hash-table.h (class hash_table): Use a descriptor template argument instead of decomposed element type and...

2012-08-17  Richard Guenther  <rguenther@suse.de>

	* hash-table.h (class hash_table): Use a descriptor template
	argument instead of decomposed element type and support
	functions.
	(struct pointer_hash): New generic typed pointer-hash.
	(struct typed_free_remove, struct typed_noop_remove): Generic
	hash_table support pieces.
	* coverage.c (struct counts_entry): Add hash_table support
	members.
	* tree-ssa-ccp.c (gimple_htab): Use pointer_hash.
	* tree-ssa-coalesce.c (struct ssa_name_var_hash): New generic
	SSA name by SSA_NAME_VAR hash.
	(coalesce_ssa_name): Use it.
	* tree-ssa-pre.c (struct pre_expr_d): Add hash_table support.
	(expression_to_id): Adjust.
	(struct expr_pred_trans_d): Add hash_table support.
	(phi_translate_table): Adjust.
	(phi_trans_lookup): Likewise.
	(phi_trans_add): Likewise.
	(do_regular_insertion): Likewise.
	* tree-ssa-tail-merge.c (struct same_succ_def): Add hash_table
	support.
	(same_succ_htab): Adjust.
	(find_same_succ_bb): Likewise.
	(find_same_succ): Likewise.
	(update_worklist): Likewise.
	* tree-ssa-threadupdate.c (struct redirection_data): Add hash_table
	support.
	(redirection_data): Adjust.

From-SVN: r190471
This commit is contained in:
Richard Guenther 2012-08-17 08:03:54 +00:00 committed by Richard Biener
parent c58c0d4c81
commit 5deac3404d
8 changed files with 273 additions and 281 deletions

View File

@ -1,3 +1,34 @@
2012-08-17 Richard Guenther <rguenther@suse.de>
* hash-table.h (class hash_table): Use a descriptor template
argument instead of decomposed element type and support
functions.
(struct pointer_hash): New generic typed pointer-hash.
(struct typed_free_remove, struct typed_noop_remove): Generic
hash_table support pieces.
* coverage.c (struct counts_entry): Add hash_table support
members.
* tree-ssa-ccp.c (gimple_htab): Use pointer_hash.
* tree-ssa-coalesce.c (struct ssa_name_var_hash): New generic
SSA name by SSA_NAME_VAR hash.
(coalesce_ssa_name): Use it.
* tree-ssa-pre.c (struct pre_expr_d): Add hash_table support.
(expression_to_id): Adjust.
(struct expr_pred_trans_d): Add hash_table support.
(phi_translate_table): Adjust.
(phi_trans_lookup): Likewise.
(phi_trans_add): Likewise.
(do_regular_insertion): Likewise.
* tree-ssa-tail-merge.c (struct same_succ_def): Add hash_table
support.
(same_succ_htab): Adjust.
(find_same_succ_bb): Likewise.
(find_same_succ): Likewise.
(update_worklist): Likewise.
* tree-ssa-threadupdate.c (struct redirection_data): Add hash_table
support.
(redirection_data): Adjust.
2012-08-17 Richard Guenther <rguenther@suse.de>
* params.def (integer-share-limit): Decrease from 256 to 251,

View File

@ -77,6 +77,12 @@ typedef struct counts_entry
unsigned cfg_checksum;
gcov_type *counts;
struct gcov_ctr_summary summary;
/* hash_table support. */
typedef counts_entry T;
static inline hashval_t hash (const counts_entry *);
static int equal (const counts_entry *, const counts_entry *);
static void remove (counts_entry *);
} counts_entry_t;
static GTY(()) struct coverage_data *functions_head = 0;
@ -144,29 +150,27 @@ get_gcov_unsigned_t (void)
}
inline hashval_t
coverage_counts_entry_hash (const counts_entry_t *entry)
counts_entry::hash (const counts_entry_t *entry)
{
return entry->ident * GCOV_COUNTERS + entry->ctr;
}
inline int
coverage_counts_entry_eq (const counts_entry_t *entry1,
const counts_entry_t *entry2)
counts_entry::equal (const counts_entry_t *entry1,
const counts_entry_t *entry2)
{
return entry1->ident == entry2->ident && entry1->ctr == entry2->ctr;
}
inline void
coverage_counts_entry_del (counts_entry_t *entry)
counts_entry::remove (counts_entry_t *entry)
{
free (entry->counts);
free (entry);
}
/* Hash table of count data. */
static hash_table <counts_entry_t, coverage_counts_entry_hash,
coverage_counts_entry_eq, coverage_counts_entry_del>
counts_hash;
static hash_table <counts_entry> counts_hash;
/* Read in the counts file, if available. */

View File

@ -83,48 +83,55 @@ xcallocator <Type>::data_free (Type *memory)
}
/* A common function for hashing a CANDIDATE typed pointer. */
/* Remove method dispatching to free. */
template <typename Element>
struct typed_free_remove
{
static inline void remove (Element *p) { free (p); }
};
/* No-op remove method. */
template <typename Element>
struct typed_noop_remove
{
static inline void remove (Element *) {}
};
/* Pointer hash with a no-op remove method. */
template <typename Element>
struct pointer_hash : typed_noop_remove <Element>
{
typedef Element T;
static inline hashval_t
hash (const T *);
static inline int
equal (const T *existing, const T * candidate);
};
template <typename Element>
inline hashval_t
typed_pointer_hash (const Element *candidate)
pointer_hash<Element>::hash (const T *candidate)
{
/* This is a really poor hash function, but it is what the current code uses,
so I am reusing it to avoid an additional axis in testing. */
return (hashval_t) ((intptr_t)candidate >> 3);
}
/* A common function for comparing an EXISTING and CANDIDATE typed pointers
for equality. */
template <typename Element>
inline int
typed_pointer_equal (const Element *existing, const Element * candidate)
pointer_hash<Element>::equal (const T *existing,
const T *candidate)
{
return existing == candidate;
}
/* A common function for doing nothing on removing a RETIRED slot. */
template <typename Element>
inline void
typed_null_remove (Element *retired ATTRIBUTE_UNUSED)
{
}
/* A common function for using free on removing a RETIRED slot. */
template <typename Element>
inline void
typed_free_remove (Element *retired)
{
free (retired);
}
/* Table of primes and their inversion information. */
struct prime_ent
@ -147,11 +154,11 @@ extern hashval_t hash_table_mod2 (hashval_t hash, unsigned int index);
/* Internal implementation type. */
template <typename Element>
template <typename T>
struct hash_table_control
{
/* Table itself. */
Element **entries;
T **entries;
/* Current size (in entries) of the hash table. */
size_t size;
@ -180,15 +187,15 @@ struct hash_table_control
The table stores elements of type Element.
It hashes elements with the Hash function.
It hashes elements with the hash function.
The table currently works with relatively weak hash functions.
Use typed_pointer_hash <Element> when hashing pointers instead of objects.
It compares elements with the Equal function.
It compares elements with the equal function.
Two elements with the same hash may not be equal.
Use typed_pointer_equal <Element> when hashing pointers instead of objects.
It removes elements with the Remove function.
It removes elements with the remove function.
This feature is useful for freeing memory.
Use typed_null_remove <Element> when not freeing objects.
Use typed_free_remove <Element> when doing a simple object free.
@ -198,59 +205,53 @@ struct hash_table_control
*/
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator = xcallocator>
class hash_table
{
public:
typedef typename Descr::T T;
private:
hash_table_control <T> *htab;
hash_table_control <Element> *htab;
Element **find_empty_slot_for_expand (hashval_t hash);
T **find_empty_slot_for_expand (hashval_t hash);
void expand ();
public:
hash_table ();
void create (size_t initial_slots);
bool is_created ();
void dispose ();
Element *find (Element *comparable);
Element *find_with_hash (Element *comparable, hashval_t hash);
Element **find_slot (Element *comparable, enum insert_option insert);
Element **find_slot_with_hash (Element *comparable, hashval_t hash,
enum insert_option insert);
T *find (T *comparable);
T *find_with_hash (T *comparable, hashval_t hash);
T **find_slot (T *comparable, enum insert_option insert);
T **find_slot_with_hash (T *comparable, hashval_t hash,
enum insert_option insert);
void empty ();
void clear_slot (Element **slot);
void remove_elt (Element *comparable);
void remove_elt_with_hash (Element *comparable, hashval_t hash);
void clear_slot (T **slot);
void remove_elt (T *comparable);
void remove_elt_with_hash (T *comparable, hashval_t hash);
size_t size();
size_t elements();
double collisions();
template <typename Argument,
int (*Callback) (Element **slot, Argument argument)>
int (*Callback) (T **slot, Argument argument)>
void traverse_noresize (Argument argument);
template <typename Argument,
int (*Callback) (Element **slot, Argument argument)>
int (*Callback) (T **slot, Argument argument)>
void traverse (Argument argument);
};
/* Construct the hash table. The only useful operation next is create. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline
hash_table <Element, Hash, Equal, Remove, Allocator>::hash_table ()
hash_table <Descr, Allocator>::hash_table ()
: htab (NULL)
{
}
@ -258,13 +259,10 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::hash_table ()
/* See if the table has been created, as opposed to constructed. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline bool
hash_table <Element, Hash, Equal, Remove, Allocator>::is_created ()
hash_table <Descr, Allocator>::is_created ()
{
return htab != NULL;
}
@ -272,57 +270,45 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::is_created ()
/* Like find_with_hash, but compute the hash value from the element. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline Element *
hash_table <Element, Hash, Equal, Remove, Allocator>::find (Element *comparable)
inline typename Descr::T *
hash_table <Descr, Allocator>::find (T *comparable)
{
return find_with_hash (comparable, Hash (comparable));
return find_with_hash (comparable, Descr::hash (comparable));
}
/* Like find_slot_with_hash, but compute the hash value from the element. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline Element **
hash_table <Element, Hash, Equal, Remove, Allocator>
::find_slot (Element *comparable, enum insert_option insert)
inline typename Descr::T **
hash_table <Descr, Allocator>
::find_slot (T *comparable, enum insert_option insert)
{
return find_slot_with_hash (comparable, Hash (comparable), insert);
return find_slot_with_hash (comparable, Descr::hash (comparable), insert);
}
/* Like remove_elt_with_hash, but compute the hash value from the element. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline void
hash_table <Element, Hash, Equal, Remove, Allocator>
::remove_elt (Element *comparable)
hash_table <Descr, Allocator>
::remove_elt (T *comparable)
{
remove_elt_with_hash (comparable, Hash (comparable));
remove_elt_with_hash (comparable, Descr::hash (comparable));
}
/* Return the current size of this hash table. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline size_t
hash_table <Element, Hash, Equal, Remove, Allocator>::size()
hash_table <Descr, Allocator>::size()
{
return htab->size;
}
@ -330,13 +316,10 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::size()
/* Return the current number of elements in this hash table. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline size_t
hash_table <Element, Hash, Equal, Remove, Allocator>::elements()
hash_table <Descr, Allocator>::elements()
{
return htab->n_elements - htab->n_deleted;
}
@ -345,13 +328,10 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::elements()
/* Return the fraction of fixed collisions during all work with given
hash table. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
inline double
hash_table <Element, Hash, Equal, Remove, Allocator>::collisions()
hash_table <Descr, Allocator>::collisions()
{
if (htab->searches == 0)
return 0.0;
@ -362,22 +342,19 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::collisions()
/* Create a hash table with at least the given number of INITIAL_SLOTS. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
void
hash_table <Element, Hash, Equal, Remove, Allocator>::create (size_t size)
hash_table <Descr, Allocator>::create (size_t size)
{
unsigned int size_prime_index;
size_prime_index = hash_table_higher_prime_index (size);
size = prime_tab[size_prime_index].prime;
htab = Allocator <hash_table_control <Element> > ::control_alloc (1);
htab = Allocator <hash_table_control <T> > ::control_alloc (1);
gcc_assert (htab != NULL);
htab->entries = Allocator <Element*> ::data_alloc (size);
htab->entries = Allocator <T*> ::data_alloc (size);
gcc_assert (htab->entries != NULL);
htab->size = size;
htab->size_prime_index = size_prime_index;
@ -387,46 +364,40 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::create (size_t size)
/* Dispose of a hash table. Free all memory and return this hash table to
the non-created state. Naturally the hash table must already exist. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
void
hash_table <Element, Hash, Equal, Remove, Allocator>::dispose ()
hash_table <Descr, Allocator>::dispose ()
{
size_t size = htab->size;
Element **entries = htab->entries;
T **entries = htab->entries;
for (int i = size - 1; i >= 0; i--)
if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
Remove (entries[i]);
Descr::remove (entries[i]);
Allocator <Element *> ::data_free (entries);
Allocator <hash_table_control <Element> > ::control_free (htab);
Allocator <T *> ::data_free (entries);
Allocator <hash_table_control <T> > ::control_free (htab);
htab = NULL;
}
/* Similar to find_slot, but without several unwanted side effects:
- Does not call Equal when it finds an existing entry.
- Does not call equal when it finds an existing entry.
- Does not change the count of elements/searches/collisions in the
hash table.
This function also assumes there are no deleted entries in the table.
HASH is the hash value for the element to be inserted. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
Element **
hash_table <Element, Hash, Equal, Remove, Allocator>
typename Descr::T **
hash_table <Descr, Allocator>
::find_empty_slot_for_expand (hashval_t hash)
{
hashval_t index = hash_table_mod1 (hash, htab->size_prime_index);
size_t size = htab->size;
Element **slot = htab->entries + index;
T **slot = htab->entries + index;
hashval_t hash2;
if (*slot == HTAB_EMPTY_ENTRY)
@ -457,18 +428,15 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
table entries is changed. If memory allocation fails, this function
will abort. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
void
hash_table <Element, Hash, Equal, Remove, Allocator>::expand ()
hash_table <Descr, Allocator>::expand ()
{
Element **oentries;
Element **olimit;
Element **p;
Element **nentries;
T **oentries;
T **olimit;
T **p;
T **nentries;
size_t nsize, osize, elts;
unsigned int oindex, nindex;
@ -491,7 +459,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::expand ()
nsize = osize;
}
nentries = Allocator <Element *> ::data_alloc (nsize);
nentries = Allocator <T *> ::data_alloc (nsize);
gcc_assert (nentries != NULL);
htab->entries = nentries;
htab->size = nsize;
@ -502,11 +470,11 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::expand ()
p = oentries;
do
{
Element *x = *p;
T *x = *p;
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
{
Element **q = find_empty_slot_for_expand (Hash (x));
T **q = find_empty_slot_for_expand (Descr::hash (x));
*q = x;
}
@ -515,7 +483,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::expand ()
}
while (p < olimit);
Allocator <Element *> ::data_free (oentries);
Allocator <T *> ::data_free (oentries);
}
@ -523,18 +491,15 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::expand ()
COMPARABLE element starting with the given HASH value. It cannot
be used to insert or delete an element. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
Element *
hash_table <Element, Hash, Equal, Remove, Allocator>
::find_with_hash (Element *comparable, hashval_t hash)
typename Descr::T *
hash_table <Descr, Allocator>
::find_with_hash (T *comparable, hashval_t hash)
{
hashval_t index, hash2;
size_t size;
Element *entry;
T *entry;
htab->searches++;
size = htab->size;
@ -542,7 +507,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
entry = htab->entries[index];
if (entry == HTAB_EMPTY_ENTRY
|| (entry != HTAB_DELETED_ENTRY && Equal (entry, comparable)))
|| (entry != HTAB_DELETED_ENTRY && Descr::equal (entry, comparable)))
return entry;
hash2 = hash_table_mod2 (hash, htab->size_prime_index);
@ -555,7 +520,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
entry = htab->entries[index];
if (entry == HTAB_EMPTY_ENTRY
|| (entry != HTAB_DELETED_ENTRY && Equal (entry, comparable)))
|| (entry != HTAB_DELETED_ENTRY && Descr::equal (entry, comparable)))
return entry;
}
}
@ -569,20 +534,17 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
Element **
hash_table <Element, Hash, Equal, Remove, Allocator>
::find_slot_with_hash (Element *comparable, hashval_t hash,
typename Descr::T **
hash_table <Descr, Allocator>
::find_slot_with_hash (T *comparable, hashval_t hash,
enum insert_option insert)
{
Element **first_deleted_slot;
T **first_deleted_slot;
hashval_t index, hash2;
size_t size;
Element *entry;
T *entry;
size = htab->size;
if (insert == INSERT && size * 3 <= htab->n_elements * 4)
@ -601,7 +563,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
goto empty_entry;
else if (entry == HTAB_DELETED_ENTRY)
first_deleted_slot = &htab->entries[index];
else if (Equal (entry, comparable))
else if (Descr::equal (entry, comparable))
return &htab->entries[index];
hash2 = hash_table_mod2 (hash, htab->size_prime_index);
@ -620,7 +582,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
if (!first_deleted_slot)
first_deleted_slot = &htab->entries[index];
}
else if (Equal (entry, comparable))
else if (Descr::equal (entry, comparable))
return &htab->entries[index];
}
@ -631,7 +593,7 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
if (first_deleted_slot)
{
htab->n_deleted--;
*first_deleted_slot = static_cast <Element *> (HTAB_EMPTY_ENTRY);
*first_deleted_slot = static_cast <T *> (HTAB_EMPTY_ENTRY);
return first_deleted_slot;
}
@ -642,21 +604,18 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
/* This function clears all entries in the given hash table. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
void
hash_table <Element, Hash, Equal, Remove, Allocator>::empty ()
hash_table <Descr, Allocator>::empty ()
{
size_t size = htab_size (htab);
Element **entries = htab->entries;
T **entries = htab->entries;
int i;
for (i = size - 1; i >= 0; i--)
if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
Remove (entries[i]);
Descr::remove (entries[i]);
/* Instead of clearing megabyte, downsize the table. */
if (size > 1024*1024 / sizeof (PTR))
@ -664,13 +623,13 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::empty ()
int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
int nsize = prime_tab[nindex].prime;
Allocator <Element *> ::data_free (htab->entries);
htab->entries = Allocator <Element *> ::data_alloc (nsize);
Allocator <T *> ::data_free (htab->entries);
htab->entries = Allocator <T *> ::data_alloc (nsize);
htab->size = nsize;
htab->size_prime_index = nindex;
}
else
memset (entries, 0, size * sizeof (Element *));
memset (entries, 0, size * sizeof (T *));
htab->n_deleted = 0;
htab->n_elements = 0;
}
@ -680,20 +639,17 @@ hash_table <Element, Hash, Equal, Remove, Allocator>::empty ()
useful when you've already done the lookup and don't want to do it
again. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
void
hash_table <Element, Hash, Equal, Remove, Allocator>
::clear_slot (Element **slot)
hash_table <Descr, Allocator>
::clear_slot (T **slot)
{
if (slot < htab->entries || slot >= htab->entries + htab->size
|| *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
abort ();
Remove (*slot);
Descr::remove (*slot);
*slot = HTAB_DELETED_ENTRY;
htab->n_deleted++;
@ -704,24 +660,21 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
from hash table starting with the given HASH. If there is no
matching element in the hash table, this function does nothing. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
void
hash_table <Element, Hash, Equal, Remove, Allocator>
::remove_elt_with_hash (Element *comparable, hashval_t hash)
hash_table <Descr, Allocator>
::remove_elt_with_hash (T *comparable, hashval_t hash)
{
Element **slot;
T **slot;
slot = find_slot_with_hash (comparable, hash, NO_INSERT);
if (*slot == HTAB_EMPTY_ENTRY)
return;
Remove (*slot);
Descr::remove (*slot);
*slot = static_cast <Element *> (HTAB_DELETED_ENTRY);
*slot = static_cast <T *> (HTAB_DELETED_ENTRY);
htab->n_deleted++;
}
@ -730,26 +683,23 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
each live entry. If CALLBACK returns false, the iteration stops.
ARGUMENT is passed as CALLBACK's second argument. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
template <typename Argument,
int (*Callback) (Element **slot, Argument argument)>
int (*Callback) (typename Descr::T **slot, Argument argument)>
void
hash_table <Element, Hash, Equal, Remove, Allocator>
hash_table <Descr, Allocator>
::traverse_noresize (Argument argument)
{
Element **slot;
Element **limit;
T **slot;
T **limit;
slot = htab->entries;
limit = slot + htab->size;
do
{
Element *x = *slot;
T *x = *slot;
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
if (! Callback (slot, argument))
@ -762,15 +712,12 @@ hash_table <Element, Hash, Equal, Remove, Allocator>
/* Like traverse_noresize, but does resize the table when it is too empty
to improve effectivity of subsequent calls. */
template <typename Element,
hashval_t (*Hash) (const Element *candidate),
int (*Equal) (const Element *existing, const Element * candidate),
void (*Remove) (Element *retired),
template <typename Descr,
template <typename Type> class Allocator>
template <typename Argument,
int (*Callback) (Element **slot, Argument argument)>
int (*Callback) (typename Descr::T **slot, Argument argument)>
void
hash_table <Element, Hash, Equal, Remove, Allocator>
hash_table <Descr, Allocator>
::traverse (Argument argument)
{
size_t size = htab->size;

View File

@ -1688,10 +1688,7 @@ evaluate_stmt (gimple stmt)
return val;
}
typedef hash_table <gimple_statement_d, typed_pointer_hash<gimple_statement_d>,
typed_pointer_equal<gimple_statement_d>,
typed_null_remove<gimple_statement_d> >
gimple_htab;
typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */

View File

@ -1258,22 +1258,29 @@ coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
}
}
/* Returns a hash code for N. */
/* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
struct ssa_name_var_hash : typed_noop_remove <union tree_node>
{
typedef union tree_node T;
static inline hashval_t hash (const_tree);
static inline int equal (const_tree, const_tree);
};
inline hashval_t
hash_ssa_name_by_var (const_tree n)
ssa_name_var_hash::hash (const_tree n)
{
return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
return DECL_UID (SSA_NAME_VAR (n));
}
/* Returns nonzero if N1 and N2 are equal. */
inline int
eq_ssa_name_by_var (const_tree n1, const_tree n2)
ssa_name_var_hash::equal (const_tree n1, const_tree n2)
{
return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
}
/* Reduce the number of copies by coalescing variables in the function. Return
a partition map with the resulting coalesces. */
@ -1286,9 +1293,7 @@ coalesce_ssa_name (void)
bitmap used_in_copies = BITMAP_ALLOC (NULL);
var_map map;
unsigned int i;
static hash_table <tree_node, hash_ssa_name_by_var, eq_ssa_name_by_var,
typed_null_remove<tree_node> >
ssa_name_hash;
static hash_table <ssa_name_var_hash> ssa_name_hash;
cl = create_coalesce_list ();
map = create_outofssa_var_map (cl, used_in_copies);

View File

@ -165,11 +165,16 @@ typedef union pre_expr_union_d
vn_reference_t reference;
} pre_expr_union;
typedef struct pre_expr_d
typedef struct pre_expr_d : typed_noop_remove <pre_expr_d>
{
enum pre_expr_kind kind;
unsigned int id;
pre_expr_union u;
/* hash_table support. */
typedef pre_expr_d T;
static inline hashval_t hash (const pre_expr_d *);
static inline int equal (const pre_expr_d *, const pre_expr_d *);
} *pre_expr;
#define PRE_EXPR_NAME(e) (e)->u.name
@ -180,7 +185,7 @@ typedef struct pre_expr_d
/* Compare E1 and E1 for equality. */
inline int
ssa_pre_expr_eq (const struct pre_expr_d *e1, const struct pre_expr_d *e2)
pre_expr_d::equal (const struct pre_expr_d *e1, const struct pre_expr_d *e2)
{
if (e1->kind != e2->kind)
return false;
@ -205,7 +210,7 @@ ssa_pre_expr_eq (const struct pre_expr_d *e1, const struct pre_expr_d *e2)
/* Hash E. */
inline hashval_t
ssa_pre_expr_hash (const struct pre_expr_d *e)
pre_expr_d::hash (const struct pre_expr_d *e)
{
switch (e->kind)
{
@ -229,9 +234,7 @@ static unsigned int next_expression_id;
DEF_VEC_P (pre_expr);
DEF_VEC_ALLOC_P (pre_expr, heap);
static VEC(pre_expr, heap) *expressions;
static hash_table <pre_expr_d, ssa_pre_expr_hash, ssa_pre_expr_eq,
typed_null_remove <pre_expr_d> >
expression_to_id;
static hash_table <pre_expr_d> expression_to_id;
static VEC(unsigned, heap) *name_to_id;
/* Allocate an expression id for EXPR. */
@ -483,7 +486,7 @@ static bitmap need_ab_cleanup;
/* A three tuple {e, pred, v} used to cache phi translations in the
phi_translate_table. */
typedef struct expr_pred_trans_d
typedef struct expr_pred_trans_d : typed_free_remove<expr_pred_trans_d>
{
/* The expression. */
pre_expr e;
@ -497,23 +500,23 @@ typedef struct expr_pred_trans_d
/* The hashcode for the expression, pred pair. This is cached for
speed reasons. */
hashval_t hashcode;
/* hash_table support. */
typedef expr_pred_trans_d T;
static inline hashval_t hash (const expr_pred_trans_d *);
static inline int equal (const expr_pred_trans_d *, const expr_pred_trans_d *);
} *expr_pred_trans_t;
typedef const struct expr_pred_trans_d *const_expr_pred_trans_t;
/* Return the hash value for a phi translation table entry. */
inline hashval_t
ssa_expr_pred_trans_hash (const expr_pred_trans_d *ve)
expr_pred_trans_d::hash (const expr_pred_trans_d *e)
{
return ve->hashcode;
return e->hashcode;
}
/* Return true if two phi translation table entries are the same.
P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
inline int
ssa_expr_pred_trans_eq (const expr_pred_trans_d *ve1,
const expr_pred_trans_d *ve2)
expr_pred_trans_d::equal (const expr_pred_trans_d *ve1,
const expr_pred_trans_d *ve2)
{
basic_block b1 = ve1->pred;
basic_block b2 = ve2->pred;
@ -522,16 +525,12 @@ ssa_expr_pred_trans_eq (const expr_pred_trans_d *ve1,
be equal. */
if (b1 != b2)
return false;
return ssa_pre_expr_eq (ve1->e, ve2->e);
return pre_expr_d::equal (ve1->e, ve2->e);
}
/* The phi_translate_table caches phi translations for a given
expression and predecessor. */
static hash_table <expr_pred_trans_d, ssa_expr_pred_trans_hash,
ssa_expr_pred_trans_eq,
typed_free_remove <expr_pred_trans_d> >
phi_translate_table;
static hash_table <expr_pred_trans_d> phi_translate_table;
/* Search in the phi translation table for the translation of
expression E in basic block PRED.
@ -545,7 +544,7 @@ phi_trans_lookup (pre_expr e, basic_block pred)
ept.e = e;
ept.pred = pred;
ept.hashcode = iterative_hash_hashval_t (ssa_pre_expr_hash (e), pred->index);
ept.hashcode = iterative_hash_hashval_t (pre_expr_d::hash (e), pred->index);
slot = phi_translate_table.find_slot_with_hash (&ept, ept.hashcode,
NO_INSERT);
if (!slot)
@ -566,7 +565,7 @@ phi_trans_add (pre_expr e, pre_expr v, basic_block pred)
new_pair->e = e;
new_pair->pred = pred;
new_pair->v = v;
new_pair->hashcode = iterative_hash_hashval_t (ssa_pre_expr_hash (e),
new_pair->hashcode = iterative_hash_hashval_t (pre_expr_d::hash (e),
pred->index);
slot = phi_translate_table.find_slot_with_hash (new_pair,
@ -3495,7 +3494,7 @@ do_regular_insertion (basic_block block, basic_block dom)
do_insertion = true;
if (first_s == NULL)
first_s = edoubleprime;
else if (!ssa_pre_expr_eq (first_s, edoubleprime))
else if (!pre_expr_d::equal (first_s, edoubleprime))
all_same = false;
}
}

View File

@ -224,10 +224,24 @@ struct same_succ_def
bool in_worklist;
/* The hash value of the struct. */
hashval_t hashval;
/* hash_table support. */
typedef same_succ_def T;
static inline hashval_t hash (const same_succ_def *);
static int equal (const same_succ_def *, const same_succ_def *);
static void remove (same_succ_def *);
};
typedef struct same_succ_def *same_succ;
typedef const struct same_succ_def *const_same_succ;
/* hash routine for hash_table support, returns hashval of E. */
inline hashval_t
same_succ_def::hash (const same_succ_def *e)
{
return e->hashval;
}
/* A group of bbs where 1 bb from bbs can replace the other bbs. */
struct bb_cluster_def
@ -415,8 +429,8 @@ stmt_update_dep_bb (gimple stmt)
/* Calculates hash value for same_succ VE. */
hashval_t
ssa_same_succ_hash (const_same_succ e)
static hashval_t
same_succ_hash (const_same_succ e)
{
hashval_t hashval = bitmap_hash (e->succs);
int flags;
@ -511,10 +525,10 @@ inverse_flags (const_same_succ e1, const_same_succ e2)
return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
}
/* Compares SAME_SUCCs VE1 and VE2. */
/* Compares SAME_SUCCs E1 and E2. */
int
ssa_same_succ_equal (const_same_succ e1, const_same_succ e2)
same_succ_def::equal (const_same_succ e1, const_same_succ e2)
{
unsigned int i, first1, first2;
gimple_stmt_iterator gsi1, gsi2;
@ -584,10 +598,10 @@ same_succ_alloc (void)
return same;
}
/* Delete same_succ VE. */
/* Delete same_succ E. */
inline void
ssa_same_succ_delete (same_succ e)
void
same_succ_def::remove (same_succ e)
{
BITMAP_FREE (e->bbs);
BITMAP_FREE (e->succs);
@ -608,11 +622,7 @@ same_succ_reset (same_succ same)
VEC_truncate (int, same->succ_flags, 0);
}
/* Hash table with all same_succ entries. */
static hash_table <struct same_succ_def, ssa_same_succ_hash,
ssa_same_succ_equal, ssa_same_succ_delete>
same_succ_htab;
static hash_table <same_succ_def> same_succ_htab;
/* Array that is used to store the edge flags for a successor. */
@ -692,7 +702,7 @@ find_same_succ_bb (basic_block bb, same_succ *same_p)
EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
VEC_safe_push (int, heap, same->succ_flags, same_succ_edge_flags[j]);
same->hashval = ssa_same_succ_hash (same);
same->hashval = same_succ_hash (same);
slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
if (*slot == NULL)
@ -728,7 +738,7 @@ find_same_succ (void)
same = same_succ_alloc ();
}
ssa_same_succ_delete (same);
same_succ_def::remove (same);
}
/* Initializes worklist administration. */
@ -860,7 +870,7 @@ update_worklist (void)
if (same == NULL)
same = same_succ_alloc ();
}
ssa_same_succ_delete (same);
same_succ_def::remove (same);
bitmap_clear (deleted_bb_preds);
}

View File

@ -110,7 +110,7 @@ struct el
may have many incoming edges threaded to the same outgoing edge. This
can be naturally implemented with a hash table. */
struct redirection_data
struct redirection_data : typed_free_remove<redirection_data>
{
/* A duplicate of B with the trailing control statement removed and which
targets a single successor of B. */
@ -125,8 +125,30 @@ struct redirection_data
/* A list of incoming edges which we want to thread to
OUTGOING_EDGE->dest. */
struct el *incoming_edges;
/* hash_table support. */
typedef redirection_data T;
static inline hashval_t hash (const redirection_data *);
static inline int equal (const redirection_data *, const redirection_data *);
};
inline hashval_t
redirection_data::hash (const redirection_data *p)
{
edge e = p->outgoing_edge;
return e->dest->index;
}
inline int
redirection_data::equal (const redirection_data *p1, const redirection_data *p2)
{
edge e1 = p1->outgoing_edge;
edge e2 = p2->outgoing_edge;
edge e3 = p1->intermediate_edge;
edge e4 = p2->intermediate_edge;
return e1 == e2 && e3 == e4;
}
/* Data structure of information to pass to hash table traversal routines. */
struct ssa_local_info_t
{
@ -217,32 +239,9 @@ create_block_for_threading (basic_block bb, struct redirection_data *rd)
rd->dup_block->count = 0;
}
/* Hashing and equality routines for our hash table. */
inline hashval_t
ssa_redirection_data_hash (const struct redirection_data *p)
{
edge e = p->outgoing_edge;
return e->dest->index;
}
inline int
ssa_redirection_data_eq (const struct redirection_data *p1,
const struct redirection_data *p2)
{
edge e1 = p1->outgoing_edge;
edge e2 = p2->outgoing_edge;
edge e3 = p1->intermediate_edge;
edge e4 = p2->intermediate_edge;
return e1 == e2 && e3 == e4;
}
/* Main data structure to hold information for duplicates of BB. */
static hash_table <struct redirection_data, ssa_redirection_data_hash,
ssa_redirection_data_eq,
typed_free_remove<struct redirection_data> >
redirection_data;
static hash_table <redirection_data> redirection_data;
/* Given an outgoing edge E lookup and return its entry in our hash table.