
|
||||
pmstats->alloc = 0;
|
||||
pmstats->total_alloc = 0;
|
||||
pmstats->nmalloc = 0;
|
||||
pmstats->nfree = 0;
|
||||
for(i = 0; i < nelem(pmstats->by_size); i++) {
|
||||
pmstats->by_size[i].nmalloc = 0;
|
||||
pmstats->by_size[i].nfree = 0;
|
||||
}
|
||||
|
||||
// Flush MCache's to MCentral.
|
||||
@ -2058,30 +2045,30 @@ runtime_updatememstats(GCStats *stats)
|
||||
if(s->state != MSpanInUse)
|
||||
continue;
|
||||
if(s->sizeclass == 0) {
|
||||
mstats.nmalloc++;
|
||||
mstats.alloc += s->elemsize;
|
||||
pmstats->nmalloc++;
|
||||
pmstats->alloc += s->elemsize;
|
||||
} else {
|
||||
mstats.nmalloc += s->ref;
|
||||
mstats.by_size[s->sizeclass].nmalloc += s->ref;
|
||||
mstats.alloc += s->ref*s->elemsize;
|
||||
pmstats->nmalloc += s->ref;
|
||||
pmstats->by_size[s->sizeclass].nmalloc += s->ref;
|
||||
pmstats->alloc += s->ref*s->elemsize;
|
||||
}
|
||||
}
|
||||
|
||||
// Aggregate by size class.
|
||||
smallfree = 0;
|
||||
mstats.nfree = runtime_mheap.nlargefree;
|
||||
for(i = 0; i < nelem(mstats.by_size); i++) {
|
||||
mstats.nfree += runtime_mheap.nsmallfree[i];
|
||||
mstats.by_size[i].nfree = runtime_mheap.nsmallfree[i];
|
||||
mstats.by_size[i].nmalloc += runtime_mheap.nsmallfree[i];
|
||||
pmstats->nfree = runtime_mheap.nlargefree;
|
||||
for(i = 0; i < nelem(pmstats->by_size); i++) {
|
||||
pmstats->nfree += runtime_mheap.nsmallfree[i];
|
||||
pmstats->by_size[i].nfree = runtime_mheap.nsmallfree[i];
|
||||
pmstats->by_size[i].nmalloc += runtime_mheap.nsmallfree[i];
|
||||
smallfree += runtime_mheap.nsmallfree[i] * runtime_class_to_size[i];
|
||||
}
|
||||
mstats.nmalloc += mstats.nfree;
|
||||
pmstats->nmalloc += pmstats->nfree;
|
||||
|
||||
// Calculate derived stats.
|
||||
mstats.total_alloc = mstats.alloc + runtime_mheap.largefree + smallfree;
|
||||
mstats.heap_alloc = mstats.alloc;
|
||||
mstats.heap_objects = mstats.nmalloc - mstats.nfree;
|
||||
pmstats->total_alloc = pmstats->alloc + runtime_mheap.largefree + smallfree;
|
||||
pmstats->heap_alloc = pmstats->alloc;
|
||||
pmstats->heap_objects = pmstats->nmalloc - pmstats->nfree;
|
||||
}
|
||||
|
||||
// Structure of arguments passed to function gc().
|
||||
@ -2119,6 +2106,7 @@ runtime_gc(int32 force)
|
||||
G *g;
|
||||
struct gc_args a;
|
||||
int32 i;
|
||||
MStats *pmstats;
|
||||
|
||||
// The atomic operations are not atomic if the uint64s
|
||||
// are not aligned on uint64 boundaries. This has been
|
||||
@ -2141,7 +2129,8 @@ runtime_gc(int32 force)
|
||||
// while holding a lock. The next mallocgc
|
||||
// without a lock will do the gc instead.
|
||||
m = runtime_m();
|
||||
if(!mstats.enablegc || runtime_g() == m->g0 || m->locks > 0 || runtime_panicking)
|
||||
pmstats = mstats();
|
||||
if(!pmstats->enablegc || runtime_g() == m->g0 || m->locks > 0 || runtime_panicking || m->preemptoff.len > 0)
|
||||
return;
|
||||
|
||||
if(gcpercent == GcpercentUnknown) { // first time through
|
||||
@ -2153,11 +2142,11 @@ runtime_gc(int32 force)
|
||||
if(gcpercent < 0)
|
||||
return;
|
||||
|
||||
runtime_semacquire(&runtime_worldsema, false);
|
||||
if(force==0 && mstats.heap_alloc < mstats.next_gc) {
|
||||
runtime_acquireWorldsema();
|
||||
if(force==0 && pmstats->heap_alloc < pmstats->next_gc) {
|
||||
// typically threads which lost the race to grab
|
||||
// worldsema exit here when gc is done.
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_releaseWorldsema();
|
||||
return;
|
||||
}
|
||||
|
||||
@ -2165,7 +2154,7 @@ runtime_gc(int32 force)
|
||||
a.start_time = runtime_nanotime();
|
||||
a.eagersweep = force >= 2;
|
||||
m->gcing = 1;
|
||||
runtime_stoptheworld();
|
||||
runtime_stopTheWorldWithSema();
|
||||
|
||||
clearpools();
|
||||
|
||||
@ -2189,8 +2178,8 @@ runtime_gc(int32 force)
|
||||
// all done
|
||||
m->gcing = 0;
|
||||
m->locks++;
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_starttheworld();
|
||||
runtime_releaseWorldsema();
|
||||
runtime_startTheWorldWithSema();
|
||||
m->locks--;
|
||||
|
||||
// now that gc is done, kick off finalizer thread if needed
|
||||
@ -2220,6 +2209,7 @@ gc(struct gc_args *args)
|
||||
uint64 heap0, heap1, obj, ninstr;
|
||||
GCStats stats;
|
||||
uint32 i;
|
||||
MStats *pmstats;
|
||||
// Eface eface;
|
||||
|
||||
m = runtime_m();
|
||||
@ -2275,28 +2265,29 @@ gc(struct gc_args *args)
|
||||
cachestats();
|
||||
// next_gc calculation is tricky with concurrent sweep since we don't know size of live heap
|
||||
// estimate what was live heap size after previous GC (for tracing only)
|
||||
heap0 = mstats.next_gc*100/(gcpercent+100);
|
||||
pmstats = mstats();
|
||||
heap0 = pmstats->next_gc*100/(gcpercent+100);
|
||||
// conservatively set next_gc to high value assuming that everything is live
|
||||
// concurrent/lazy sweep will reduce this number while discovering new garbage
|
||||
mstats.next_gc = mstats.heap_alloc+(mstats.heap_alloc-runtime_stacks_sys)*gcpercent/100;
|
||||
pmstats->next_gc = pmstats->heap_alloc+(pmstats->heap_alloc-runtime_stacks_sys)*gcpercent/100;
|
||||
|
||||
tm4 = runtime_nanotime();
|
||||
mstats.last_gc = runtime_unixnanotime(); // must be Unix time to make sense to user
|
||||
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = tm4 - tm0;
|
||||
mstats.pause_end[mstats.numgc%nelem(mstats.pause_end)] = mstats.last_gc;
|
||||
mstats.pause_total_ns += tm4 - tm0;
|
||||
mstats.numgc++;
|
||||
if(mstats.debuggc)
|
||||
pmstats->last_gc = runtime_unixnanotime(); // must be Unix time to make sense to user
|
||||
pmstats->pause_ns[pmstats->numgc%nelem(pmstats->pause_ns)] = tm4 - tm0;
|
||||
pmstats->pause_end[pmstats->numgc%nelem(pmstats->pause_end)] = pmstats->last_gc;
|
||||
pmstats->pause_total_ns += tm4 - tm0;
|
||||
pmstats->numgc++;
|
||||
if(pmstats->debuggc)
|
||||
runtime_printf("pause %D\n", tm4-tm0);
|
||||
|
||||
if(runtime_debug.gctrace) {
|
||||
heap1 = mstats.heap_alloc;
|
||||
heap1 = pmstats->heap_alloc;
|
||||
runtime_updatememstats(&stats);
|
||||
if(heap1 != mstats.heap_alloc) {
|
||||
runtime_printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc);
|
||||
if(heap1 != pmstats->heap_alloc) {
|
||||
runtime_printf("runtime: mstats skew: heap=%D/%D\n", heap1, pmstats->heap_alloc);
|
||||
runtime_throw("mstats skew");
|
||||
}
|
||||
obj = mstats.nmalloc - mstats.nfree;
|
||||
obj = pmstats->nmalloc - pmstats->nfree;
|
||||
|
||||
stats.nprocyield += work.markfor->nprocyield;
|
||||
stats.nosyield += work.markfor->nosyield;
|
||||
@ -2305,9 +2296,9 @@ gc(struct gc_args *args)
|
||||
runtime_printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects,"
|
||||
" %d/%d/%d sweeps,"
|
||||
" %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
|
||||
mstats.numgc, work.nproc, (tm1-tm0)/1000, (tm2-tm1)/1000, (tm3-tm2)/1000, (tm4-tm3)/1000,
|
||||
pmstats->numgc, work.nproc, (tm1-tm0)/1000, (tm2-tm1)/1000, (tm3-tm2)/1000, (tm4-tm3)/1000,
|
||||
heap0>>20, heap1>>20, obj,
|
||||
mstats.nmalloc, mstats.nfree,
|
||||
pmstats->nmalloc, pmstats->nfree,
|
||||
sweep.nspan, gcstats.nbgsweep, gcstats.npausesweep,
|
||||
stats.nhandoff, stats.nhandoffcnt,
|
||||
work.markfor->nsteal, work.markfor->nstealcnt,
|
||||
@ -2346,7 +2337,7 @@ gc(struct gc_args *args)
|
||||
|
||||
// Free the old cached array if necessary.
|
||||
if(sweep.spans && sweep.spans != runtime_mheap.allspans)
|
||||
runtime_SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &mstats.other_sys);
|
||||
runtime_SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &pmstats->other_sys);
|
||||
// Cache the current array.
|
||||
runtime_mheap.sweepspans = runtime_mheap.allspans;
|
||||
runtime_mheap.sweepgen += 2;
|
||||
@ -2377,36 +2368,6 @@ gc(struct gc_args *args)
|
||||
m->traceback = 0;
|
||||
}
|
||||
|
||||
extern uintptr runtime_sizeof_C_MStats
|
||||
__asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");
|
||||
|
||||
void runtime_ReadMemStats(MStats *)
|
||||
__asm__ (GOSYM_PREFIX "runtime.ReadMemStats");
|
||||
|
||||
void
|
||||
runtime_ReadMemStats(MStats *stats)
|
||||
{
|
||||
M *m;
|
||||
|
||||
// Have to acquire worldsema to stop the world,
|
||||
// because stoptheworld can only be used by
|
||||
// one goroutine at a time, and there might be
|
||||
// a pending garbage collection already calling it.
|
||||
runtime_semacquire(&runtime_worldsema, false);
|
||||
m = runtime_m();
|
||||
m->gcing = 1;
|
||||
runtime_stoptheworld();
|
||||
runtime_updatememstats(nil);
|
||||
// Size of the trailing by_size array differs between Go and C,
|
||||
// _NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
|
||||
runtime_memmove(stats, &mstats, runtime_sizeof_C_MStats);
|
||||
m->gcing = 0;
|
||||
m->locks++;
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_starttheworld();
|
||||
m->locks--;
|
||||
}
|
||||
|
||||
void runtime_debug_readGCStats(Slice*)
|
||||
__asm__("runtime_debug.readGCStats");
|
||||
|
||||
@ -2415,28 +2376,30 @@ runtime_debug_readGCStats(Slice *pauses)
|
||||
{
|
||||
uint64 *p;
|
||||
uint32 i, n;
|
||||
MStats *pmstats;
|
||||
|
||||
// Calling code in runtime/debug should make the slice large enough.
|
||||
if((size_t)pauses->cap < nelem(mstats.pause_ns)+3)
|
||||
pmstats = mstats();
|
||||
if((size_t)pauses->cap < nelem(pmstats->pause_ns)+3)
|
||||
runtime_throw("runtime: short slice passed to readGCStats");
|
||||
|
||||
// Pass back: pauses, last gc (absolute time), number of gc, total pause ns.
|
||||
p = (uint64*)pauses->array;
|
||||
runtime_lock(&runtime_mheap);
|
||||
n = mstats.numgc;
|
||||
if(n > nelem(mstats.pause_ns))
|
||||
n = nelem(mstats.pause_ns);
|
||||
n = pmstats->numgc;
|
||||
if(n > nelem(pmstats->pause_ns))
|
||||
n = nelem(pmstats->pause_ns);
|
||||
|
||||
// The pause buffer is circular. The most recent pause is at
|
||||
// pause_ns[(numgc-1)%nelem(pause_ns)], and then backward
|
||||
// from there to go back farther in time. We deliver the times
|
||||
// most recent first (in p[0]).
|
||||
for(i=0; i<n; i++)
|
||||
p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)];
|
||||
p[i] = pmstats->pause_ns[(pmstats->numgc-1-i)%nelem(pmstats->pause_ns)];
|
||||
|
||||
p[n] = mstats.last_gc;
|
||||
p[n+1] = mstats.numgc;
|
||||
p[n+2] = mstats.pause_total_ns;
|
||||
p[n] = pmstats->last_gc;
|
||||
p[n+1] = pmstats->numgc;
|
||||
p[n+2] = pmstats->pause_total_ns;
|
||||
runtime_unlock(&runtime_mheap);
|
||||
pauses->__count = n+3;
|
||||
}
|
||||
@ -2745,7 +2708,7 @@ runtime_MHeap_MapBits(MHeap *h)
|
||||
if(h->bitmap_mapped >= n)
|
||||
return;
|
||||
|
||||
runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats.gc_sys);
|
||||
runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats()->gc_sys);
|
||||
h->bitmap_mapped = n;
|
||||
}
|
||||
|
||||
|
@ -36,7 +36,7 @@ RecordSpan(void *vh, byte *p)
|
||||
cap = 64*1024/sizeof(all[0]);
|
||||
if(cap < h->nspancap*3/2)
|
||||
cap = h->nspancap*3/2;
|
||||
all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
|
||||
all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats()->other_sys);
|
||||
if(all == nil)
|
||||
runtime_throw("runtime: cannot allocate memory");
|
||||
if(h->allspans) {
|
||||
@ -44,7 +44,7 @@ RecordSpan(void *vh, byte *p)
|
||||
// Don't free the old array if it's referenced by sweep.
|
||||
// See the comment in mgc0.c.
|
||||
if(h->allspans != runtime_mheap.sweepspans)
|
||||
runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
|
||||
runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats()->other_sys);
|
||||
}
|
||||
h->allspans = all;
|
||||
h->nspancap = cap;
|
||||
@ -56,12 +56,14 @@ RecordSpan(void *vh, byte *p)
|
||||
void
|
||||
runtime_MHeap_Init(MHeap *h)
|
||||
{
|
||||
MStats *pmstats;
|
||||
uint32 i;
|
||||
|
||||
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
|
||||
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
|
||||
runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys);
|
||||
runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys);
|
||||
pmstats = mstats();
|
||||
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &pmstats->mspan_sys);
|
||||
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &pmstats->mcache_sys);
|
||||
runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &pmstats->other_sys);
|
||||
runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &pmstats->other_sys);
|
||||
// h->mapcache needs no init
|
||||
for(i=0; i<nelem(h->free); i++) {
|
||||
runtime_MSpanList_Init(&h->free[i]);
|
||||
@ -88,7 +90,7 @@ runtime_MHeap_MapSpans(MHeap *h)
|
||||
n = ROUND(n, pagesize);
|
||||
if(h->spans_mapped >= n)
|
||||
return;
|
||||
runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys);
|
||||
runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats()->other_sys);
|
||||
h->spans_mapped = n;
|
||||
}
|
||||
|
||||
@ -173,17 +175,19 @@ MHeap_Reclaim(MHeap *h, uintptr npage)
|
||||
MSpan*
|
||||
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero)
|
||||
{
|
||||
MStats *pmstats;
|
||||
MSpan *s;
|
||||
|
||||
runtime_lock(h);
|
||||
mstats.heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
|
||||
pmstats = mstats();
|
||||
pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
|
||||
runtime_m()->mcache->local_cachealloc = 0;
|
||||
s = MHeap_AllocLocked(h, npage, sizeclass);
|
||||
if(s != nil) {
|
||||
mstats.heap_inuse += npage<<PageShift;
|
||||
pmstats->heap_inuse += npage<<PageShift;
|
||||
if(large) {
|
||||
mstats.heap_objects++;
|
||||
mstats.heap_alloc += npage<<PageShift;
|
||||
pmstats->heap_objects++;
|
||||
pmstats->heap_alloc += npage<<PageShift;
|
||||
// Swept spans are at the end of lists.
|
||||
if(s->npages < nelem(h->free))
|
||||
runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
|
||||
@ -237,8 +241,8 @@ HaveSpan:
|
||||
runtime_MSpanList_Remove(s);
|
||||
runtime_atomicstore(&s->sweepgen, h->sweepgen);
|
||||
s->state = MSpanInUse;
|
||||
mstats.heap_idle -= s->npages<<PageShift;
|
||||
mstats.heap_released -= s->npreleased<<PageShift;
|
||||
mstats()->heap_idle -= s->npages<<PageShift;
|
||||
mstats()->heap_released -= s->npreleased<<PageShift;
|
||||
if(s->npreleased > 0)
|
||||
runtime_SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
|
||||
s->npreleased = 0;
|
||||
@ -326,7 +330,7 @@ MHeap_Grow(MHeap *h, uintptr npage)
|
||||
v = runtime_MHeap_SysAlloc(h, ask);
|
||||
}
|
||||
if(v == nil) {
|
||||
runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
|
||||
runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats()->heap_sys);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -386,13 +390,16 @@ runtime_MHeap_LookupMaybe(MHeap *h, void *v)
|
||||
void
|
||||
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
|
||||
{
|
||||
MStats *pmstats;
|
||||
|
||||
runtime_lock(h);
|
||||
mstats.heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
|
||||
pmstats = mstats();
|
||||
pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
|
||||
runtime_m()->mcache->local_cachealloc = 0;
|
||||
mstats.heap_inuse -= s->npages<<PageShift;
|
||||
pmstats->heap_inuse -= s->npages<<PageShift;
|
||||
if(acct) {
|
||||
mstats.heap_alloc -= s->npages<<PageShift;
|
||||
mstats.heap_objects--;
|
||||
pmstats->heap_alloc -= s->npages<<PageShift;
|
||||
pmstats->heap_objects--;
|
||||
}
|
||||
MHeap_FreeLocked(h, s);
|
||||
runtime_unlock(h);
|
||||
@ -411,7 +418,7 @@ MHeap_FreeLocked(MHeap *h, MSpan *s)
|
||||
s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen);
|
||||
runtime_throw("MHeap_FreeLocked - invalid free");
|
||||
}
|
||||
mstats.heap_idle += s->npages<<PageShift;
|
||||
mstats()->heap_idle += s->npages<<PageShift;
|
||||
s->state = MSpanFree;
|
||||
runtime_MSpanList_Remove(s);
|
||||
// Stamp newly unused spans. The scavenger will use that
|
||||
@ -472,7 +479,7 @@ scavengelist(MSpan *list, uint64 now, uint64 limit)
|
||||
for(s=list->next; s != list; s=s->next) {
|
||||
if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
|
||||
released = (s->npages - s->npreleased) << PageShift;
|
||||
mstats.heap_released += released;
|
||||
mstats()->heap_released += released;
|
||||
sumreleased += released;
|
||||
s->npreleased = s->npages;
|
||||
|
||||
@ -508,8 +515,8 @@ scavenge(int32 k, uint64 now, uint64 limit)
|
||||
if(sumreleased > 0)
|
||||
runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
|
||||
runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
|
||||
k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
|
||||
mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
|
||||
k, mstats()->heap_inuse>>20, mstats()->heap_idle>>20, mstats()->heap_sys>>20,
|
||||
mstats()->heap_released>>20, (mstats()->heap_sys - mstats()->heap_released)>>20);
|
||||
}
|
||||
}
|
||||
|
||||
@ -550,7 +557,7 @@ runtime_MHeap_Scavenger(void* dummy)
|
||||
|
||||
runtime_lock(h);
|
||||
unixnow = runtime_unixnanotime();
|
||||
if(unixnow - mstats.last_gc > forcegc) {
|
||||
if(unixnow - mstats()->last_gc > forcegc) {
|
||||
runtime_unlock(h);
|
||||
// The scavenger can not block other goroutines,
|
||||
// otherwise deadlock detector can fire spuriously.
|
||||
|
@ -90,7 +90,7 @@ stkbucket(int32 typ, uintptr size, Location *stk, int32 nstk, bool alloc)
|
||||
Bucket *b;
|
||||
|
||||
if(buckhash == nil) {
|
||||
buckhash = runtime_SysAlloc(BuckHashSize*sizeof buckhash[0], &mstats.buckhash_sys);
|
||||
buckhash = runtime_SysAlloc(BuckHashSize*sizeof buckhash[0], &mstats()->buckhash_sys);
|
||||
if(buckhash == nil)
|
||||
runtime_throw("runtime: cannot allocate memory");
|
||||
}
|
||||
@ -127,7 +127,7 @@ stkbucket(int32 typ, uintptr size, Location *stk, int32 nstk, bool alloc)
|
||||
if(!alloc)
|
||||
return nil;
|
||||
|
||||
b = runtime_persistentalloc(sizeof *b + nstk*sizeof stk[0], 0, &mstats.buckhash_sys);
|
||||
b = runtime_persistentalloc(sizeof *b + nstk*sizeof stk[0], 0, &mstats()->buckhash_sys);
|
||||
bucketmem += sizeof *b + nstk*sizeof stk[0];
|
||||
runtime_memmove(b->stk, stk, nstk*sizeof stk[0]);
|
||||
b->typ = typ;
|
||||
@ -408,11 +408,11 @@ func Stack(b Slice, all bool) (n int) {
|
||||
pc = (byte*)(uintptr)runtime_getcallerpc(&b);
|
||||
|
||||
if(all) {
|
||||
runtime_semacquire(&runtime_worldsema, false);
|
||||
runtime_acquireWorldsema();
|
||||
runtime_m()->gcing = 1;
|
||||
runtime_stoptheworld();
|
||||
enablegc = mstats.enablegc;
|
||||
mstats.enablegc = false;
|
||||
runtime_stopTheWorldWithSema();
|
||||
enablegc = mstats()->enablegc;
|
||||
mstats()->enablegc = false;
|
||||
}
|
||||
|
||||
if(b.__count == 0)
|
||||
@ -436,9 +436,9 @@ func Stack(b Slice, all bool) (n int) {
|
||||
|
||||
if(all) {
|
||||
runtime_m()->gcing = 0;
|
||||
mstats.enablegc = enablegc;
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_starttheworld();
|
||||
mstats()->enablegc = enablegc;
|
||||
runtime_releaseWorldsema();
|
||||
runtime_startTheWorldWithSema();
|
||||
}
|
||||
}
|
||||
|
||||
@ -469,9 +469,9 @@ func GoroutineProfile(b Slice) (n int, ok bool) {
|
||||
ok = false;
|
||||
n = runtime_gcount();
|
||||
if(n <= b.__count) {
|
||||
runtime_semacquire(&runtime_worldsema, false);
|
||||
runtime_acquireWorldsema();
|
||||
runtime_m()->gcing = 1;
|
||||
runtime_stoptheworld();
|
||||
runtime_stopTheWorldWithSema();
|
||||
|
||||
n = runtime_gcount();
|
||||
if(n <= b.__count) {
|
||||
@ -488,8 +488,8 @@ func GoroutineProfile(b Slice) (n int, ok bool) {
|
||||
}
|
||||
|
||||
runtime_m()->gcing = 0;
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_starttheworld();
|
||||
runtime_releaseWorldsema();
|
||||
runtime_startTheWorldWithSema();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -60,6 +60,7 @@ runtime_InitSizes(void)
|
||||
int32 align, sizeclass, size, nextsize, n;
|
||||
uint32 i;
|
||||
uintptr allocsize, npages;
|
||||
MStats *pmstats;
|
||||
|
||||
// Initialize the runtime_class_to_size table (and choose class sizes in the process).
|
||||
runtime_class_to_size[0] = 0;
|
||||
@ -134,8 +135,9 @@ runtime_InitSizes(void)
|
||||
}
|
||||
|
||||
// Copy out for statistics table.
|
||||
pmstats = mstats();
|
||||
for(i=0; i<nelem(runtime_class_to_size); i++)
|
||||
mstats.by_size[i].size = runtime_class_to_size[i];
|
||||
pmstats->by_size[i].size = runtime_class_to_size[i];
|
||||
return;
|
||||
|
||||
dump:
|
||||
|
@ -459,7 +459,7 @@ allocPollDesc(void)
|
||||
n = 1;
|
||||
// Must be in non-GC memory because can be referenced
|
||||
// only from epoll/kqueue internals.
|
||||
pd = runtime_persistentalloc(n*sizeof(*pd), 0, &mstats.other_sys);
|
||||
pd = runtime_persistentalloc(n*sizeof(*pd), 0, &mstats()->other_sys);
|
||||
for(i = 0; i < n; i++) {
|
||||
pd[i].link = pollcache.first;
|
||||
pollcache.first = &pd[i];
|
||||
|
@ -149,7 +149,7 @@ runtime_netpoll(bool block)
|
||||
|
||||
if(inuse) {
|
||||
if(!allocatedfds) {
|
||||
prfds = runtime_SysAlloc(4 * sizeof fds, &mstats.other_sys);
|
||||
prfds = runtime_SysAlloc(4 * sizeof fds, &mstats()->other_sys);
|
||||
pwfds = prfds + 1;
|
||||
pefds = pwfds + 1;
|
||||
ptfds = pefds + 1;
|
||||
@ -239,7 +239,7 @@ runtime_netpoll(bool block)
|
||||
goto retry;
|
||||
|
||||
if(allocatedfds) {
|
||||
runtime_SysFree(prfds, 4 * sizeof fds, &mstats.other_sys);
|
||||
runtime_SysFree(prfds, 4 * sizeof fds, &mstats()->other_sys);
|
||||
} else {
|
||||
runtime_lock(&selectlock);
|
||||
inuse = false;
|
||||
|
@ -508,7 +508,7 @@ runtime_schedinit(void)
|
||||
procresize(procs);
|
||||
|
||||
// Can not enable GC until all roots are registered.
|
||||
// mstats.enablegc = 1;
|
||||
// mstats()->enablegc = 1;
|
||||
}
|
||||
|
||||
extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main");
|
||||
@ -633,7 +633,7 @@ runtime_main(void* dummy __attribute__((unused)))
|
||||
// For gccgo we have to wait until after main is initialized
|
||||
// to enable GC, because initializing main registers the GC
|
||||
// roots.
|
||||
mstats.enablegc = 1;
|
||||
mstats()->enablegc = 1;
|
||||
|
||||
if(runtime_isarchive) {
|
||||
// This is not a complete program, but is instead a
|
||||
@ -951,7 +951,7 @@ runtime_freezetheworld(void)
|
||||
}
|
||||
|
||||
void
|
||||
runtime_stoptheworld(void)
|
||||
runtime_stopTheWorldWithSema(void)
|
||||
{
|
||||
int32 i;
|
||||
uint32 s;
|
||||
@ -1001,7 +1001,7 @@ mhelpgc(void)
|
||||
}
|
||||
|
||||
void
|
||||
runtime_starttheworld(void)
|
||||
runtime_startTheWorldWithSema(void)
|
||||
{
|
||||
P *p, *p1;
|
||||
M *mp;
|
||||
@ -1045,7 +1045,7 @@ runtime_starttheworld(void)
|
||||
mp = (M*)p->m;
|
||||
p->m = 0;
|
||||
if(mp->nextp)
|
||||
runtime_throw("starttheworld: inconsistent mp->nextp");
|
||||
runtime_throw("startTheWorldWithSema: inconsistent mp->nextp");
|
||||
mp->nextp = (uintptr)p;
|
||||
runtime_notewakeup(&mp->park);
|
||||
} else {
|
||||
@ -2373,7 +2373,7 @@ runtime_malg(int32 stacksize, byte** ret_stack, uintptr* ret_stacksize)
|
||||
// 32-bit mode, the Go allocation space is all of
|
||||
// memory anyhow.
|
||||
if(sizeof(void*) == 8) {
|
||||
void *p = runtime_SysAlloc(stacksize, &mstats.other_sys);
|
||||
void *p = runtime_SysAlloc(stacksize, &mstats()->other_sys);
|
||||
if(p == nil)
|
||||
runtime_throw("runtime: cannot allocate memory for goroutine stack");
|
||||
*ret_stack = (byte*)p;
|
||||
@ -2583,13 +2583,13 @@ runtime_gomaxprocsfunc(int32 n)
|
||||
}
|
||||
runtime_unlock(&runtime_sched);
|
||||
|
||||
runtime_semacquire(&runtime_worldsema, false);
|
||||
runtime_acquireWorldsema();
|
||||
g->m->gcing = 1;
|
||||
runtime_stoptheworld();
|
||||
runtime_stopTheWorldWithSema();
|
||||
newprocs = n;
|
||||
g->m->gcing = 0;
|
||||
runtime_semrelease(&runtime_worldsema);
|
||||
runtime_starttheworld();
|
||||
runtime_releaseWorldsema();
|
||||
runtime_startTheWorldWithSema();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -448,9 +448,14 @@ int32 runtime_setmaxthreads(int32);
|
||||
G* runtime_timejump(void);
|
||||
void runtime_iterate_finq(void (*callback)(FuncVal*, void*, const FuncType*, const PtrType*));
|
||||
|
||||
void runtime_stoptheworld(void);
|
||||
void runtime_starttheworld(void);
|
||||
extern uint32 runtime_worldsema;
|
||||
void runtime_stopTheWorldWithSema(void)
|
||||
__asm__(GOSYM_PREFIX "runtime.stopTheWorldWithSema");
|
||||
void runtime_startTheWorldWithSema(void)
|
||||
__asm__(GOSYM_PREFIX "runtime.startTheWorldWithSema");
|
||||
void runtime_acquireWorldsema(void)
|
||||
__asm__(GOSYM_PREFIX "runtime.acquireWorldsema");
|
||||
void runtime_releaseWorldsema(void)
|
||||
__asm__(GOSYM_PREFIX "runtime.releaseWorldsema");
|
||||
|
||||
/*
|
||||
* mutual exclusion locks. in the uncontended case,
|
||||
|
Loading…
Reference in New Issue
Block a user