runtime: copy mstats code from Go 1.7 runtime

This replaces mem.go and the C runtime_ReadMemStats function with the Go
    1.7 mstats.go.
    
    The GCStats code is commented out for now.  The corresponding gccgo code
    is in runtime/mgc0.c.
    
    The variables memstats and worldsema are shared between the Go code and
    the C code, but are not exported.  To make this work, add temporary
    accessor functions acquireWorldsema, releaseWorldsema, getMstats (the
    latter known as mstats in the C code).
    
    Check the preemptoff field of m when allocating and when considering
    whether to start a GC.  This works with the new stopTheWorld and
    startTheWorld functions in Go, which are essentially the Go 1.7
    versions.
    
    Change the compiler to stack allocate closures when compiling the
    runtime package.  Within the runtime packages closures do not escape.
    This is similar to what the gc compiler does, except that the gc
    compiler, when compiling the runtime package, gives an error if escape
    analysis shows that a closure does escape.  I added this here because
    the Go version of ReadMemStats calls systemstack with a closure, and
    having that allocate memory was causing some tests that measure memory
    allocations to fail.
    
    Reviewed-on: https://go-review.googlesource.com/30972

From-SVN: r241124
This commit is contained in:
Ian Lance Taylor 2016-10-13 15:24:50 +00:00
parent 5b1548fd79
commit 58f7dab40d
18 changed files with 668 additions and 350 deletions

View File

@ -1,4 +1,4 @@
6c9070324d5b7c8483bc7c17b0a8faaa1fb1ae30
681580a3afc687ba3ff9ef240c67e8630e4306e6
The first line of this file holds the git revision number of the last
merge done from the gofrontend repository.

View File

@ -3026,6 +3026,21 @@ Parse::create_closure(Named_object* function, Enclosing_vars* enclosing_vars,
Struct_type* st = closure_var->var_value()->type()->deref()->struct_type();
Expression* cv = Expression::make_struct_composite_literal(st, initializer,
location);
// When compiling the runtime, closures do not escape. When escape
// analysis becomes the default, and applies to closures, this
// should be changed to make it an error if a closure escapes.
if (this->gogo_->compiling_runtime()
&& this->gogo_->package_name() == "runtime")
{
Temporary_statement* ctemp = Statement::make_temporary(st, cv, location);
this->gogo_->add_statement(ctemp);
Expression* ref = Expression::make_temporary_reference(ctemp, location);
Expression* addr = Expression::make_unary(OPERATOR_AND, ref, location);
addr->unary_expression()->set_does_not_escape();
return addr;
}
return Expression::make_heap_expression(cv, location);
}

View File

@ -1,77 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
// Note: the MemStats struct should be kept in sync with
// struct MStats in malloc.h
// A MemStats records statistics about the memory allocator.
type MemStats struct {
// General statistics.
Alloc uint64 // bytes allocated and still in use
TotalAlloc uint64 // bytes allocated (even if freed)
Sys uint64 // bytes obtained from system (sum of XxxSys below)
Lookups uint64 // number of pointer lookups
Mallocs uint64 // number of mallocs
Frees uint64 // number of frees
// Main allocation heap statistics.
HeapAlloc uint64 // bytes allocated and still in use
HeapSys uint64 // bytes obtained from system
HeapIdle uint64 // bytes in idle spans
HeapInuse uint64 // bytes in non-idle span
HeapReleased uint64 // bytes released to the OS
HeapObjects uint64 // total number of allocated objects
// Low-level fixed-size structure allocator statistics.
// Inuse is bytes used now.
// Sys is bytes obtained from system.
StackInuse uint64 // bootstrap stacks
StackSys uint64
MSpanInuse uint64 // mspan structures
MSpanSys uint64
MCacheInuse uint64 // mcache structures
MCacheSys uint64
BuckHashSys uint64 // profiling bucket hash table
GCSys uint64 // GC metadata
OtherSys uint64 // other system allocations
// Garbage collector statistics.
NextGC uint64 // next run in HeapAlloc time (bytes)
LastGC uint64 // last run in absolute time (ns)
PauseTotalNs uint64
PauseNs [256]uint64 // circular buffer of recent GC pause times, most recent at [(NumGC+255)%256]
PauseEnd [256]uint64 // circular buffer of recent GC pause end times
NumGC uint32
GCCPUFraction float64 // fraction of CPU time used by GC
EnableGC bool
DebugGC bool
// Per-size allocation statistics.
// 61 is NumSizeClasses in the C code.
BySize [61]struct {
Size uint32
Mallocs uint64
Frees uint64
}
}
var Sizeof_C_MStats uintptr // filled in by malloc.goc
func init() {
var memStats MemStats
if Sizeof_C_MStats != unsafe.Sizeof(memStats) {
println(Sizeof_C_MStats, unsafe.Sizeof(memStats))
panic("MStats vs MemStatsType size mismatch")
}
}
// ReadMemStats populates m with memory allocator statistics.
func ReadMemStats(m *MemStats)
// GC runs a garbage collection.
func GC()

418
libgo/go/runtime/mstats.go Normal file
View File

@ -0,0 +1,418 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory statistics
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// Statistics.
// If you edit this structure, also edit type MemStats below.
type mstats struct {
// General statistics.
alloc uint64 // bytes allocated and not yet freed
total_alloc uint64 // bytes allocated (even if freed)
sys uint64 // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
nlookup uint64 // number of pointer lookups
nmalloc uint64 // number of mallocs
nfree uint64 // number of frees
// Statistics about malloc heap.
// protected by mheap.lock
heap_alloc uint64 // bytes allocated and not yet freed (same as alloc above)
heap_sys uint64 // bytes obtained from system
heap_idle uint64 // bytes in idle spans
heap_inuse uint64 // bytes in non-idle spans
heap_released uint64 // bytes released to the os
heap_objects uint64 // total number of allocated objects
// Statistics about allocation of low-level fixed-size structures.
// Protected by FixAlloc locks.
stacks_inuse uint64 // this number is included in heap_inuse above
stacks_sys uint64 // always 0 in mstats
mspan_inuse uint64 // mspan structures
mspan_sys uint64
mcache_inuse uint64 // mcache structures
mcache_sys uint64
buckhash_sys uint64 // profiling bucket hash table
gc_sys uint64
other_sys uint64
// Statistics about garbage collector.
// Protected by mheap or stopping the world during GC.
next_gc uint64 // next gc (in heap_live time)
last_gc uint64 // last gc (in absolute time)
pause_total_ns uint64
pause_ns [256]uint64 // circular buffer of recent gc pause lengths
pause_end [256]uint64 // circular buffer of recent gc end times (nanoseconds since 1970)
numgc uint32
gc_cpu_fraction float64 // fraction of CPU time used by GC
enablegc bool
debuggc bool
// Statistics about allocation size classes.
by_size [_NumSizeClasses]struct {
size uint32
nmalloc uint64
nfree uint64
}
// Statistics below here are not exported to Go directly.
tinyallocs uint64 // number of tiny allocations that didn't cause actual allocation; not exported to go directly
// heap_live is the number of bytes considered live by the GC.
// That is: retained by the most recent GC plus allocated
// since then. heap_live <= heap_alloc, since heap_alloc
// includes unmarked objects that have not yet been swept (and
// hence goes up as we allocate and down as we sweep) while
// heap_live excludes these objects (and hence only goes up
// between GCs).
//
// This is updated atomically without locking. To reduce
// contention, this is updated only when obtaining a span from
// an mcentral and at this point it counts all of the
// unallocated slots in that span (which will be allocated
// before that mcache obtains another span from that
// mcentral). Hence, it slightly overestimates the "true" live
// heap size. It's better to overestimate than to
// underestimate because 1) this triggers the GC earlier than
// necessary rather than potentially too late and 2) this
// leads to a conservative GC rate rather than a GC rate that
// is potentially too low.
//
// Whenever this is updated, call traceHeapAlloc() and
// gcController.revise().
heap_live uint64
// heap_scan is the number of bytes of "scannable" heap. This
// is the live heap (as counted by heap_live), but omitting
// no-scan objects and no-scan tails of objects.
//
// Whenever this is updated, call gcController.revise().
heap_scan uint64
// heap_marked is the number of bytes marked by the previous
// GC. After mark termination, heap_live == heap_marked, but
// unlike heap_live, heap_marked does not change until the
// next mark termination.
heap_marked uint64
// heap_reachable is an estimate of the reachable heap bytes
// at the end of the previous GC.
heap_reachable uint64
}
var memstats mstats
// A MemStats records statistics about the memory allocator.
type MemStats struct {
// General statistics.
Alloc uint64 // bytes allocated and not yet freed
TotalAlloc uint64 // bytes allocated (even if freed)
Sys uint64 // bytes obtained from system (sum of XxxSys below)
Lookups uint64 // number of pointer lookups
Mallocs uint64 // number of mallocs
Frees uint64 // number of frees
// Main allocation heap statistics.
HeapAlloc uint64 // bytes allocated and not yet freed (same as Alloc above)
HeapSys uint64 // bytes obtained from system
HeapIdle uint64 // bytes in idle spans
HeapInuse uint64 // bytes in non-idle span
HeapReleased uint64 // bytes released to the OS
HeapObjects uint64 // total number of allocated objects
// Low-level fixed-size structure allocator statistics.
// Inuse is bytes used now.
// Sys is bytes obtained from system.
StackInuse uint64 // bytes used by stack allocator
StackSys uint64
MSpanInuse uint64 // mspan structures
MSpanSys uint64
MCacheInuse uint64 // mcache structures
MCacheSys uint64
BuckHashSys uint64 // profiling bucket hash table
GCSys uint64 // GC metadata
OtherSys uint64 // other system allocations
// Garbage collector statistics.
NextGC uint64 // next collection will happen when HeapAlloc ≥ this amount
LastGC uint64 // end time of last collection (nanoseconds since 1970)
PauseTotalNs uint64
PauseNs [256]uint64 // circular buffer of recent GC pause durations, most recent at [(NumGC+255)%256]
PauseEnd [256]uint64 // circular buffer of recent GC pause end times
NumGC uint32
GCCPUFraction float64 // fraction of CPU time used by GC
EnableGC bool
DebugGC bool
// Per-size allocation statistics.
// 61 is NumSizeClasses in the C code.
BySize [61]struct {
Size uint32
Mallocs uint64
Frees uint64
}
}
// Size of the trailing by_size array differs between Go and C,
// and all data after by_size is local to runtime, not exported.
// NumSizeClasses was changed, but we cannot change Go struct because of backward compatibility.
// sizeof_C_MStats is what C thinks about size of Go struct.
var sizeof_C_MStats = unsafe.Offsetof(memstats.by_size) + 61*unsafe.Sizeof(memstats.by_size[0])
func init() {
var memStats MemStats
if sizeof_C_MStats != unsafe.Sizeof(memStats) {
println(sizeof_C_MStats, unsafe.Sizeof(memStats))
throw("MStats vs MemStatsType size mismatch")
}
}
// ReadMemStats populates m with memory allocator statistics.
func ReadMemStats(m *MemStats) {
stopTheWorld("read mem stats")
systemstack(func() {
readmemstats_m(m)
})
startTheWorld()
}
func readmemstats_m(stats *MemStats) {
updatememstats(nil)
// Size of the trailing by_size array differs between Go and C,
// NumSizeClasses was changed, but we cannot change Go struct because of backward compatibility.
memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)
// Stack numbers are part of the heap numbers, separate those out for user consumption
stats.StackSys += stats.StackInuse
stats.HeapInuse -= stats.StackInuse
stats.HeapSys -= stats.StackInuse
}
// For gccgo this is in runtime/mgc0.c.
func updatememstats(stats *gcstats)
/*
For gccgo these are still in runtime/mgc0.c.
//go:linkname readGCStats runtime/debug.readGCStats
func readGCStats(pauses *[]uint64) {
systemstack(func() {
readGCStats_m(pauses)
})
}
func readGCStats_m(pauses *[]uint64) {
p := *pauses
// Calling code in runtime/debug should make the slice large enough.
if cap(p) < len(memstats.pause_ns)+3 {
throw("short slice passed to readGCStats")
}
// Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
lock(&mheap_.lock)
n := memstats.numgc
if n > uint32(len(memstats.pause_ns)) {
n = uint32(len(memstats.pause_ns))
}
// The pause buffer is circular. The most recent pause is at
// pause_ns[(numgc-1)%len(pause_ns)], and then backward
// from there to go back farther in time. We deliver the times
// most recent first (in p[0]).
p = p[:cap(p)]
for i := uint32(0); i < n; i++ {
j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
p[i] = memstats.pause_ns[j]
p[n+i] = memstats.pause_end[j]
}
p[n+n] = memstats.last_gc
p[n+n+1] = uint64(memstats.numgc)
p[n+n+2] = memstats.pause_total_ns
unlock(&mheap_.lock)
*pauses = p[:n+n+3]
}
//go:nowritebarrier
func updatememstats(stats *gcstats) {
if stats != nil {
*stats = gcstats{}
}
for mp := allm; mp != nil; mp = mp.alllink {
if stats != nil {
src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats))
dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats))
for i, v := range src {
dst[i] += v
}
mp.gcstats = gcstats{}
}
}
memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys
// Calculate memory allocator stats.
// During program execution we only count number of frees and amount of freed memory.
// Current number of alive object in the heap and amount of alive heap memory
// are calculated by scanning all spans.
// Total number of mallocs is calculated as number of frees plus number of alive objects.
// Similarly, total amount of allocated memory is calculated as amount of freed memory
// plus amount of alive heap memory.
memstats.alloc = 0
memstats.total_alloc = 0
memstats.nmalloc = 0
memstats.nfree = 0
for i := 0; i < len(memstats.by_size); i++ {
memstats.by_size[i].nmalloc = 0
memstats.by_size[i].nfree = 0
}
// Flush MCache's to MCentral.
systemstack(flushallmcaches)
// Aggregate local stats.
cachestats()
// Scan all spans and count number of alive objects.
lock(&mheap_.lock)
for i := uint32(0); i < mheap_.nspan; i++ {
s := h_allspans[i]
if s.state != mSpanInUse {
continue
}
if s.sizeclass == 0 {
memstats.nmalloc++
memstats.alloc += uint64(s.elemsize)
} else {
memstats.nmalloc += uint64(s.allocCount)
memstats.by_size[s.sizeclass].nmalloc += uint64(s.allocCount)
memstats.alloc += uint64(s.allocCount) * uint64(s.elemsize)
}
}
unlock(&mheap_.lock)
// Aggregate by size class.
smallfree := uint64(0)
memstats.nfree = mheap_.nlargefree
for i := 0; i < len(memstats.by_size); i++ {
memstats.nfree += mheap_.nsmallfree[i]
memstats.by_size[i].nfree = mheap_.nsmallfree[i]
memstats.by_size[i].nmalloc += mheap_.nsmallfree[i]
smallfree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
}
memstats.nfree += memstats.tinyallocs
memstats.nmalloc += memstats.nfree
// Calculate derived stats.
memstats.total_alloc = memstats.alloc + mheap_.largefree + smallfree
memstats.heap_alloc = memstats.alloc
memstats.heap_objects = memstats.nmalloc - memstats.nfree
}
//go:nowritebarrier
func cachestats() {
for i := 0; ; i++ {
p := allp[i]
if p == nil {
break
}
c := p.mcache
if c == nil {
continue
}
purgecachedstats(c)
}
}
//go:nowritebarrier
func flushallmcaches() {
for i := 0; ; i++ {
p := allp[i]
if p == nil {
break
}
c := p.mcache
if c == nil {
continue
}
c.releaseAll()
stackcache_clear(c)
}
}
//go:nosplit
func purgecachedstats(c *mcache) {
// Protected by either heap or GC lock.
h := &mheap_
memstats.heap_scan += uint64(c.local_scan)
c.local_scan = 0
memstats.tinyallocs += uint64(c.local_tinyallocs)
c.local_tinyallocs = 0
memstats.nlookup += uint64(c.local_nlookup)
c.local_nlookup = 0
h.largefree += uint64(c.local_largefree)
c.local_largefree = 0
h.nlargefree += uint64(c.local_nlargefree)
c.local_nlargefree = 0
for i := 0; i < len(c.local_nsmallfree); i++ {
h.nsmallfree[i] += uint64(c.local_nsmallfree[i])
c.local_nsmallfree[i] = 0
}
}
*/
// Atomically increases a given *system* memory stat. We are counting on this
// stat never overflowing a uintptr, so this function must only be used for
// system memory stats.
//
// The current implementation for little endian architectures is based on
// xadduintptr(), which is less than ideal: xadd64() should really be used.
// Using xadduintptr() is a stop-gap solution until arm supports xadd64() that
// doesn't use locks. (Locks are a problem as they require a valid G, which
// restricts their useability.)
//
// A side-effect of using xadduintptr() is that we need to check for
// overflow errors.
//go:nosplit
func mSysStatInc(sysStat *uint64, n uintptr) {
if sys.BigEndian != 0 {
atomic.Xadd64(sysStat, int64(n))
return
}
if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), n); val < n {
print("runtime: stat overflow: val ", val, ", n ", n, "\n")
exit(2)
}
}
// Atomically decreases a given *system* memory stat. Same comments as
// mSysStatInc apply.
//go:nosplit
func mSysStatDec(sysStat *uint64, n uintptr) {
if sys.BigEndian != 0 {
atomic.Xadd64(sysStat, -int64(n))
return
}
if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), uintptr(-int64(n))); val+n < n {
print("runtime: stat underflow: val ", val, ", n ", n, "\n")
exit(2)
}
}

View File

@ -367,3 +367,51 @@ func typeBitsBulkBarrier(typ *_type, p, size uintptr) {}
// Here for gccgo until we port msize.go.
func roundupsize(uintptr) uintptr
// Here for gccgo until we port mgc.go.
func GC()
// Here for gccgo until we port proc.go.
var worldsema uint32 = 1
func stopTheWorldWithSema()
func startTheWorldWithSema()
// For gccgo to call from C code.
//go:linkname acquireWorldsema runtime.acquireWorldsema
func acquireWorldsema() {
semacquire(&worldsema, false)
}
// For gccgo to call from C code.
//go:linkname releaseWorldsema runtime.releaseWorldsema
func releaseWorldsema() {
semrelease(&worldsema)
}
// Here for gccgo until we port proc.go.
func stopTheWorld(reason string) {
semacquire(&worldsema, false)
getg().m.preemptoff = reason
getg().m.gcing = 1
systemstack(stopTheWorldWithSema)
}
// Here for gccgo until we port proc.go.
func startTheWorld() {
getg().m.gcing = 0
getg().m.locks++
systemstack(startTheWorldWithSema)
// worldsema must be held over startTheWorldWithSema to ensure
// gomaxprocs cannot change while worldsema is held.
semrelease(&worldsema)
getg().m.preemptoff = ""
getg().m.locks--
}
// For gccgo to call from C code, so that the C code and the Go code
// can share the memstats variable for now.
//go:linkname getMstats runtime.getMstats
func getMstats() *mstats {
return &memstats
}

View File

@ -146,7 +146,7 @@ runtime_SetCPUProfileRate(intgo hz)
runtime_lock(&lk);
if(hz > 0) {
if(prof == nil) {
prof = runtime_SysAlloc(sizeof *prof, &mstats.other_sys);
prof = runtime_SysAlloc(sizeof *prof, &mstats()->other_sys);
if(prof == nil) {
runtime_printf("runtime: cpu profiling cannot allocate memory\n");
runtime_unlock(&lk);

View File

@ -489,33 +489,33 @@ dumpmemstats(void)
int32 i;
dumpint(TagMemStats);
dumpint(mstats.alloc);
dumpint(mstats.total_alloc);
dumpint(mstats.sys);
dumpint(mstats.nlookup);
dumpint(mstats.nmalloc);
dumpint(mstats.nfree);
dumpint(mstats.heap_alloc);
dumpint(mstats.heap_sys);
dumpint(mstats.heap_idle);
dumpint(mstats.heap_inuse);
dumpint(mstats.heap_released);
dumpint(mstats.heap_objects);
dumpint(mstats.stacks_inuse);
dumpint(mstats.stacks_sys);
dumpint(mstats.mspan_inuse);
dumpint(mstats.mspan_sys);
dumpint(mstats.mcache_inuse);
dumpint(mstats.mcache_sys);
dumpint(mstats.buckhash_sys);
dumpint(mstats.gc_sys);
dumpint(mstats.other_sys);
dumpint(mstats.next_gc);
dumpint(mstats.last_gc);
dumpint(mstats.pause_total_ns);
dumpint(mstats()->alloc);
dumpint(mstats()->total_alloc);
dumpint(mstats()->sys);
dumpint(mstats()->nlookup);
dumpint(mstats()->nmalloc);
dumpint(mstats()->nfree);
dumpint(mstats()->heap_alloc);
dumpint(mstats()->heap_sys);
dumpint(mstats()->heap_idle);
dumpint(mstats()->heap_inuse);
dumpint(mstats()->heap_released);
dumpint(mstats()->heap_objects);
dumpint(mstats()->stacks_inuse);
dumpint(mstats()->stacks_sys);
dumpint(mstats()->mspan_inuse);
dumpint(mstats()->mspan_sys);
dumpint(mstats()->mcache_inuse);
dumpint(mstats()->mcache_sys);
dumpint(mstats()->buckhash_sys);
dumpint(mstats()->gc_sys);
dumpint(mstats()->other_sys);
dumpint(mstats()->next_gc);
dumpint(mstats()->last_gc);
dumpint(mstats()->pause_total_ns);
for(i = 0; i < 256; i++)
dumpint(mstats.pause_ns[i]);
dumpint(mstats.numgc);
dumpint(mstats()->pause_ns[i]);
dumpint(mstats()->numgc);
}
static void
@ -615,11 +615,11 @@ runtime_debug_WriteHeapDump(uintptr fd)
G *g;
// Stop the world.
runtime_semacquire(&runtime_worldsema, false);
runtime_acquireWorldsema();
m = runtime_m();
m->gcing = 1;
m->locks++;
runtime_stoptheworld();
runtime_stopTheWorldWithSema();
// Update stats so we can dump them.
// As a side effect, flushes all the MCaches so the MSpan.freelist
@ -640,8 +640,8 @@ runtime_debug_WriteHeapDump(uintptr fd)
// Start up the world again.
m->gcing = 0;
runtime_semrelease(&runtime_worldsema);
runtime_starttheworld();
runtime_releaseWorldsema();
runtime_startTheWorldWithSema();
m->locks--;
}

View File

@ -51,12 +51,9 @@ package runtime
// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
MHeap runtime_mheap;
MStats mstats;
int32 runtime_checking;
extern MStats mstats; // defined in zruntime_def_$GOOS_$GOARCH.go
extern volatile intgo runtime_MemProfileRate
__asm__ (GOSYM_PREFIX "runtime.MemProfileRate");
@ -81,6 +78,7 @@ runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
MLink *v, *next;
byte *tiny;
bool incallback;
MStats *pmstats;
if(size == 0) {
// All 0-length allocations use this pointer.
@ -105,7 +103,7 @@ runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
flag |= FlagNoInvokeGC;
}
if(runtime_gcwaiting() && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC)) {
if(runtime_gcwaiting() && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC) && m->preemptoff.len == 0) {
runtime_gosched();
m = runtime_m();
}
@ -252,7 +250,8 @@ runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
m->locks--;
if(!(flag & FlagNoInvokeGC) && mstats.heap_alloc >= mstats.next_gc)
pmstats = mstats();
if(!(flag & FlagNoInvokeGC) && pmstats->heap_alloc >= pmstats->next_gc)
runtime_gc(0);
if(incallback)
@ -472,9 +471,9 @@ runtime_purgecachedstats(MCache *c)
// Protected by either heap or GC lock.
h = &runtime_mheap;
mstats.heap_alloc += (intptr)c->local_cachealloc;
mstats()->heap_alloc += (intptr)c->local_cachealloc;
c->local_cachealloc = 0;
mstats.nlookup += c->local_nlookup;
mstats()->nlookup += c->local_nlookup;
c->local_nlookup = 0;
h->largefree += c->local_largefree;
c->local_largefree = 0;
@ -486,13 +485,6 @@ runtime_purgecachedstats(MCache *c)
}
}
extern uintptr runtime_sizeof_C_MStats
__asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");
// Size of the trailing by_size array differs between Go and C,
// _NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
// sizeof_C_MStats is what C thinks about size of Go struct.
// Initialized in mallocinit because it's defined in go/runtime/mem.go.
#define MaxArena32 (2U<<30)
@ -508,8 +500,6 @@ runtime_mallocinit(void)
uint64 i;
bool reserved;
runtime_sizeof_C_MStats = sizeof(MStats) - (_NumSizeClasses - 61) * sizeof(mstats.by_size[0]);
p = nil;
p_size = 0;
arena_size = 0;
@ -685,7 +675,7 @@ runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
if(n <= (uintptr)(h->arena_end - h->arena_used)) {
// Keep taking from our reservation.
p = h->arena_used;
runtime_SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
runtime_SysMap(p, n, h->arena_reserved, &mstats()->heap_sys);
h->arena_used += n;
runtime_MHeap_MapBits(h);
runtime_MHeap_MapSpans(h);
@ -703,14 +693,14 @@ runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
// try to get memory at a location chosen by the OS
// and hope that it is in the range we allocated bitmap for.
p_size = ROUND(n, PageSize) + PageSize;
p = runtime_SysAlloc(p_size, &mstats.heap_sys);
p = runtime_SysAlloc(p_size, &mstats()->heap_sys);
if(p == nil)
return nil;
if(p < h->arena_start || (uintptr)(p+p_size - h->arena_start) >= MaxArena32) {
runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
p, h->arena_start, h->arena_start+MaxArena32);
runtime_SysFree(p, p_size, &mstats.heap_sys);
runtime_SysFree(p, p_size, &mstats()->heap_sys);
return nil;
}
@ -763,7 +753,7 @@ runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
runtime_lock(&persistent);
persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align);
if(persistent.pos + size > persistent.end) {
persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats.other_sys);
persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats()->other_sys);
if(persistent.pos == nil) {
runtime_unlock(&persistent);
runtime_throw("runtime: cannot allocate memory");
@ -773,10 +763,10 @@ runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
p = persistent.pos;
persistent.pos += size;
runtime_unlock(&persistent);
if(stat != &mstats.other_sys) {
if(stat != &mstats()->other_sys) {
// reaccount the allocation against provided stat
runtime_xadd64(stat, size);
runtime_xadd64(&mstats.other_sys, -(uint64)size);
runtime_xadd64(&mstats()->other_sys, -(uint64)size);
}
return p;
}

View File

@ -83,7 +83,7 @@
typedef struct MCentral MCentral;
typedef struct MHeap MHeap;
typedef struct mspan MSpan;
typedef struct MStats MStats;
typedef struct mstats MStats;
typedef struct mlink MLink;
typedef struct mtypes MTypes;
typedef struct gcstats GCStats;
@ -216,63 +216,10 @@ void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*
void* runtime_FixAlloc_Alloc(FixAlloc *f);
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
// Statistics.
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
struct MStats
{
// General statistics.
uint64 alloc; // bytes allocated and still in use
uint64 total_alloc; // bytes allocated (even if freed)
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
uint64 nlookup; // number of pointer lookups
uint64 nmalloc; // number of mallocs
uint64 nfree; // number of frees
// Statistics about malloc heap.
// protected by mheap.Lock
uint64 heap_alloc; // bytes allocated and still in use
uint64 heap_sys; // bytes obtained from system
uint64 heap_idle; // bytes in idle spans
uint64 heap_inuse; // bytes in non-idle spans
uint64 heap_released; // bytes released to the OS
uint64 heap_objects; // total number of allocated objects
// Statistics about allocation of low-level fixed-size structures.
// Protected by FixAlloc locks.
uint64 stacks_inuse; // bootstrap stacks
uint64 stacks_sys;
uint64 mspan_inuse; // MSpan structures
uint64 mspan_sys;
uint64 mcache_inuse; // MCache structures
uint64 mcache_sys;
uint64 buckhash_sys; // profiling bucket hash table
uint64 gc_sys;
uint64 other_sys;
// Statistics about garbage collector.
// Protected by mheap or stopping the world during GC.
uint64 next_gc; // next GC (in heap_alloc time)
uint64 last_gc; // last GC (in absolute time)
uint64 pause_total_ns;
uint64 pause_ns[256];
uint64 pause_end[256];
uint32 numgc;
float64 gc_cpu_fraction;
bool enablegc;
bool debuggc;
// Statistics about allocation size classes.
struct {
uint32 size;
uint64 nmalloc;
uint64 nfree;
} by_size[_NumSizeClasses];
};
extern MStats mstats
__asm__ (GOSYM_PREFIX "runtime.memStats");
void runtime_updatememstats(GCStats *stats);
extern MStats *mstats(void)
__asm__ (GOSYM_PREFIX "runtime.getMstats");
void runtime_updatememstats(GCStats *stats)
__asm__ (GOSYM_PREFIX "runtime.updatememstats");
// Size classes. Computed and initialized by InitSizes.
//

View File

@ -9,7 +9,7 @@ runtime_SysAlloc(uintptr n)
{
void *p;
mstats.sys += n;
mstats()->sys += n;
errno = posix_memalign(&p, PageSize, n);
if (errno > 0) {
perror("posix_memalign");
@ -29,7 +29,7 @@ runtime_SysUnused(void *v, uintptr n)
void
runtime_SysFree(void *v, uintptr n)
{
mstats.sys -= n;
mstats()->sys -= n;
free(v);
}

View File

@ -145,21 +145,6 @@ clearpools(void)
}
}
// Holding worldsema grants an M the right to try to stop the world.
// The procedure is:
//
// runtime_semacquire(&runtime_worldsema);
// m->gcing = 1;
// runtime_stoptheworld();
//
// ... do stuff ...
//
// m->gcing = 0;
// runtime_semrelease(&runtime_worldsema);
// runtime_starttheworld();
//
uint32 runtime_worldsema = 1;
typedef struct Workbuf Workbuf;
struct Workbuf
{
@ -1377,7 +1362,7 @@ getempty(Workbuf *b)
runtime_lock(&work);
if(work.nchunk < sizeof *b) {
work.nchunk = 1<<20;
work.chunk = runtime_SysAlloc(work.nchunk, &mstats.gc_sys);
work.chunk = runtime_SysAlloc(work.nchunk, &mstats()->gc_sys);
if(work.chunk == nil)
runtime_throw("runtime: cannot allocate memory");
}
@ -1558,7 +1543,7 @@ runtime_queuefinalizer(void *p, FuncVal *fn, const FuncType *ft, const PtrType *
runtime_lock(&finlock);
if(finq == nil || finq->cnt == finq->cap) {
if(finc == nil) {
finc = runtime_persistentalloc(FinBlockSize, 0, &mstats.gc_sys);
finc = runtime_persistentalloc(FinBlockSize, 0, &mstats()->gc_sys);
finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
finc->alllink = allfin;
allfin = finc;
@ -1755,7 +1740,7 @@ runtime_MSpan_Sweep(MSpan *s)
runtime_MHeap_Free(&runtime_mheap, s, 1);
c->local_nlargefree++;
c->local_largefree += size;
runtime_xadd64(&mstats.next_gc, -(uint64)(size * (gcpercent + 100)/100));
runtime_xadd64(&mstats()->next_gc, -(uint64)(size * (gcpercent + 100)/100));
res = true;
} else {
// Free small object.
@ -1797,7 +1782,7 @@ runtime_MSpan_Sweep(MSpan *s)
if(nfree > 0) {
c->local_nsmallfree[cl] += nfree;
c->local_cachealloc -= nfree * size;
runtime_xadd64(&mstats.next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100));
runtime_xadd64(&mstats()->next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100));
res = runtime_MCentral_FreeSpan(&runtime_mheap.central[cl], s, nfree, head.next, end);
//MCentral_FreeSpan updates sweepgen
}
@ -2010,6 +1995,7 @@ runtime_updatememstats(GCStats *stats)
uint32 i;
uint64 stacks_inuse, smallfree;
uint64 *src, *dst;
MStats *pmstats;
if(stats)
runtime_memclr((byte*)stats, sizeof(*stats));
@ -2024,11 +2010,12 @@ runtime_updatememstats(GCStats *stats)
runtime_memclr((byte*)&mp->gcstats, sizeof(mp->gcstats));
}
}
mstats.stacks_inuse = stacks_inuse;
mstats.mcache_inuse = runtime_mheap.cachealloc.inuse;
mstats.mspan_inuse = runtime_mheap.spanalloc.inuse;
mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys +
mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys;
pmstats = mstats();
pmstats->stacks_inuse = stacks_inuse;
pmstats->mcache_inuse = runtime_mheap.cachealloc.inuse;
pmstats->mspan_inuse = runtime_mheap.spanalloc.inuse;
pmstats->sys = pmstats->heap_sys + pmstats->stacks_sys + pmstats->mspan_sys +
pmstats->mcache_sys + pmstats->buckhash_sys + pmstats->gc_sys + pmstats->other_sys;
// Calculate memory allocator stats.
// During program execution we only count number of frees and amount of freed memory.
@ -2037,13 +2024,13 @@ runtime_updatememstats(GCStats *stats)
// Total number of mallocs is calculated as number of frees plus number of alive objects.
// Similarly, total amount of allocated memory is calculated as amount of freed memory
// plus amount of alive heap memory.
mstats.alloc = 0;
mstats.total_alloc = 0;
mstats.nmalloc = 0;
mstats.nfree = 0;
for(i = 0; i < nelem(mstats.by_size); i++) {
mstats.by_size[i].nmalloc = 0;
mstats.by_size[i].nfree = 0;
pmstats->alloc = 0;
pmstats->total_alloc = 0;
pmstats->nmalloc = 0;
pmstats->nfree = 0;
for(i = 0; i < nelem(pmstats->by_size); i++) {
pmstats->by_size[i].nmalloc = 0;
pmstats->by_size[i].nfree = 0;
}
// Flush MCache's to MCentral.
@ -2058,30 +2045,30 @@ runtime_updatememstats(GCStats *stats)
if(s->state != MSpanInUse)
continue;
if(s->sizeclass == 0) {
mstats.nmalloc++;
mstats.alloc += s->elemsize;
pmstats->nmalloc++;
pmstats->alloc += s->elemsize;
} else {
mstats.nmalloc += s->ref;
mstats.by_size[s->sizeclass].nmalloc += s->ref;
mstats.alloc += s->ref*s->elemsize;
pmstats->nmalloc += s->ref;
pmstats->by_size[s->sizeclass].nmalloc += s->ref;
pmstats->alloc += s->ref*s->elemsize;
}
}
// Aggregate by size class.
smallfree = 0;
mstats.nfree = runtime_mheap.nlargefree;
for(i = 0; i < nelem(mstats.by_size); i++) {
mstats.nfree += runtime_mheap.nsmallfree[i];
mstats.by_size[i].nfree = runtime_mheap.nsmallfree[i];
mstats.by_size[i].nmalloc += runtime_mheap.nsmallfree[i];
pmstats->nfree = runtime_mheap.nlargefree;
for(i = 0; i < nelem(pmstats->by_size); i++) {
pmstats->nfree += runtime_mheap.nsmallfree[i];
pmstats->by_size[i].nfree = runtime_mheap.nsmallfree[i];
pmstats->by_size[i].nmalloc += runtime_mheap.nsmallfree[i];
smallfree += runtime_mheap.nsmallfree[i] * runtime_class_to_size[i];
}
mstats.nmalloc += mstats.nfree;
pmstats->nmalloc += pmstats->nfree;
// Calculate derived stats.
mstats.total_alloc = mstats.alloc + runtime_mheap.largefree + smallfree;
mstats.heap_alloc = mstats.alloc;
mstats.heap_objects = mstats.nmalloc - mstats.nfree;
pmstats->total_alloc = pmstats->alloc + runtime_mheap.largefree + smallfree;
pmstats->heap_alloc = pmstats->alloc;
pmstats->heap_objects = pmstats->nmalloc - pmstats->nfree;
}
// Structure of arguments passed to function gc().
@ -2119,6 +2106,7 @@ runtime_gc(int32 force)
G *g;
struct gc_args a;
int32 i;
MStats *pmstats;
// The atomic operations are not atomic if the uint64s
// are not aligned on uint64 boundaries. This has been
@ -2141,7 +2129,8 @@ runtime_gc(int32 force)
// while holding a lock. The next mallocgc
// without a lock will do the gc instead.
m = runtime_m();
if(!mstats.enablegc || runtime_g() == m->g0 || m->locks > 0 || runtime_panicking)
pmstats = mstats();
if(!pmstats->enablegc || runtime_g() == m->g0 || m->locks > 0 || runtime_panicking || m->preemptoff.len > 0)
return;
if(gcpercent == GcpercentUnknown) { // first time through
@ -2153,11 +2142,11 @@ runtime_gc(int32 force)
if(gcpercent < 0)
return;
runtime_semacquire(&runtime_worldsema, false);
if(force==0 && mstats.heap_alloc < mstats.next_gc) {
runtime_acquireWorldsema();
if(force==0 && pmstats->heap_alloc < pmstats->next_gc) {
// typically threads which lost the race to grab
// worldsema exit here when gc is done.
runtime_semrelease(&runtime_worldsema);
runtime_releaseWorldsema();
return;
}
@ -2165,7 +2154,7 @@ runtime_gc(int32 force)
a.start_time = runtime_nanotime();
a.eagersweep = force >= 2;
m->gcing = 1;
runtime_stoptheworld();
runtime_stopTheWorldWithSema();
clearpools();
@ -2189,8 +2178,8 @@ runtime_gc(int32 force)
// all done
m->gcing = 0;
m->locks++;
runtime_semrelease(&runtime_worldsema);
runtime_starttheworld();
runtime_releaseWorldsema();
runtime_startTheWorldWithSema();
m->locks--;
// now that gc is done, kick off finalizer thread if needed
@ -2220,6 +2209,7 @@ gc(struct gc_args *args)
uint64 heap0, heap1, obj, ninstr;
GCStats stats;
uint32 i;
MStats *pmstats;
// Eface eface;
m = runtime_m();
@ -2275,28 +2265,29 @@ gc(struct gc_args *args)
cachestats();
// next_gc calculation is tricky with concurrent sweep since we don't know size of live heap
// estimate what was live heap size after previous GC (for tracing only)
heap0 = mstats.next_gc*100/(gcpercent+100);
pmstats = mstats();
heap0 = pmstats->next_gc*100/(gcpercent+100);
// conservatively set next_gc to high value assuming that everything is live
// concurrent/lazy sweep will reduce this number while discovering new garbage
mstats.next_gc = mstats.heap_alloc+(mstats.heap_alloc-runtime_stacks_sys)*gcpercent/100;
pmstats->next_gc = pmstats->heap_alloc+(pmstats->heap_alloc-runtime_stacks_sys)*gcpercent/100;
tm4 = runtime_nanotime();
mstats.last_gc = runtime_unixnanotime(); // must be Unix time to make sense to user
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = tm4 - tm0;
mstats.pause_end[mstats.numgc%nelem(mstats.pause_end)] = mstats.last_gc;
mstats.pause_total_ns += tm4 - tm0;
mstats.numgc++;
if(mstats.debuggc)
pmstats->last_gc = runtime_unixnanotime(); // must be Unix time to make sense to user
pmstats->pause_ns[pmstats->numgc%nelem(pmstats->pause_ns)] = tm4 - tm0;
pmstats->pause_end[pmstats->numgc%nelem(pmstats->pause_end)] = pmstats->last_gc;
pmstats->pause_total_ns += tm4 - tm0;
pmstats->numgc++;
if(pmstats->debuggc)
runtime_printf("pause %D\n", tm4-tm0);
if(runtime_debug.gctrace) {
heap1 = mstats.heap_alloc;
heap1 = pmstats->heap_alloc;
runtime_updatememstats(&stats);
if(heap1 != mstats.heap_alloc) {
runtime_printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc);
if(heap1 != pmstats->heap_alloc) {
runtime_printf("runtime: mstats skew: heap=%D/%D\n", heap1, pmstats->heap_alloc);
runtime_throw("mstats skew");
}
obj = mstats.nmalloc - mstats.nfree;
obj = pmstats->nmalloc - pmstats->nfree;
stats.nprocyield += work.markfor->nprocyield;
stats.nosyield += work.markfor->nosyield;
@ -2305,9 +2296,9 @@ gc(struct gc_args *args)
runtime_printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects,"
" %d/%d/%d sweeps,"
" %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
mstats.numgc, work.nproc, (tm1-tm0)/1000, (tm2-tm1)/1000, (tm3-tm2)/1000, (tm4-tm3)/1000,
pmstats->numgc, work.nproc, (tm1-tm0)/1000, (tm2-tm1)/1000, (tm3-tm2)/1000, (tm4-tm3)/1000,
heap0>>20, heap1>>20, obj,
mstats.nmalloc, mstats.nfree,
pmstats->nmalloc, pmstats->nfree,
sweep.nspan, gcstats.nbgsweep, gcstats.npausesweep,
stats.nhandoff, stats.nhandoffcnt,
work.markfor->nsteal, work.markfor->nstealcnt,
@ -2346,7 +2337,7 @@ gc(struct gc_args *args)
// Free the old cached array if necessary.
if(sweep.spans && sweep.spans != runtime_mheap.allspans)
runtime_SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &mstats.other_sys);
runtime_SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &pmstats->other_sys);
// Cache the current array.
runtime_mheap.sweepspans = runtime_mheap.allspans;
runtime_mheap.sweepgen += 2;
@ -2377,36 +2368,6 @@ gc(struct gc_args *args)
m->traceback = 0;
}
extern uintptr runtime_sizeof_C_MStats
__asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");
void runtime_ReadMemStats(MStats *)
__asm__ (GOSYM_PREFIX "runtime.ReadMemStats");
void
runtime_ReadMemStats(MStats *stats)
{
M *m;
// Have to acquire worldsema to stop the world,
// because stoptheworld can only be used by
// one goroutine at a time, and there might be
// a pending garbage collection already calling it.
runtime_semacquire(&runtime_worldsema, false);
m = runtime_m();
m->gcing = 1;
runtime_stoptheworld();
runtime_updatememstats(nil);
// Size of the trailing by_size array differs between Go and C,
// _NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
runtime_memmove(stats, &mstats, runtime_sizeof_C_MStats);
m->gcing = 0;
m->locks++;
runtime_semrelease(&runtime_worldsema);
runtime_starttheworld();
m->locks--;
}
void runtime_debug_readGCStats(Slice*)
__asm__("runtime_debug.readGCStats");
@ -2415,28 +2376,30 @@ runtime_debug_readGCStats(Slice *pauses)
{
uint64 *p;
uint32 i, n;
MStats *pmstats;
// Calling code in runtime/debug should make the slice large enough.
if((size_t)pauses->cap < nelem(mstats.pause_ns)+3)
pmstats = mstats();
if((size_t)pauses->cap < nelem(pmstats->pause_ns)+3)
runtime_throw("runtime: short slice passed to readGCStats");
// Pass back: pauses, last gc (absolute time), number of gc, total pause ns.
p = (uint64*)pauses->array;
runtime_lock(&runtime_mheap);
n = mstats.numgc;
if(n > nelem(mstats.pause_ns))
n = nelem(mstats.pause_ns);
n = pmstats->numgc;
if(n > nelem(pmstats->pause_ns))
n = nelem(pmstats->pause_ns);
// The pause buffer is circular. The most recent pause is at
// pause_ns[(numgc-1)%nelem(pause_ns)], and then backward
// from there to go back farther in time. We deliver the times
// most recent first (in p[0]).
for(i=0; i<n; i++)
p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)];
p[i] = pmstats->pause_ns[(pmstats->numgc-1-i)%nelem(pmstats->pause_ns)];
p[n] = mstats.last_gc;
p[n+1] = mstats.numgc;
p[n+2] = mstats.pause_total_ns;
p[n] = pmstats->last_gc;
p[n+1] = pmstats->numgc;
p[n+2] = pmstats->pause_total_ns;
runtime_unlock(&runtime_mheap);
pauses->__count = n+3;
}
@ -2745,7 +2708,7 @@ runtime_MHeap_MapBits(MHeap *h)
if(h->bitmap_mapped >= n)
return;
runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats.gc_sys);
runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats()->gc_sys);
h->bitmap_mapped = n;
}

View File

@ -36,7 +36,7 @@ RecordSpan(void *vh, byte *p)
cap = 64*1024/sizeof(all[0]);
if(cap < h->nspancap*3/2)
cap = h->nspancap*3/2;
all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats()->other_sys);
if(all == nil)
runtime_throw("runtime: cannot allocate memory");
if(h->allspans) {
@ -44,7 +44,7 @@ RecordSpan(void *vh, byte *p)
// Don't free the old array if it's referenced by sweep.
// See the comment in mgc0.c.
if(h->allspans != runtime_mheap.sweepspans)
runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats()->other_sys);
}
h->allspans = all;
h->nspancap = cap;
@ -56,12 +56,14 @@ RecordSpan(void *vh, byte *p)
void
runtime_MHeap_Init(MHeap *h)
{
MStats *pmstats;
uint32 i;
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys);
runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys);
pmstats = mstats();
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &pmstats->mspan_sys);
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &pmstats->mcache_sys);
runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &pmstats->other_sys);
runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &pmstats->other_sys);
// h->mapcache needs no init
for(i=0; i<nelem(h->free); i++) {
runtime_MSpanList_Init(&h->free[i]);
@ -88,7 +90,7 @@ runtime_MHeap_MapSpans(MHeap *h)
n = ROUND(n, pagesize);
if(h->spans_mapped >= n)
return;
runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys);
runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats()->other_sys);
h->spans_mapped = n;
}
@ -173,17 +175,19 @@ MHeap_Reclaim(MHeap *h, uintptr npage)
MSpan*
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero)
{
MStats *pmstats;
MSpan *s;
runtime_lock(h);
mstats.heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
pmstats = mstats();
pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
runtime_m()->mcache->local_cachealloc = 0;
s = MHeap_AllocLocked(h, npage, sizeclass);
if(s != nil) {
mstats.heap_inuse += npage<<PageShift;
pmstats->heap_inuse += npage<<PageShift;
if(large) {
mstats.heap_objects++;
mstats.heap_alloc += npage<<PageShift;
pmstats->heap_objects++;
pmstats->heap_alloc += npage<<PageShift;
// Swept spans are at the end of lists.
if(s->npages < nelem(h->free))
runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
@ -237,8 +241,8 @@ HaveSpan:
runtime_MSpanList_Remove(s);
runtime_atomicstore(&s->sweepgen, h->sweepgen);
s->state = MSpanInUse;
mstats.heap_idle -= s->npages<<PageShift;
mstats.heap_released -= s->npreleased<<PageShift;
mstats()->heap_idle -= s->npages<<PageShift;
mstats()->heap_released -= s->npreleased<<PageShift;
if(s->npreleased > 0)
runtime_SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
s->npreleased = 0;
@ -326,7 +330,7 @@ MHeap_Grow(MHeap *h, uintptr npage)
v = runtime_MHeap_SysAlloc(h, ask);
}
if(v == nil) {
runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats()->heap_sys);
return false;
}
}
@ -386,13 +390,16 @@ runtime_MHeap_LookupMaybe(MHeap *h, void *v)
void
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
{
MStats *pmstats;
runtime_lock(h);
mstats.heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
pmstats = mstats();
pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
runtime_m()->mcache->local_cachealloc = 0;
mstats.heap_inuse -= s->npages<<PageShift;
pmstats->heap_inuse -= s->npages<<PageShift;
if(acct) {
mstats.heap_alloc -= s->npages<<PageShift;
mstats.heap_objects--;
pmstats->heap_alloc -= s->npages<<PageShift;
pmstats->heap_objects--;
}
MHeap_FreeLocked(h, s);
runtime_unlock(h);
@ -411,7 +418,7 @@ MHeap_FreeLocked(MHeap *h, MSpan *s)
s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen);
runtime_throw("MHeap_FreeLocked - invalid free");
}
mstats.heap_idle += s->npages<<PageShift;
mstats()->heap_idle += s->npages<<PageShift;
s->state = MSpanFree;
runtime_MSpanList_Remove(s);
// Stamp newly unused spans. The scavenger will use that
@ -472,7 +479,7 @@ scavengelist(MSpan *list, uint64 now, uint64 limit)
for(s=list->next; s != list; s=s->next) {
if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
released = (s->npages - s->npreleased) << PageShift;
mstats.heap_released += released;
mstats()->heap_released += released;
sumreleased += released;
s->npreleased = s->npages;
@ -508,8 +515,8 @@ scavenge(int32 k, uint64 now, uint64 limit)
if(sumreleased > 0)
runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
k, mstats()->heap_inuse>>20, mstats()->heap_idle>>20, mstats()->heap_sys>>20,
mstats()->heap_released>>20, (mstats()->heap_sys - mstats()->heap_released)>>20);
}
}
@ -550,7 +557,7 @@ runtime_MHeap_Scavenger(void* dummy)
runtime_lock(h);
unixnow = runtime_unixnanotime();
if(unixnow - mstats.last_gc > forcegc) {
if(unixnow - mstats()->last_gc > forcegc) {
runtime_unlock(h);
// The scavenger can not block other goroutines,
// otherwise deadlock detector can fire spuriously.

View File

@ -90,7 +90,7 @@ stkbucket(int32 typ, uintptr size, Location *stk, int32 nstk, bool alloc)
Bucket *b;
if(buckhash == nil) {
buckhash = runtime_SysAlloc(BuckHashSize*sizeof buckhash[0], &mstats.buckhash_sys);
buckhash = runtime_SysAlloc(BuckHashSize*sizeof buckhash[0], &mstats()->buckhash_sys);
if(buckhash == nil)
runtime_throw("runtime: cannot allocate memory");
}
@ -127,7 +127,7 @@ stkbucket(int32 typ, uintptr size, Location *stk, int32 nstk, bool alloc)
if(!alloc)
return nil;
b = runtime_persistentalloc(sizeof *b + nstk*sizeof stk[0], 0, &mstats.buckhash_sys);
b = runtime_persistentalloc(sizeof *b + nstk*sizeof stk[0], 0, &mstats()->buckhash_sys);
bucketmem += sizeof *b + nstk*sizeof stk[0];
runtime_memmove(b->stk, stk, nstk*sizeof stk[0]);
b->typ = typ;
@ -408,11 +408,11 @@ func Stack(b Slice, all bool) (n int) {
pc = (byte*)(uintptr)runtime_getcallerpc(&b);
if(all) {
runtime_semacquire(&runtime_worldsema, false);
runtime_acquireWorldsema();
runtime_m()->gcing = 1;
runtime_stoptheworld();
enablegc = mstats.enablegc;
mstats.enablegc = false;
runtime_stopTheWorldWithSema();
enablegc = mstats()->enablegc;
mstats()->enablegc = false;
}
if(b.__count == 0)
@ -436,9 +436,9 @@ func Stack(b Slice, all bool) (n int) {
if(all) {
runtime_m()->gcing = 0;
mstats.enablegc = enablegc;
runtime_semrelease(&runtime_worldsema);
runtime_starttheworld();
mstats()->enablegc = enablegc;
runtime_releaseWorldsema();
runtime_startTheWorldWithSema();
}
}
@ -469,9 +469,9 @@ func GoroutineProfile(b Slice) (n int, ok bool) {
ok = false;
n = runtime_gcount();
if(n <= b.__count) {
runtime_semacquire(&runtime_worldsema, false);
runtime_acquireWorldsema();
runtime_m()->gcing = 1;
runtime_stoptheworld();
runtime_stopTheWorldWithSema();
n = runtime_gcount();
if(n <= b.__count) {
@ -488,8 +488,8 @@ func GoroutineProfile(b Slice) (n int, ok bool) {
}
runtime_m()->gcing = 0;
runtime_semrelease(&runtime_worldsema);
runtime_starttheworld();
runtime_releaseWorldsema();
runtime_startTheWorldWithSema();
}
}

View File

@ -60,6 +60,7 @@ runtime_InitSizes(void)
int32 align, sizeclass, size, nextsize, n;
uint32 i;
uintptr allocsize, npages;
MStats *pmstats;
// Initialize the runtime_class_to_size table (and choose class sizes in the process).
runtime_class_to_size[0] = 0;
@ -134,8 +135,9 @@ runtime_InitSizes(void)
}
// Copy out for statistics table.
pmstats = mstats();
for(i=0; i<nelem(runtime_class_to_size); i++)
mstats.by_size[i].size = runtime_class_to_size[i];
pmstats->by_size[i].size = runtime_class_to_size[i];
return;
dump:

View File

@ -459,7 +459,7 @@ allocPollDesc(void)
n = 1;
// Must be in non-GC memory because can be referenced
// only from epoll/kqueue internals.
pd = runtime_persistentalloc(n*sizeof(*pd), 0, &mstats.other_sys);
pd = runtime_persistentalloc(n*sizeof(*pd), 0, &mstats()->other_sys);
for(i = 0; i < n; i++) {
pd[i].link = pollcache.first;
pollcache.first = &pd[i];

View File

@ -149,7 +149,7 @@ runtime_netpoll(bool block)
if(inuse) {
if(!allocatedfds) {
prfds = runtime_SysAlloc(4 * sizeof fds, &mstats.other_sys);
prfds = runtime_SysAlloc(4 * sizeof fds, &mstats()->other_sys);
pwfds = prfds + 1;
pefds = pwfds + 1;
ptfds = pefds + 1;
@ -239,7 +239,7 @@ runtime_netpoll(bool block)
goto retry;
if(allocatedfds) {
runtime_SysFree(prfds, 4 * sizeof fds, &mstats.other_sys);
runtime_SysFree(prfds, 4 * sizeof fds, &mstats()->other_sys);
} else {
runtime_lock(&selectlock);
inuse = false;

View File

@ -508,7 +508,7 @@ runtime_schedinit(void)
procresize(procs);
// Can not enable GC until all roots are registered.
// mstats.enablegc = 1;
// mstats()->enablegc = 1;
}
extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main");
@ -633,7 +633,7 @@ runtime_main(void* dummy __attribute__((unused)))
// For gccgo we have to wait until after main is initialized
// to enable GC, because initializing main registers the GC
// roots.
mstats.enablegc = 1;
mstats()->enablegc = 1;
if(runtime_isarchive) {
// This is not a complete program, but is instead a
@ -951,7 +951,7 @@ runtime_freezetheworld(void)
}
void
runtime_stoptheworld(void)
runtime_stopTheWorldWithSema(void)
{
int32 i;
uint32 s;
@ -1001,7 +1001,7 @@ mhelpgc(void)
}
void
runtime_starttheworld(void)
runtime_startTheWorldWithSema(void)
{
P *p, *p1;
M *mp;
@ -1045,7 +1045,7 @@ runtime_starttheworld(void)
mp = (M*)p->m;
p->m = 0;
if(mp->nextp)
runtime_throw("starttheworld: inconsistent mp->nextp");
runtime_throw("startTheWorldWithSema: inconsistent mp->nextp");
mp->nextp = (uintptr)p;
runtime_notewakeup(&mp->park);
} else {
@ -2373,7 +2373,7 @@ runtime_malg(int32 stacksize, byte** ret_stack, uintptr* ret_stacksize)
// 32-bit mode, the Go allocation space is all of
// memory anyhow.
if(sizeof(void*) == 8) {
void *p = runtime_SysAlloc(stacksize, &mstats.other_sys);
void *p = runtime_SysAlloc(stacksize, &mstats()->other_sys);
if(p == nil)
runtime_throw("runtime: cannot allocate memory for goroutine stack");
*ret_stack = (byte*)p;
@ -2583,13 +2583,13 @@ runtime_gomaxprocsfunc(int32 n)
}
runtime_unlock(&runtime_sched);
runtime_semacquire(&runtime_worldsema, false);
runtime_acquireWorldsema();
g->m->gcing = 1;
runtime_stoptheworld();
runtime_stopTheWorldWithSema();
newprocs = n;
g->m->gcing = 0;
runtime_semrelease(&runtime_worldsema);
runtime_starttheworld();
runtime_releaseWorldsema();
runtime_startTheWorldWithSema();
return ret;
}

View File

@ -448,9 +448,14 @@ int32 runtime_setmaxthreads(int32);
G* runtime_timejump(void);
void runtime_iterate_finq(void (*callback)(FuncVal*, void*, const FuncType*, const PtrType*));
void runtime_stoptheworld(void);
void runtime_starttheworld(void);
extern uint32 runtime_worldsema;
void runtime_stopTheWorldWithSema(void)
__asm__(GOSYM_PREFIX "runtime.stopTheWorldWithSema");
void runtime_startTheWorldWithSema(void)
__asm__(GOSYM_PREFIX "runtime.startTheWorldWithSema");
void runtime_acquireWorldsema(void)
__asm__(GOSYM_PREFIX "runtime.acquireWorldsema");
void runtime_releaseWorldsema(void)
__asm__(GOSYM_PREFIX "runtime.releaseWorldsema");
/*
* mutual exclusion locks. in the uncontended case,