ArrayList.java, [...]: Imported from GNU Classpath.

2000-08-27  Anthony Green  <green@redhat.com>

	* java/util/ArrayList.java, java/util/Timer.java,
	java/util/LinkedList.java, java/util/TimerTask.java,
	java/util/HashMap.java, java/util/AbstractMap.java,
	java/util/SortedMap.java, java/util/AbstractSequentialList.java,
	java/util/SortedSet.java: Imported from GNU Classpath.
	* Makefile.in: Rebuilt.
	* Makefile.am: Added new files.

From-SVN: r36006
This commit is contained in:
Anthony Green 2000-08-27 22:06:44 +00:00 committed by Anthony Green
parent e53ca51f94
commit 6f09c30717
12 changed files with 3112 additions and 10 deletions

View File

@ -1,3 +1,13 @@
2000-08-27 Anthony Green <green@redhat.com>
* java/util/ArrayList.java, java/util/Timer.java,
java/util/LinkedList.java, java/util/TimerTask.java,
java/util/HashMap.java, java/util/AbstractMap.java,
java/util/SortedMap.java, java/util/AbstractSequentialList.java,
java/util/SortedSet.java: Imported from GNU Classpath.
* Makefile.in: Rebuilt.
* Makefile.am: Added new files.
2000-08-26 Anthony Green <green@redhat.com>
* Makefile.in: Rebuilt.

View File

@ -1030,7 +1030,10 @@ java/text/SimpleDateFormat.java \
java/text/StringCharacterIterator.java \
java/util/AbstractCollection.java \
java/util/AbstractList.java \
java/util/AbstractMap.java \
java/util/AbstractSequentialList.java \
java/util/AbstractSet.java \
java/util/ArrayList.java \
java/util/Arrays.java \
java/util/BasicMapEntry.java \
java/util/BitSet.java \
@ -1046,6 +1049,7 @@ java/util/Enumeration.java \
java/util/EventListener.java \
java/util/EventObject.java \
java/util/GregorianCalendar.java \
java/util/HashMap.java \
java/util/Hashtable.java \
java/util/Iterator.java \
java/util/List.java \
@ -1064,9 +1068,13 @@ java/util/Random.java \
java/util/ResourceBundle.java \
java/util/Set.java \
java/util/SimpleTimeZone.java \
java/util/SortedMap.java \
java/util/SortedSet.java \
java/util/Stack.java \
java/util/StringTokenizer.java \
java/util/TimeZone.java \
java/util/Timer.java \
java/util/TimerTask.java \
java/util/TooManyListenersException.java \
java/util/Vector.java \
java/util/jar/Attributes.java \

View File

@ -799,7 +799,10 @@ java/text/SimpleDateFormat.java \
java/text/StringCharacterIterator.java \
java/util/AbstractCollection.java \
java/util/AbstractList.java \
java/util/AbstractMap.java \
java/util/AbstractSequentialList.java \
java/util/AbstractSet.java \
java/util/ArrayList.java \
java/util/Arrays.java \
java/util/BasicMapEntry.java \
java/util/BitSet.java \
@ -815,6 +818,7 @@ java/util/Enumeration.java \
java/util/EventListener.java \
java/util/EventObject.java \
java/util/GregorianCalendar.java \
java/util/HashMap.java \
java/util/Hashtable.java \
java/util/Iterator.java \
java/util/List.java \
@ -833,9 +837,13 @@ java/util/Random.java \
java/util/ResourceBundle.java \
java/util/Set.java \
java/util/SimpleTimeZone.java \
java/util/SortedMap.java \
java/util/SortedSet.java \
java/util/Stack.java \
java/util/StringTokenizer.java \
java/util/TimeZone.java \
java/util/Timer.java \
java/util/TimerTask.java \
java/util/TooManyListenersException.java \
java/util/Vector.java \
java/util/jar/Attributes.java \
@ -1429,26 +1437,30 @@ DEP_FILES = .deps/$(srcdir)/$(CONVERT_DIR)/gen-from-JIS.P \
.deps/java/text/RuleBasedCollator.P .deps/java/text/SimpleDateFormat.P \
.deps/java/text/StringCharacterIterator.P \
.deps/java/util/AbstractCollection.P .deps/java/util/AbstractList.P \
.deps/java/util/AbstractSet.P .deps/java/util/Arrays.P \
.deps/java/util/BasicMapEntry.P .deps/java/util/BitSet.P \
.deps/java/util/Bucket.P .deps/java/util/Calendar.P \
.deps/java/util/Collection.P .deps/java/util/Comparator.P \
.deps/java/util/AbstractMap.P .deps/java/util/AbstractSequentialList.P \
.deps/java/util/AbstractSet.P .deps/java/util/ArrayList.P \
.deps/java/util/Arrays.P .deps/java/util/BasicMapEntry.P \
.deps/java/util/BitSet.P .deps/java/util/Bucket.P \
.deps/java/util/Calendar.P .deps/java/util/Collection.P \
.deps/java/util/Comparator.P \
.deps/java/util/ConcurrentModificationException.P \
.deps/java/util/Date.P .deps/java/util/Dictionary.P \
.deps/java/util/EmptyStackException.P .deps/java/util/Enumeration.P \
.deps/java/util/EventListener.P .deps/java/util/EventObject.P \
.deps/java/util/GregorianCalendar.P .deps/java/util/Hashtable.P \
.deps/java/util/Iterator.P .deps/java/util/List.P \
.deps/java/util/ListIterator.P .deps/java/util/ListResourceBundle.P \
.deps/java/util/Locale.P .deps/java/util/Map.P \
.deps/java/util/MissingResourceException.P \
.deps/java/util/GregorianCalendar.P .deps/java/util/HashMap.P \
.deps/java/util/Hashtable.P .deps/java/util/Iterator.P \
.deps/java/util/List.P .deps/java/util/ListIterator.P \
.deps/java/util/ListResourceBundle.P .deps/java/util/Locale.P \
.deps/java/util/Map.P .deps/java/util/MissingResourceException.P \
.deps/java/util/NoSuchElementException.P .deps/java/util/Observable.P \
.deps/java/util/Observer.P .deps/java/util/Properties.P \
.deps/java/util/PropertyPermission.P \
.deps/java/util/PropertyResourceBundle.P .deps/java/util/Random.P \
.deps/java/util/ResourceBundle.P .deps/java/util/Set.P \
.deps/java/util/SimpleTimeZone.P .deps/java/util/Stack.P \
.deps/java/util/SimpleTimeZone.P .deps/java/util/SortedMap.P \
.deps/java/util/SortedSet.P .deps/java/util/Stack.P \
.deps/java/util/StringTokenizer.P .deps/java/util/TimeZone.P \
.deps/java/util/Timer.P .deps/java/util/TimerTask.P \
.deps/java/util/TooManyListenersException.P .deps/java/util/Vector.P \
.deps/java/util/jar/Attributes.P .deps/java/util/jar/JarEntry.P \
.deps/java/util/jar/JarException.P .deps/java/util/jar/JarFile.P \

View File

@ -0,0 +1,283 @@
/* AbstractMap.java -- Abstract implementation of most of Map
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
// TO DO:
// comments
// test suite
package java.util;
public abstract class AbstractMap implements Map {
public void clear()
{
entrySet().clear();
}
public boolean containsKey( Object key )
{
Object k;
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
{
k = ((Map.Entry)entries.next()).getKey();
if( key == null ? k == null : key.equals( k ) )
return true;
}
return false;
}
public boolean containsValue( Object value )
{
Object v;
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
{
v = ((Map.Entry)entries.next()).getValue();
if( value == null ? v == null : value.equals( v ) )
return true;
}
return false;
}
public abstract Set entrySet();
public boolean equals( Object o )
{
if( this == o )
return true;
if( o == null || !( o instanceof Map ) )
return false;
Map m = (Map)o;
if( m.size() != size() )
return false;
Object key, value1, value2;
Map.Entry entry;
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
{
entry = (Map.Entry)entries.next();
key = entry.getKey();
value1 = entry.getValue();
value2 = m.get( key );
if( !( ( value1 == null && value2 == null )
|| value1.equals( value2 ) ) )
return false;
}
return true;
}
public Object get( Object key )
{
Object k;
Map.Entry entry;
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
{
entry = (Map.Entry)entries.next();
k = entry.getKey();
if( key == null ? k == null : key.equals( k ) )
return entry.getValue();
}
return null;
}
public int hashCode()
{
int hashcode = 0;
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
hashcode += entries.next().hashCode();
return hashcode;
}
public boolean isEmpty()
{
return size() == 0;
}
public Set keySet()
{
if( this.keySet == null )
{
this.keySet =
new AbstractSet()
{
public int size()
{
return AbstractMap.this.size();
}
public boolean contains(Object key)
{
return AbstractMap.this.containsKey(key);
}
public Iterator iterator()
{
return new Iterator()
{
Iterator map_iterator = AbstractMap.this.entrySet().iterator();
public boolean hasNext()
{
return map_iterator.hasNext();
}
public Object next()
{
return ((Map.Entry)map_iterator.next()).getKey();
}
public void remove()
{
map_iterator.remove();
}
};
}
};
}
return this.keySet;
}
public Object put( Object key, Object value )
{
throw new UnsupportedOperationException();
}
public void putAll( Map m )
{
Map.Entry entry;
Iterator entries = m.entrySet().iterator();
while( entries.hasNext() )
{
entry = (Map.Entry)entries.next();
put( entry.getKey(), entry.getValue() );
}
}
public Object remove( Object key )
{
Object k, value;
Map.Entry entry;
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
{
entry = (Map.Entry)entries.next();
k = entry.getKey();
if( key == null ? k == null : key.equals( k ) )
{
value = entry.getValue();
entries.remove();
return value;
}
}
return null;
}
public int size()
{
return entrySet().size();
}
public String toString()
{
StringBuffer sb = new StringBuffer("{");
String comma = "";
Iterator entries = entrySet().iterator();
while( entries.hasNext() )
{
Map.Entry entry = (Map.Entry)entries.next();
sb.append(comma).append(entry.getKey())
.append('=').append(entry.getValue());
comma = ", ";
}
return sb.append('}').toString();
}
public Collection values()
{
if( this.valueCollection == null )
{
this.valueCollection =
new AbstractCollection()
{
public int size()
{
return AbstractMap.this.size();
}
public Iterator iterator()
{
return new Iterator()
{
Iterator map_iterator = AbstractMap.this.entrySet().iterator();
public boolean hasNext()
{
return map_iterator.hasNext();
}
public Object next()
{
return ((Map.Entry)map_iterator.next()).getValue();
}
public void remove()
{
map_iterator.remove();
}
};
}
};
}
return this.valueCollection;
}
private Collection valueCollection = null;
private Set keySet = null;
}

View File

@ -0,0 +1,113 @@
/* AbstractSequentialList.java -- List implementation for sequential access
Copyright (C) 1998, 1999 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
// TO DO:
// ~ Lots of doc comments still missing.
// ~ The class comment should include a description of what should be overridden
// to provide what features, as should the listIterator comment.
package java.util;
/**
* Abstract superclass to make it easier to implement the List interface when
* backed by a sequential-access store, such as a linked list.
*/
public abstract class AbstractSequentialList extends AbstractList {
/**
* Returns a ListIterator over the list, starting from position index.
* Subclasses must provide an implementation of this method.
*
* @exception IndexOutOfBoundsException if index < 0 || index > size()
*/
public abstract ListIterator listIterator(int index);
/**
* Add an element to the list at a given index. This implementation obtains a
* ListIterator positioned at the specified index, and then adds the element
* using the ListIterator's add method.
*
* @param index the position to add the element
* @param o the element to insert
* @exception IndexOutOfBoundsException if index < 0 || index > size()
* @exception UnsupportedOperationException if the iterator returned by
* listIterator(index) does not support the add method.
*/
public void add(int index, Object o) {
ListIterator i = listIterator(index);
i.add(o);
}
public boolean addAll(int index, Collection c) {
boolean changed = false;
Iterator ci = c.iterator();
ListIterator i = listIterator(index);
while (ci.hasNext()) {
i.add(ci.next());
changed = true;
}
return changed;
}
public Object get(int index) {
ListIterator i = listIterator(index);
if (!i.hasNext()) {
throw new IndexOutOfBoundsException();
}
return i.next();
}
/**
* Return an Iterator over this List. This implementation returns
* listIterator().
*
* @return an Iterator over this List
*/
public Iterator iterator() {
return listIterator();
}
public Object remove(int index) {
ListIterator i = listIterator(index);
if (!i.hasNext()) {
throw new IndexOutOfBoundsException();
}
Object removed = i.next();
i.remove();
return removed;
}
public Object set(int index, Object o) {
ListIterator i = listIterator(index);
if (!i.hasNext()) {
throw new IndexOutOfBoundsException();
}
Object old = i.next();
i.set(o);
return old;
}
}

View File

@ -0,0 +1,497 @@
/* ArrayList.java -- JDK1.2's answer to Vector; this is an array-backed
implementation of the List interface
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util;
import java.lang.reflect.Array;
import java.io.Serializable;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamField;
/**
* An array-backed implementation of the List interface. ArrayList
* performs well on simple tasks: random access into a list, appending
* to or removing from the end of a list, checking the size, &c.
*
* @author Jon A. Zeppieri
* @version $Id: ArrayList.java,v 1.4 2000/03/15 21:59:06 rao Exp $
* @see java.util.AbstractList
* @see java.util.List
*/
public class ArrayList extends AbstractList
implements List, Cloneable, Serializable
{
/** the default capacity for new ArrayLists */
private static final int DEFAULT_CAPACITY = 16;
/** the number of elements in this list */
int _iSize;
/** where the data is stored */
Object[] _arData;
/** used for serialization -- denotes which fields are serialized */
private static final ObjectStreamField[] serialPersistentFields =
{new ObjectStreamField("size", int.class)};
/**
* Construct a new ArrayList with the supplied initial capacity.
*
* @param iCapacity
*/
public ArrayList(int iCapacity)
{
_arData = new Object[iCapacity];
}
/**
* Construct a new ArrayList with the default capcity
*/
public ArrayList()
{
this(DEFAULT_CAPACITY);
}
/**
* Construct a new ArrayList, and initialize it with the elements
* in the supplied Collection; Sun specs say that the initial
* capacity is 110% of the Collection's size.
*
* @param oCollection the collection whose elements will
* initialize this list
*/
public ArrayList(Collection oCollection)
{
this((int) (oCollection.size() * 1.1));
addAll(oCollection);
}
/**
* Guarantees that this list will have at least enough capacity to
* hold iMinCapacity elements.
*
* @param iMinCapacity the minimum guaranteed capacity
*/
public void ensureCapacity(int iMinCapacity)
{
Object[] arNewData;
int iCapacity = _arData.length;
if (iMinCapacity > iCapacity)
{
arNewData = new Object[Math.max((iCapacity * 2), iMinCapacity)];
System.arraycopy(_arData, 0, arNewData, 0, iCapacity);
_arData = arNewData;
}
}
/**
* Appends the supplied element to the end of this list.
*
* @param oElement the element to be appended to this list
*/
public boolean add(Object oElement)
{
ensureCapacity(_iSize + 1);
_arData[_iSize++] = oElement;
modCount++;
return true;
}
/**
* Retrieves the element at the user-supplied index.
*
* @param iIndex the index of the element we are fetching
* @throws IndexOutOfBoundsException (iIndex < 0) || (iIndex >= size())
*/
public Object get(int iIndex)
{
if (iIndex >= _iSize)
throw new IndexOutOfBoundsException("ArrayList size=" +
String.valueOf(_iSize) + "; " +
"index=" + String.valueOf(iIndex));
return _arData[iIndex];
}
/**
* Returns the number of elements in this list
*/
public int size()
{
return _iSize;
}
/**
* Removes the element at the user-supplied index
*
* @param iIndex the index of the element to be removed
* @return the removed Object
* @throws IndexOutOfBoundsException (iIndex < 0) || (iIndex >= size())
*/
public Object remove(int iIndex)
{
Object oResult;
if (iIndex >= _iSize)
throw new IndexOutOfBoundsException("ArrayList size=" +
String.valueOf(_iSize) + "; " +
"index=" + String.valueOf(iIndex));
oResult = _arData[iIndex];
if (iIndex != --_iSize)
System.arraycopy(_arData, (iIndex + 1), _arData, iIndex,
(_iSize - iIndex));
modCount++;
_arData[_iSize] = null;
return oResult;
}
/**
* Removes all elements in the half-open interval [iFromIndex, iToIndex).
*
* @param iFromIndex the first index which will be removed
* @param iToIndex one greater than the last index which will be
* removed
*/
public void removeRange(int iFromIndex, int iToIndex)
{
int iReduction;
int i;
if ((iFromIndex >= _iSize) || (iToIndex >= _iSize))
{
throw new IndexOutOfBoundsException("ArrayList size=" +
String.valueOf(_iSize) + "; " +
"indices=" +
String.valueOf(iFromIndex) + "," +
String.valueOf(iToIndex));
}
else if (iFromIndex > iToIndex)
{
throw new IllegalArgumentException("fromIndex(" +
String.valueOf(iFromIndex) +
") > toIndex(" +
String.valueOf(iToIndex) + ")");
}
else if (iFromIndex != iToIndex)
{
iReduction = iToIndex - iFromIndex;
System.arraycopy(_arData, (iFromIndex + iReduction), _arData,
iFromIndex, (_iSize - iFromIndex - iReduction));
modCount++;
for (i = (iFromIndex + iReduction); i < _iSize; i++)
_arData[i] = null;
_iSize -= iReduction;
}
}
/**
* Adds the supplied element at the specified index, shifting all
* elements currently at that index or higher one to the right.
*
* @param iIndex the index at which the element is being added
* @param oElement the element being added
*/
public void add(int iIndex, Object oElement)
{
if (iIndex > _iSize)
throw new IndexOutOfBoundsException("ArrayList size=" +
String.valueOf(_iSize) + "; " +
"index=" + String.valueOf(iIndex));
ensureCapacity(_iSize + 1);
System.arraycopy(_arData, iIndex, _arData,
(iIndex + 1), (_iSize - iIndex));
_arData[iIndex] = oElement;
_iSize++;
modCount++;
}
/**
* Add each element in the supplied Collection to this List.
*
* @param oCollection a Collection containing elements to be
* added to this List
*/
public boolean addAll(Collection oCollection)
{
Iterator itElements;
int iLen = oCollection.size();
if (iLen > 0)
{
ensureCapacity(_iSize + iLen);
modCount++;
itElements = oCollection.iterator();
while (itElements.hasNext())
_arData[_iSize++] = itElements.next();
return true;
}
return false;
}
/**
* Add all elements in the supplied collection, inserting them beginning
* at the specified index.
*
* @param iIndex the index at which the elements will be inserted
* @param oCollection the Collection containing the elements to be
* inserted
*/
public boolean addAll(int iIndex, Collection oCollection)
{
Iterator itElements;
int iLen;
if (iIndex > _iSize)
throw new IndexOutOfBoundsException("ArrayList size=" +
String.valueOf(_iSize) + "; " +
"index=" + String.valueOf(iIndex));
iLen = oCollection.size();
if (iLen > 0)
{
ensureCapacity(_iSize + iLen);
System.arraycopy(_arData, iIndex, _arData,
(iIndex + iLen), (_iSize - iIndex));
modCount++;
_iSize += iLen;
itElements = oCollection.iterator();
while (itElements.hasNext())
_arData[iIndex++] = itElements.next();
return true;
}
return false;
}
/**
* Creates a shallow copy of this ArrayList
*/
public Object clone()
{
ArrayList oClone;
try
{
oClone = (ArrayList) super.clone();
oClone._arData = _arData;
oClone._iSize = _iSize;
}
catch(CloneNotSupportedException e)
{
oClone = null;
}
return oClone;
}
/**
* Returns true iff oElement is in this ArrayList.
*
* @param oElement the element whose inclusion in the List is being
* tested
*/
public boolean contains(Object oElement)
{
return (indexOf(oElement) != -1);
}
/**
* Returns the lowest index at which oElement appears in this List, or
* -1 if it does not appear.
*
* @param oElement the element whose inclusion in the List is being
* tested
*/
public int indexOf(Object oElement)
{
int i;
for (i = 0; i < _iSize; i++)
{
if (doesEqual(oElement, _arData[i]))
return i;
}
return -1;
}
/**
* Returns the highest index at which oElement appears in this List, or
* -1 if it does not appear.
*
* @param oElement the element whose inclusion in the List is being
* tested
*/
public int lastIndexOf(Object oElement)
{
int i;
for (i = _iSize - 1; i >= 0; i--)
{
if (doesEqual(oElement, _arData[i]))
return i;
}
return -1;
}
/**
* Removes all elements from this List
*/
public void clear()
{
int i;
if (_iSize > 0)
{
modCount++;
_iSize = 0;
for (i = 0; i < _iSize; i++)
_arData[i] = null;
}
}
/**
* Sets the element at the specified index.
*
* @param iIndex the index at which the element is being set
* @param oElement the element to be set
* @return the element previously at the specified index, or null if
* none was there
*/
public Object set(int iIndex, Object oElement)
{
Object oResult;
if (iIndex >= _iSize)
throw new IndexOutOfBoundsException("ArrayList size=" +
String.valueOf(_iSize) + "; " +
"index=" + String.valueOf(iIndex));
oResult = _arData[iIndex];
// SEH: no structural change, so don't update modCount
_arData[iIndex] = oElement;
return oResult;
}
/**
* Returns an Object Array containing all of the elements in this ArrayList
*/
public Object[] toArray()
{
Object[] arObjects = new Object[_iSize];
System.arraycopy(_arData, 0, arObjects, 0, _iSize);
return arObjects;
}
/**
* Returns an Array whse component type is the runtime component type of
* the passes-in Array. The returned Array is populated with all of the
* elements in this ArrayList. If the passed-in Array is not large enough
* to store all of the elements in this List, a new Array will be created
* and returned; if the passed-in Array is <i>larger</i> than the size
* of this List, then size() + 1 index will be set to null.
*
* @param arObjects the passed-in Array
*/
public Object[] toArray(Object[] arObjects)
{
Object[] arReturn = (arObjects.length >= _iSize)
? arObjects
: (Object[])
Array.newInstance(arObjects.getClass().getComponentType(), _iSize);
System.arraycopy(_arData, 0, arReturn, 0, _iSize);
if (arReturn.length > _iSize)
arReturn[_iSize] = null;
return arReturn;
}
/**
* Trims the capacity of tjis List to be equal to its size;
* a memory saver.
*/
public void trimToSize()
{
Object[] arNewData = new Object[_iSize];
System.arraycopy(_arData, 0, arNewData, 0, _iSize);
modCount++;
_arData = arNewData;
}
private void writeObject(ObjectOutputStream oOut)
throws IOException
{
int i;
ObjectOutputStream.PutField oFields = oOut.putFields();
oFields.put("size", _iSize);
oOut.writeFields();
oOut.writeInt(_arData.length);
for (i = 0; i < _arData.length; i++)
oOut.writeObject(_arData[i]);
}
private void readObject(ObjectInputStream oIn)
throws IOException, ClassNotFoundException
{
int i;
int iCapacity;
ObjectInputStream.GetField oFields = oIn.readFields();
_iSize = oFields.get("size", 0);
iCapacity = oIn.readInt();
_arData = new Object[iCapacity];
for (i = 0; i < iCapacity; i++)
_arData[i] = oIn.readObject();
}
private static final boolean doesEqual(Object oOne, Object oTwo)
{
return ((oOne == null) ? (oTwo == null) : oOne.equals(oTwo));
}
}

View File

@ -0,0 +1,858 @@
/* HashMap.java -- a class providing a basic hashtable data structure,
mapping Object --> Object
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util;
import java.io.IOException;
import java.io.Serializable;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamField;
/**
* This class provides a hashtable-backed implementation of the
* Map interface.
*
* It uses a hash-bucket approach; that is, hash
* collisions are handled by linking the new node off of the
* pre-existing node (or list of nodes). In this manner, techniques
* such as linear probing (which can casue primary clustering) and
* rehashing (which does not fit very well with Java's method of
* precomputing hash codes) are avoided.
*
* Under ideal circumstances (no collisions, HashMap offers O(1)
* performance on most operations (<pre>containsValue()</pre> is,
* of course, O(n)). In the worst case (all keys map to the same
* hash code -- very unlikely), most operations are O(n).
*
* HashMap is part of the JDK1.2 Collections API. It differs from
* Hashtable in that it accepts the null key and null values, and it
* does not support "Enumeration views."
*
* @author Jon Zeppieri
* @version $Revision: 1.6 $
* @modified $Id: HashMap.java,v 1.6 2000/03/15 21:59:13 rao Exp $
*/
public class HashMap extends AbstractMap
implements Map, Cloneable, Serializable
{
// STATIC (CLASS) VARIABLES ------------------------------------------
/**
* the default capacity for an instance of HashMap -- I think this
* is low, and perhaps it shoudl be raised; Sun's documentation mildly
* suggests that this (11) is the correct value, though
*/
private static final int DEFAULT_CAPACITY = 11;
/** the default load factor of a HashMap */
private static final float DEFAULT_LOAD_FACTOR = 0.75F;
/** used internally to represent the null key */
private static final HashMap.Null NULL_KEY = new HashMap.Null();
/** used internally to parameterize the creation of set/collection views */
private static final int KEYS = 0;
/** used internally to parameterize the creation of set/collection views */
private static final int VALUES = 1;
/** used internally to parameterize the creation of set/collection views */
private static final int ENTRIES = 2;
private static final long serialVersionUID = 362498820763181265L;
// INSTANCE VARIABLES -------------------------------------------------
/** the capacity of this HashMap: denotes the size of the bucket array */
transient int capacity;
/** the size of this HashMap: denotes the number of key-value pairs */
private transient int size;
/** the load factor of this HashMap: used in computing the threshold
* @serial
*/
float loadFactor;
/* the rounded product of the capacity and the load factor; when the number of
* elements exceeds the threshold, the HashMap calls <pre>rehash()</pre>
* @serial
*/
private int threshold;
/**
* this data structure contains the actual key-value mappings; a
* <pre>BucketList</pre> is a lightweight linked list of "Buckets",
* which, in turn, are linked nodes containing a key-value mapping
* and a reference to the "next" Bucket in the list
*/
private transient Bucket[] buckets;
/**
* counts the number of modifications this HashMap has undergone; used by Iterators
* to know when to throw ConcurrentModificationExceptions (idea ripped-off from
* Stuart Ballard's AbstractList implementation)
*/
private transient int modCount;
// CONSTRUCTORS ---------------------------------------------------------
/**
* construct a new HashMap with the default capacity and the default
* load factor
*/
public HashMap()
{
init(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* construct a new HashMap with a specific inital capacity and load factor
*
* @param initialCapacity the initial capacity of this HashMap (>=0)
* @param initialLoadFactor the load factor of this HashMap
* (a misnomer, really, since the load factor of
* a HashMap does not change)
*
* @throws IllegalArgumentException if (initialCapacity < 0) ||
* (initialLoadFactor > 1.0) ||
* (initialLoadFactor <= 0.0)
*/
public HashMap(int initialCapacity, float initialLoadFactor)
throws IllegalArgumentException
{
if (initialCapacity < 0 || initialLoadFactor <= 0 || initialLoadFactor > 1)
throw new IllegalArgumentException();
else
init(initialCapacity, initialLoadFactor);
}
/**
* construct a new HashMap with a specific inital capacity
*
* @param initialCapacity the initial capacity of this HashMap (>=0)
*
* @throws IllegalArgumentException if (initialCapacity < 0)
*/
public HashMap(int initialCapacity)
throws IllegalArgumentException
{
if (initialCapacity < 0)
throw new IllegalArgumentException();
else
init(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* construct a new HashMap from the given Map
*
* every element in Map t will be put into this new HashMap
*
* @param t a Map whose key / value pairs will be put into
* the new HashMap. <b>NOTE: key / value pairs
* are not cloned in this constructor</b>
*/
public HashMap(Map t)
{
int mapSize = t.size() * 2;
init(((mapSize > DEFAULT_CAPACITY) ? mapSize : DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
putAll(t);
}
// PUBLIC METHODS ---------------------------------------------------------
/** returns the number of kay-value mappings currently in this Map */
public int size()
{
return size;
}
/** returns true if there are no key-value mappings currently in this Map */
public boolean isEmpty()
{
return size == 0;
}
/** empties this HashMap of all elements */
public void clear()
{
size = 0;
modCount++;
buckets = new Bucket[capacity];
}
/**
* returns a shallow clone of this HashMap (i.e. the Map itself is cloned, but
* its contents are not)
*/
public Object clone()
{
Map.Entry entry;
Iterator it = entrySet().iterator();
HashMap clone = new HashMap(capacity, loadFactor);
while (it.hasNext())
{
entry = (Map.Entry) it.next();
clone.internalPut(entry.getKey(), entry.getValue());
}
return clone;
}
/** returns a "set view" of this HashMap's keys */
public Set keySet()
{
return new HashMapSet(KEYS);
}
/** returns a "set view" of this HashMap's entries */
public Set entrySet()
{
return new HashMapSet(ENTRIES);
}
/** returns a "collection view" (or "bag view") of this HashMap's values */
public Collection values()
{
return new HashMapCollection();
}
/**
* returns true if the supplied object equals (<pre>equals()</pre>) a key
* in this HashMap
*
* @param key the key to search for in this HashMap
*/
public boolean containsKey(Object key)
{
return (internalGet(key) != null);
}
/**
* returns true if this HashMap contains a value <pre>o</pre>, such that
* <pre>o.equals(value)</pre>.
*
* @param value the value to search for in this Hashtable
*/
public boolean containsValue(Object value)
{
int i;
Bucket list;
for (i = 0; i < capacity; i++)
{
list = buckets[i];
if (list != null && list.containsValue(value))
return true;
}
return false;
}
/*
* return the value in this Hashtable associated with the supplied key, or <pre>null</pre>
* if the key maps to nothing
*
* @param key the key for which to fetch an associated value
*/
public Object get(Object key)
{
Map.Entry oResult = internalGet(key);
return (oResult == null) ? null : oResult.getValue();
}
/**
* puts the supplied value into the Map, mapped by the supplied key
*
* @param key the HashMap key used to locate the value
* @param value the value to be stored in the HashMap
*/
public Object put(Object key, Object value)
{
return internalPut(key, value);
}
/**
* removes from the HashMap and returns the value which is mapped by the
* supplied key; if the key maps to nothing, then the HashMap remains unchanged,
* and <pre>null</pre> is returned
*
* @param key the key used to locate the value to remove from the HashMap
*/
public Object remove(Object key)
{
Bucket list;
int index;
Object result = null;
if (size > 0)
{
index = hash(((key == null) ? NULL_KEY : key));
list = buckets[index];
if (list != null)
{
result = list.removeByKey(key);
if (result != null)
{
size--;
modCount++;
if (list.first == null)
buckets[index] = null;
}
}
}
return result;
}
// PRIVATE METHODS -----------------------------------------------------------
/**
* puts the given key-value pair into this HashMap; a private method is used
* because it is called by the rehash() method as well as the put() method,
* and if a subclass overrides put(), then rehash would do funky things
* if it called put()
*
* @param key the HashMap key used to locate the value
* @param value the value to be stored in the HashMap
*/
private Object internalPut(Object key, Object value)
{
HashMapEntry entry;
Bucket list;
int hashIndex;
Object oResult;
Object oRealKey = ((key == null) ? NULL_KEY : key);
entry = new HashMapEntry(oRealKey, value);
hashIndex = hash(oRealKey);
list = buckets[hashIndex];
if (list == null)
{
list = new Bucket();
buckets[hashIndex] = list;
}
oResult = list.add(entry);
if (oResult == null)
{
modCount++;
if (size++ == threshold)
rehash();
return null;
}
else
{
// SEH: if key already exists, we don't rehash & we don't update the modCount
// because it is not a "structural" modification
return oResult;
}
}
/**
* a private method, called by all of the constructors to initialize a new HashMap
*
* @param initialCapacity the initial capacity of this HashMap (>=0)
* @param initialLoadFactor the load factor of this HashMap
* (a misnomer, really, since the load factor of
* a HashMap does not change)
*/
private void init(int initialCapacity, float initialLoadFactor)
{
size = 0;
modCount = 0;
capacity = initialCapacity;
loadFactor = initialLoadFactor;
threshold = (int) ((float) capacity * loadFactor);
buckets = new Bucket[capacity];
}
/** private -- simply hashes a non-null Object to its array index */
private int hash(Object key)
{
return Math.abs(key.hashCode() % capacity);
}
/**
* increases the size of the HashMap and rehashes all keys to new array indices;
* this is called when the addition of a new value would cause size() > threshold
*/
private void rehash()
{
int i;
Bucket[] data = buckets;
Bucket.Node node;
modCount++;
capacity = (capacity * 2) + 1;
size = 0;
threshold = (int) ((float) capacity * loadFactor);
buckets = new Bucket[capacity];
for (i = 0; i < data.length; i++)
{
if (data[i] != null)
{
node = data[i].first;
while (node != null)
{
internalPut(node.getKey(), node.getValue());
node = node.next;
}
}
}
}
/**
* a private method which does the "dirty work" (or some of it anyway) of fetching a value
* with a key
*
* @param key the key for which to fetch an associated value
*/
private Map.Entry internalGet(Object key)
{
Bucket list;
if (size == 0)
{
return null;
}
else
{
list = buckets[hash(((key == null) ? NULL_KEY : key))];
return (list == null) ? null : list.getEntryByKey(key);
}
}
/**
* a private method used by inner class HashMapSet to implement its own
* <pre>contains(Map.Entry)</pre> method; returns true if the supplied
* key / value pair is found in this HashMap (again, using <pre>equals()</pre>,
* rather than <pre>==</pre>)
*
* @param entry a Map.Entry to match against key / value pairs in
* this HashMap
*/
private boolean containsEntry(Map.Entry entry)
{
Map.Entry oInternalEntry;
if (entry == null)
{
return false;
}
else
{
oInternalEntry = internalGet(entry.getKey());
return (oInternalEntry != null && oInternalEntry.equals(entry));
}
}
/**
* Serializes this object to the given stream.
* @serialdata the <i>capacity</i>(int) that is the length of the
* bucket array, the <i>size</i>(int) of the hash map are emitted
* first. They are followed by size entries, each consisting of
* a key (Object) and a value (Object).
*/
private void writeObject(ObjectOutputStream s)
throws IOException
{
// the fields
s.defaultWriteObject();
s.writeInt(capacity);
s.writeInt(size);
Iterator it = entrySet().iterator();
while (it.hasNext())
{
Map.Entry oEntry = (Map.Entry) it.next();
s.writeObject(oEntry.getKey());
s.writeObject(oEntry.getValue());
}
}
/**
* Deserializes this object from the given stream.
* @serialdata the <i>capacity</i>(int) that is the length of the
* bucket array, the <i>size</i>(int) of the hash map are emitted
* first. They are followed by size entries, each consisting of
* a key (Object) and a value (Object).
*/
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// the fields
s.defaultReadObject();
capacity = s.readInt();
int iLen = s.readInt();
size = 0;
modCount = 0;
buckets = new Bucket[capacity];
for (int i = 0; i < iLen; i++)
{
Object oKey = s.readObject();
Object oValue = s.readObject();
internalPut(oKey, oValue);
}
}
// INNER CLASSES -------------------------------------------------------------
// ---------------------------------------------------------------------------
/**
* an inner class providing a Set view of a HashMap; this implementation is
* parameterized to view either a Set of keys or a Set of Map.Entry objects
*
* Note: a lot of these methods are implemented by AbstractSet, and would work
* just fine without any meddling, but far greater efficiency can be gained by
* overriding a number of them. And so I did.
*
* @author Jon Zeppieri
* @version $Revision: 1.6 $
* @modified $Id: HashMap.java,v 1.6 2000/03/15 21:59:13 rao Exp $
*/
private class HashMapSet extends AbstractSet
implements Set
{
/** the type of this Set view: KEYS or ENTRIES */
private int setType;
/** construct a new HashtableSet with the supplied view type */
HashMapSet(int type)
{
setType = type;
}
/**
* adding an element is unsupported; this method simply throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean add(Object o) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/**
* adding an element is unsupported; this method simply throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean addAll(Collection c) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/**
* clears the backing HashMap; this is a prime example of an overridden implementation
* which is far more efficient than its superclass implementation (which uses an iterator
* and is O(n) -- this is an O(1) call)
*/
public void clear()
{
HashMap.this.clear();
}
/**
* returns true if the supplied object is contained by this Set
*
* @param o an Object being testing to see if it is in this Set
*/
public boolean contains(Object o)
{
if (setType == KEYS)
return HashMap.this.containsKey(o);
else
return (o instanceof Map.Entry) ? HashMap.this.containsEntry((Map.Entry) o) : false;
}
/**
* returns true if the backing HashMap is empty (which is the only case either a KEYS
* Set or an ENTRIES Set would be empty)
*/
public boolean isEmpty()
{
return HashMap.this.isEmpty();
}
/**
* removes the supplied Object from the Set
*
* @param o the Object to be removed
*/
public boolean remove(Object o)
{
if (setType == KEYS)
return (HashMap.this.remove(o) != null);
else
return (o instanceof Map.Entry) ?
(HashMap.this.remove(((Map.Entry) o).getKey()) != null) : false;
}
/** returns the size of this Set (always equal to the size of the backing Hashtable) */
public int size()
{
return HashMap.this.size();
}
/** returns an Iterator over the elements of this Set */
public Iterator iterator()
{
return new HashMapIterator(setType);
}
}
/**
* Like the above Set view, except this one if for values, which are not
* guaranteed to be unique in a Map; this prvides a Bag of values
* in the HashMap
*
* @author Jon Zeppieri
* @version $Revision: 1.6 $
* @modified $Id: HashMap.java,v 1.6 2000/03/15 21:59:13 rao Exp $
*/
private class HashMapCollection extends AbstractCollection
implements Collection
{
/** a trivial contructor for HashMapCollection */
HashMapCollection()
{
}
/**
* adding elements is not supported by this Collection;
* this method merely throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean add(Object o) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/**
* adding elements is not supported by this Collection;
* this method merely throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean addAll(Collection c) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/** removes all elements from this Collection (and from the backing HashMap) */
public void clear()
{
HashMap.this.clear();
}
/**
* returns true if this Collection contains at least one Object which equals() the
* supplied Object
*
* @param o the Object to compare against those in the Set
*/
public boolean contains(Object o)
{
return HashMap.this.containsValue(o);
}
/** returns true IFF the Collection has no elements */
public boolean isEmpty()
{
return HashMap.this.isEmpty();
}
/** returns the size of this Collection */
public int size()
{
return HashMap.this.size();
}
/** returns an Iterator over the elements in this Collection */
public Iterator iterator()
{
return new HashMapIterator(VALUES);
}
}
/**
* a class which implements the Iterator interface and is used for
* iterating over HashMaps;
* this implementation is parameterized to give a sequential view of
* keys, values, or entries; it also allows the removal of elements,
* as per the Javasoft spec.
*
* @author Jon Zeppieri
* @version $Revision: 1.6 $
* @modified $Id: HashMap.java,v 1.6 2000/03/15 21:59:13 rao Exp $
*/
class HashMapIterator implements Iterator
{
/** the type of this Iterator: KEYS, VALUES, or ENTRIES */
private int myType;
/**
* the number of modifications to the backing Hashtable for which
* this Iterator can account (idea ripped off from Stuart Ballard)
*/
private int knownMods;
/** the location of our sequential "cursor" */
private int position;
/** the current index of the BucketList array */
private int bucketIndex;
/** a reference, originally null, to the specific Bucket our "cursor" is pointing to */
private Bucket.Node currentNode;
/** a reference to the current key -- used fro removing elements via the Iterator */
private Object currentKey;
/** construct a new HashtableIterator with the supllied type: KEYS, VALUES, or ENTRIES */
HashMapIterator(int type)
{
myType = type;
knownMods = HashMap.this.modCount;
position = 0;
bucketIndex = -1;
currentNode = null;
currentKey = null;
}
/**
* Stuart Ballard's code: if the backing HashMap has been altered through anything
* but <i>this</i> Iterator's <pre>remove()</pre> method, we will give up right here,
* rather than risking undefined behavior
*
* @throws ConcurrentModificationException
*/
private void checkMod()
{
if (knownMods != HashMap.this.modCount)
throw new ConcurrentModificationException();
}
/** returns true if the Iterator has more elements */
public boolean hasNext()
{
checkMod();
return position < HashMap.this.size();
}
/** returns the next element in the Iterator's sequential view */
public Object next()
{
Bucket list = null;
Object result;
checkMod();
try
{
while (currentNode == null)
{
while (list == null)
list = HashMap.this.buckets[++bucketIndex];
currentNode = list.first;
}
currentKey = currentNode.getKey();
result = (myType == KEYS) ? currentKey :
((myType == VALUES) ? currentNode.getValue() : currentNode);
currentNode = currentNode.next;
}
catch(Exception e)
{
throw new NoSuchElementException();
}
position++;
return result;
}
/**
* removes from the backing HashMap the last element which was fetched with the
* <pre>next()</pre> method
*/
public void remove()
{
checkMod();
if (currentKey == null)
{
throw new IllegalStateException();
}
else
{
HashMap.this.remove(currentKey);
knownMods++;
position--;
currentKey = null;
}
}
}
/**
* a singleton instance of this class (HashMap.NULL_KEY)
* is used to represent the null key in HashMap objects
*
* @author Jon Zeppieri
* @version $Revision: 1.6 $
* @modified $Id: HashMap.java,v 1.6 2000/03/15 21:59:13 rao Exp $
*/
private static class Null
{
/** trivial constructor */
Null()
{
}
}
/**
* a HashMap version of Map.Entry -- one thing in this implementation is
* HashMap-specific: if the key is HashMap.NULL_KEY, getKey() will return
* null
*
* Simply, a key / value pair
*
* @author Jon Zeppieri
* @version $Revision: 1.6 $
* @modified $Id: HashMap.java,v 1.6 2000/03/15 21:59:13 rao Exp $
*/
private static class HashMapEntry extends Bucket.Node implements Map.Entry
{
/** construct a new HashMapEntry with the given key and value */
public HashMapEntry(Object key, Object value)
{
super(key, value);
}
/**
* if the key == HashMap.NULL_KEY, null is returned, otherwise the actual
* key is returned
*/
public Object getKey()
{
Object oResult = super.getKey();
return (oResult == HashMap.NULL_KEY) ? null : oResult;
}
}
// EOF -----------------------------------------------------------------------
}

View File

@ -0,0 +1,584 @@
/* LinkedList.java -- Linked list implementation of the List interface
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util;
import java.io.Serializable;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.IOException;
// TO DO:
// ~ Doc comment for the class.
// ~ Doc comments for the non-list methods.
// ~ Some commenting on the Backing API and other general implementation notes.
/**
* Linked list implementation of the List interface.
*/
public class LinkedList extends AbstractSequentialList
implements Serializable, Cloneable
{
static final long serialVersionUID = 876323262645176354L;
/**
* An Entry containing the head (in the next field) and the tail (in the
* previous field) of the list. The data field is null. If the list is empty,
* both the head and the tail point to ends itself.
*/
transient Entry ends = new Entry();
/**
* The current length of the list.
*/
transient int size = 0;
/**
* Class to represent an entry in the list. Holds a single element.
*/
private static class Entry {
/**
* The list element.
*/
Object data = null;
/**
* The next entry in the list. If this is the last entry in the list, the
* ends field of the list is held here.
*/
Entry next;
/**
* The previous entry in the list. If this is the first entry in the list,
* the ends field of the list is held here.
*/
Entry previous;
/**
* Create an entry with given data and linkage.
*/
Entry(Object d, Entry n, Entry p) {
data = d;
next = n;
previous = p;
}
/**
* Create an entry with no data and linking to itself, for use as the ends
* field of the list.
*/
Entry() {
next = previous = this;
}
/**
* Remove this entry.
*/
Object remove() {
previous.next = next;
next.previous = previous;
return data;
}
}
private static interface Backing {
void checkMod(int known);
void upMod();
void incSize(int by);
void decSize(int by);
}
private final Backing back = new Backing() {
public void checkMod(int known) {
if (known != modCount) {
throw new ConcurrentModificationException();
}
}
public void upMod() {
modCount++;
}
public void incSize(int by) {
size += by;
}
public void decSize(int by) {
size -= by;
}
};
/** A ListIterator over the list. This class keeps track of its
* position in the list, the size of the list, and the two list
* entries it is between. This enables it to be used identically
* for both the list itself and a sublist of the list.
*/
private static class Iter implements ListIterator {
/**
* The index of the element that will be returned by next().
*/
int pos;
/**
* The size of the backing list.
*/
int size;
/**
* The entry containing the element that will be returned by next().
*/
Entry next;
/**
* The entry containing the element that will be returned by previous().
*/
Entry previous;
/**
* The entry that will be affected by remove() or set().
*/
Entry recent;
/**
* The known value of the modCount of the backing list.
*/
int knownMod;
private final Backing b;
/**
* Create a new Iter starting at a given Entry within the list, at a given
* position, in a list of given size.
*
* @param index the index to begin iteration.
* @exception IndexOutOfBoundsException if index < 0 || index > size.
*/
Iter(Backing backing, Entry n, int index, int s, int modCount) {
b = backing;
pos = index;
size = s;
next = n;
previous = n.previous;
knownMod = modCount;
}
public int nextIndex() {
b.checkMod(knownMod);
return pos;
}
public int previousIndex() {
b.checkMod(knownMod);
return pos - 1;
}
public boolean hasNext() {
b.checkMod(knownMod);
return pos < size;
}
public boolean hasPrevious() {
b.checkMod(knownMod);
return pos > 0;
}
public Object next() {
b.checkMod(knownMod);
if (pos >= size) {
throw new NoSuchElementException();
} else {
pos++;
recent = previous = next;
next = recent.next;
return recent.data;
}
}
public Object previous() {
b.checkMod(knownMod);
if (pos <= 0) {
throw new NoSuchElementException();
} else {
pos--;
recent = next = previous;
previous = recent.previous;
return recent.data;
}
}
public void remove() {
b.checkMod(knownMod);
if (recent == null) {
throw new IllegalStateException();
}
// Adjust the position to before the removed element
if (recent == previous) pos--;
// Could use recent.remove() but this way is quicker, and also correctly
// fixes next and previous.
next = recent.previous.next = recent.next;
previous = recent.next.previous = recent.previous;
size--;
b.decSize(1);
knownMod++;
b.upMod();
recent = null;
}
public void add(Object o) {
b.checkMod(knownMod);
previous.next = next.previous = new Entry(o, next, previous);
// New for 1.2RC1 - the semantics changed so that the iterator is
// positioned *after* the new element.
previous = previous.next;
pos++;
size++;
b.incSize(1);
knownMod++;
b.upMod();
recent = null;
}
public void set(Object o) {
b.checkMod(knownMod);
if (recent == null) {
throw new IllegalStateException();
}
recent.data = o;
}
}
/**
* Obtain the Entry at a given position in a list. This method of course
* takes linear time, but it is intelligent enough to take the shorter of the
* paths to get to the Entry required. This implies that the first or last
* entry in the list is obtained in constant time, which is a very desirable
* property.
* For speed and flexibility in which ranges are valid, range checking is not
* done in this method, and if n is outside the range -1 <= n <= size, the
* result will be wrong (but no exception will be thrown).
* Note that you *can* obtain entries at position -1 and size, which are
* equal to prehead and posttail respectively.
* This method is static so that it can also be used in subList.
*
* @param n the number of the entry to get.
* @param size the size of the list to get the entry in.
* @param head the entry before the first element of the list (usually ends).
* @param tail the entry after the last element of the list (usually ends).
*/
static Entry getEntry(int n, int size, Entry head, Entry tail) {
// n less than size/2, iterate from start
if (n < size >> 1) {
while (n-- >= 0) {
head = head.next;
}
return head;
// n greater than size/2, iterate from end
} else {
while (++n <= size) {
tail = tail.previous;
}
return tail;
}
}
/**
* Create an empty linked list.
*/
public LinkedList() {
super();
}
/**
* Create a linked list containing the elements, in order, of a given
* collection.
*
* @param c the collection to populate this list from.
*/
public LinkedList(Collection c) {
super();
// Note: addAll could be made slightly faster, but not enough so to justify
// re-implementing it from scratch. It is just a matter of a relatively
// small constant factor.
addAll(c);
}
public Object getFirst() {
if (size == 0) {
throw new NoSuchElementException();
}
return ends.next.data;
}
public Object getLast() {
if (size == 0) {
throw new NoSuchElementException();
}
return ends.previous.data;
}
public Object removeFirst() {
if (size == 0) {
throw new NoSuchElementException();
}
size--;
modCount++;
return ends.next.remove();
}
public Object removeLast() {
if (size == 0) {
throw new NoSuchElementException();
}
size--;
modCount++;
return ends.previous.remove();
}
public void addFirst(Object o) {
ends.next.previous = ends.next = new Entry(o, ends.next, ends);
size++;
modCount++;
}
public void addLast(Object o) {
ends.previous.next = ends.previous = new Entry(o, ends, ends.previous);
size++;
modCount++;
}
/**
* Obtain the number of elements currently in this list.
*
* @returns the number of elements currently in this list.
*/
public int size() {
return size;
}
/**
* Remove a range of elements from this list.
*
* @param fromIndex the index, inclusive, to remove from.
* @param toIndex the index, exclusive, to remove to.
* @exception IndexOutOfBoundsException if fromIndex > toIndex || fromIndex <
* 0 || toIndex > size().
*/
// Note: normally removeRange is provided to allow efficient ways to
// implement clear() on subLists. However, in this case clear on subLists
// works anyway, so this implementation is included just for completeness
// and because subclasses might try to use it.
protected void removeRange(int fromIndex, int toIndex) {
subList(fromIndex, toIndex).clear();
}
/**
* Clear the list.
*/
public void clear() {
ends.next = ends.previous = ends;
modCount++;
size = 0;
}
/**
* Obtain a ListIterator over this list, starting at a given index. The
* ListIterator returned by this method supports the add, remove and set
* methods.
*
* @param index the index of the element to be returned by the first call to
* next(), or size() to be initially positioned at the end of the list.
* @exception IndexOutOfBoundsException if index < 0 || index > size().
*/
public ListIterator listIterator(int index) {
// Check bounds
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException();
}
return new Iter(back, getEntry(index, size, ends, ends),
index, size, modCount);
}
/**
* Obtain a List view of a subsection of this list, from fromIndex
* (inclusive) to toIndex (exclusive). The returned list is modifiable in
* every respect. Changes to the returned list are reflected in this list. If
* this list is structurally modified is any way other than through the
* returned list, any subsequent operations on the returned list will result
* in a ConcurrentModificationException (that is, the returned list is
* fail-fast).
*
* @param fromIndex the index that the returned list should start from
* (inclusive).
* @param toIndex the index that the returned list should go to (exclusive).
* @returns a List backed by a subsection of this list.
* @exception IndexOutOfBoundsException if fromIndex < 0 || toIndex > size()
* || fromIndex > toIndex.
*/
public List subList(int fromIndex, int toIndex) {
// Check bounds
if (fromIndex > toIndex || fromIndex < 0 || toIndex > size) {
throw new IndexOutOfBoundsException();
}
return new SubLinkedList(back, modCount,
getEntry(fromIndex - 1, size, ends, ends),
getEntry(toIndex, size, ends, ends),
toIndex - fromIndex);
}
private static class SubLinkedList extends AbstractSequentialList {
Entry head; // entry before the beginning
Entry tail; // entry after the end
int size;
private final Backing b;
private final Backing back = new Backing() {
public void checkMod(int known) {
if (known != modCount) {
throw new ConcurrentModificationException();
}
}
public void upMod() {
modCount++;
}
public void incSize(int by) {
size += by;
}
public void decSize(int by) {
size -= by;
}
};
SubLinkedList(Backing backing, int knownMod, Entry h, Entry t, int s) {
this.modCount = knownMod;
b = backing;
head = h;
tail = t;
size = s;
}
public int size() {
b.checkMod(this.modCount);
return size;
}
public ListIterator listIterator(int index) {
b.checkMod(this.modCount);
// Check bounds
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException();
}
return new Iter(back, getEntry(index, size, head, tail),
index, size, modCount);
}
public void clear() {
b.checkMod(this.modCount);
head.next = tail;
tail.previous = head;
size = 0;
b.decSize(size);
modCount++;
b.upMod();
}
// No removeRange because this class cannot be publically subclassed.
public List subList(int fromIndex, int toIndex) {
b.checkMod(this.modCount);
// Check bounds
if (fromIndex > toIndex || fromIndex < 0 || toIndex > size) {
throw new IndexOutOfBoundsException();
}
return new SubLinkedList(back, this.modCount,
getEntry(fromIndex - 1, size, head, tail),
getEntry(toIndex, size, head, tail),
toIndex - fromIndex);
}
}
/**
* Create a shallow copy of this LinkedList.
* @return an object of the same class as this object, containing the
* same elements in the same order.
*/
public Object clone()
{
LinkedList copy;
try
{
copy = (LinkedList) super.clone();
}
catch (CloneNotSupportedException ex)
{
throw new InternalError(ex.getMessage());
}
copy.size = 0;
copy.ends = new Entry();
copy.addAll(this);
return copy;
}
/**
* Serialize an object to a stream.
* @serialdata the size of the list (int), followed by all the elements
* (Object) in proper order.
*/
private void writeObject(ObjectOutputStream s)
throws IOException
{
s.writeInt(size);
for (Iterator i = iterator(); i.hasNext(); )
s.writeObject(i.next());
}
/**
* Deserialize an object from a stream.
* @serialdata the size of the list (int), followed by all the elements
* (Object) in proper order.
*/
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException
{
int serialSize = s.readInt();
ends = new Entry();
for (int i=0; i< serialSize; i++)
addLast(s.readObject());
}
}

View File

@ -0,0 +1,40 @@
/* SortedMap.java -- A map that makes guarantees about the order of its keys
Copyright (C) 1998 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
// TO DO:
// ~ Doc comments for everything.
package java.util;
public interface SortedMap extends Map {
Comparator comparator();
Object firstKey();
SortedMap headMap(Object toKey);
Object lastKey();
SortedMap subMap(Object fromKey, Object toKey);
SortedMap tailMap(Object fromKey);
}

View File

@ -0,0 +1,41 @@
/* SortedSet.java -- A set that makes guarantees about the order of its
elements
Copyright (C) 1998 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
// TO DO:
// ~ Doc comments for everything.
package java.util;
public interface SortedSet extends Set {
Comparator comparator();
Object first();
SortedSet headSet(Object toElement);
Object last();
SortedSet subSet(Object fromElement, Object toElement);
SortedSet tailSet(Object fromElement);
}

View File

@ -0,0 +1,525 @@
/* Timer.java -- Timer that runs TimerTasks at a later time.
Copyright (C) 2000 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util;
/**
* Timer that can run TimerTasks at a later time.
* TimerTasks can be scheduled for one time execution at some time in the
* future. They can be scheduled to be rescheduled at a time period after the
* task was last executed. Or they can be scheduled to be executed repeatedly
* at a fixed rate.
* <p>
* The normal scheduling will result in a more or less even delay in time
* between successive executions, but the executions could drift in time if
* the task (or other tasks) takes a long time to execute. Fixed delay
* scheduling guarantees more or less that the task will be executed at a
* specific time, but if there is ever a delay in execution then the period
* between successive executions will be shorter. The first method of
* repeated scheduling is prefered for repeated tasks in response to user
* interaction, the second method of repeated scheduling is prefered for tasks
* that act like alarms.
* <p>
* The Timer keeps a binary heap as a task priority queue which means that
* scheduling and serving of a task in a queue of n tasks costs O(log n).
*
* @see TimerTask
* @since 1.3
* @author Mark Wielaard (mark@klomp.org)
*/
public class Timer {
/**
* Priority Task Queue.
* TimerTasks are kept in a binary heap.
* The scheduler calls sleep() on the queue when it has nothing to do or
* has to wait. A sleeping scheduler can be notified by calling interrupt()
* which is automatically called by the enqueue(), cancel() and
* timerFinalized() methods.
*/
private static final class TaskQueue {
/** Default size of this queue */
private final int DEFAULT_SIZE = 32;
/** Wheter to return null when there is nothing in the queue */
private boolean nullOnEmpty;
/**
* The heap containing all the scheduled TimerTasks
* sorted by the TimerTask.scheduled field.
* Null when the stop() method has been called.
*/
private TimerTask heap[];
/**
* The actual number of elements in the heap
* Can be less then heap.length.
* Note that heap[0] is used as a sentinel.
*/
private int elements;
/**
* Creates a TaskQueue of default size without any elements in it.
*/
public TaskQueue() {
heap = new TimerTask[DEFAULT_SIZE];
elements = 0;
nullOnEmpty = false;
}
/**
* Adds a TimerTask at the end of the heap.
* Grows the heap if necessary by doubling the heap in size.
*/
private void add(TimerTask task) {
elements++;
if (elements == heap.length) {
TimerTask new_heap[] = new TimerTask[heap.length*2];
System.arraycopy(heap, 0, new_heap, 0, heap.length);
heap = new_heap;
}
heap[elements] = task;
}
/**
* Removes the last element from the heap.
* Shrinks the heap in half if
* elements+DEFAULT_SIZE/2 <= heap.length/4.
*/
private void remove() {
// clear the entry first
heap[elements] = null;
elements--;
if (elements+DEFAULT_SIZE/2 <= (heap.length/4)) {
TimerTask new_heap[] = new TimerTask[heap.length/2];
System.arraycopy(heap, 0, new_heap, 0, elements+1);
}
}
/**
* Adds a task to the queue and puts it at the correct place
* in the heap.
*/
public synchronized void enqueue(TimerTask task) {
// Check if it is legal to add another element
if (heap == null) {
throw new IllegalStateException
("cannot enqueue when stop() has been called on queue");
}
heap[0] = task; // sentinel
add(task); // put the new task at the end
// Now push the task up in the heap until it has reached its place
int child = elements;
int parent = child / 2;
while (heap[parent].scheduled > task.scheduled) {
heap[child] = heap[parent];
child = parent;
parent = child / 2;
}
// This is the correct place for the new task
heap[child] = task;
heap[0] = null; // clear sentinel
// Maybe sched() is waiting for a new element
this.notify();
}
/**
* Returns the top element of the queue.
* Can return null when no task is in the queue.
*/
private TimerTask top() {
if (elements == 0) {
return null;
} else {
return heap[1];
}
}
/**
* Returns the top task in the Queue.
* Removes the element from the heap and reorders the heap first.
* Can return null when there is nothing in the queue.
*/
public synchronized TimerTask serve() {
// The task to return
TimerTask task = null;
while (task == null) {
// Get the next task
task = top();
// return null when asked to stop
// or if asked to return null when the queue is empty
if ((heap == null) || (task == null && nullOnEmpty)) {
return null;
}
// Do we have a task?
if (task != null) {
// The time to wait until the task should be served
long time = task.scheduled-System.currentTimeMillis();
if (time > 0) {
// This task should not yet be served
// So wait until this task is ready
// or something else happens to the queue
task = null; // set to null to make sure we call top()
try {
this.wait(time);
} catch (InterruptedException _) {}
}
} else {
// wait until a task is added
// or something else happens to the queue
try {
this.wait();
} catch (InterruptedException _) {}
}
}
// reconstruct the heap
TimerTask lastTask = heap[elements];
remove();
// drop lastTask at the beginning and move it down the heap
int parent = 1;
int child = 2;
heap[1] = lastTask;
while(child <= elements) {
if (child < elements) {
if (heap[child].scheduled > heap[child+1].scheduled) {
child++;
}
}
if (lastTask.scheduled <= heap[child].scheduled)
break; // found the correct place (the parent) - done
heap[parent] = heap[child];
parent = child;
child = parent*2;
}
// this is the correct new place for the lastTask
heap[parent] = lastTask;
// return the task
return task;
}
/**
* When nullOnEmpty is true the serve() method will return null when
* there are no tasks in the queue, otherwise it will wait until
* a new element is added to the queue. It is used to indicate to
* the scheduler that no new tasks will ever be added to the queue.
*/
public synchronized void setNullOnEmpty(boolean nullOnEmpty) {
this.nullOnEmpty = nullOnEmpty;
this.notify();
}
/**
* When this method is called the current and all future calls to
* serve() will return null. It is used to indicate to the Scheduler
* that it should stop executing since no more tasks will come.
*/
public synchronized void stop() {
this.heap = null;
this.notify();
}
} // TaskQueue
/**
* The scheduler that executes all the tasks on a particular TaskQueue,
* reschedules any repeating tasks and that waits when no task has to be
* executed immediatly. Stops running when canceled or when the parent
* Timer has been finalized and no more tasks have to be executed.
*/
private static final class Scheduler implements Runnable {
// The priority queue containing all the TimerTasks.
private TaskQueue queue;
/**
* Creates a new Scheduler that will schedule the tasks on the
* given TaskQueue.
*/
public Scheduler(TaskQueue queue) {
this.queue = queue;
}
public void run() {
TimerTask task;
while((task = queue.serve()) != null) {
// If this task has not been canceled
if (task.scheduled >= 0) {
// Mark execution time
task.lastExecutionTime = task.scheduled;
// Repeatable task?
if (task.period < 0) {
// Last time this task is executed
task.scheduled = -1;
}
// Run the task
try {
task.run();
} catch (Throwable t) {/* ignore all errors */}
}
// Calculate next time and possibly re-enqueue
if (task.scheduled >= 0) {
if (task.fixed) {
task.scheduled += task.period;
} else {
task.scheduled = task.period +
System.currentTimeMillis();
}
queue.enqueue(task);
}
}
}
} // Scheduler
// Number of Timers created.
// Used for creating nice Thread names.
private static int nr = 0;
// The queue that all the tasks are put in.
// Given to the scheduler
private TaskQueue queue;
// The Scheduler that does all the real work
private Scheduler scheduler;
// Used to run the scheduler.
// Also used to checked if the Thread is still running by calling
// thread.isAlive(). Sometimes a Thread is suddenly killed by the system
// (if it belonged to an Applet).
private Thread thread;
// When cancelled we don't accept any more TimerTasks.
private boolean canceled;
/**
* Creates a new Timer with a non deamon Thread as Scheduler, with normal
* priority and a default name.
*/
public Timer() {
this(false);
}
/**
* Creates a new Timer with a deamon Thread as scheduler if deamon is true,
* with normal priority and a default name.
*/
public Timer(boolean daemon) {
this(daemon, Thread.NORM_PRIORITY);
}
/**
* Creates a new Timer with a deamon Thread as scheduler if deamon is true,
* with the priority given and a default name.
*/
private Timer(boolean daemon, int priority) {
this(daemon, priority, "Timer-" + (++nr));
}
/**
* Creates a new Timer with a deamon Thread as scheduler if deamon is true,
* with the priority and name given.E
*/
private Timer(boolean daemon, int priority, String name) {
canceled = false;
queue = new TaskQueue();
scheduler = new Scheduler(queue);
thread = new Thread(scheduler, name);
thread.setDaemon(daemon);
thread.setPriority(priority);
thread.start();
}
/**
* Cancels the execution of the scheduler. If a task is executing it will
* normally finish execution, but no other tasks will be executed and no
* more tasks can be scheduled.
*/
public void cancel() {
canceled = true;
queue.stop();
}
/**
* Schedules the task at Time time, repeating every period
* milliseconds if period is positive and at a fixed rate if fixed is true.
*
* @exception IllegalArgumentException if time is negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
private void schedule(TimerTask task,
long time,
long period,
boolean fixed) {
if (time < 0)
throw new IllegalArgumentException("negative time");
if (task.scheduled == 0 && task.lastExecutionTime == -1) {
task.scheduled = time;
task.period = period;
task.fixed = fixed;
} else {
throw new IllegalStateException
("task was already scheduled or canceled");
}
if (!this.canceled && this.thread != null) {
queue.enqueue(task);
} else {
throw new IllegalStateException
("timer was canceled or scheduler thread has died");
}
}
private static void positiveDelay(long delay) {
if (delay < 0) {
throw new IllegalArgumentException("delay is negative");
}
}
private static void positivePeriod(long period) {
if (period < 0) {
throw new IllegalArgumentException("period is negative");
}
}
/**
* Schedules the task at the specified data for one time execution.
*
* @exception IllegalArgumentException if date.getTime() is negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
public void schedule(TimerTask task, Date date) {
long time = date.getTime();
schedule(task, time, -1, false);
}
/**
* Schedules the task at the specified date and reschedules the task every
* period milliseconds after the last execution of the task finishes until
* this timer or the task is canceled.
*
* @exception IllegalArgumentException if period or date.getTime() is
* negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
public void schedule(TimerTask task, Date date, long period) {
positivePeriod(period);
long time = date.getTime();
schedule(task, time, period, false);
}
/**
* Schedules the task after the specified delay milliseconds for one time
* execution.
*
* @exception IllegalArgumentException if delay or
* System.currentTimeMillis + delay is negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
public void schedule(TimerTask task, long delay) {
positiveDelay(delay);
long time = System.currentTimeMillis() + delay;
schedule(task, time, -1, false);
}
/**
* Schedules the task after the delay milliseconds and reschedules the
* task every period milliseconds after the last execution of the task
* finishes until this timer or the task is canceled.
*
* @exception IllegalArgumentException if delay or period is negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
public void schedule(TimerTask task, long delay, long period) {
positiveDelay(delay);
positivePeriod(period);
long time = System.currentTimeMillis() + delay;
schedule(task, time, period, false);
}
/**
* Schedules the task at the specified date and reschedules the task at a
* fixed rate every period milliseconds until this timer or the task is
* canceled.
*
* @exception IllegalArgumentException if period or date.getTime() is
* negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
public void scheduleAtFixedRate(TimerTask task, Date date, long period) {
positivePeriod(period);
long time = date.getTime();
schedule(task, time, period, true);
}
/**
* Schedules the task after the delay milliseconds and reschedules the task
* at a fixed rate every period milliseconds until this timer or the task
* is canceled.
*
* @exception IllegalArgumentException if delay or
* System.currentTimeMillis + delay is negative
* @exception IllegalStateException if the task was already scheduled or
* canceled or this Timer is canceled or the scheduler thread has died
*/
public void scheduleAtFixedRate(TimerTask task, long delay, long period) {
positiveDelay(delay);
positivePeriod(period);
long time = System.currentTimeMillis() + delay;
schedule(task, time, period, true);
}
/**
* Tells the scheduler that the Timer task died
* so there will be no more new tasks scheduled.
*/
protected void finalize() {
queue.setNullOnEmpty(true);
}
}

View File

@ -0,0 +1,131 @@
/* TimerTask.java -- Task that can be run at a later time if given to a Timer.
Copyright (C) 2000 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util;
/**
* Task that can be run at a later time if given to a Timer.
* The TimerTask must implement a run method that will be called by the
* Timer when the task is scheduled for execution. The task can check when
* it should have been scheduled and cancel itself when no longer needed.
* <p>
* Example:
* <code>
* Timer timer = new Timer();
* TimerTask task = new TimerTask() {
* public void run() {
* if (this.scheduledExecutionTime() < System.currentTimeMillis() + 500)
* // Do something
* else
* // Complain: We are more then half a second late!
* if (someStopCondition)
* this.cancel(); // This was our last execution
* };
* timer.scheduleAtFixedRate(task, 1000, 1000); // schedule every second
* </code>
* <p>
* Note that a TimerTask object is a one shot object and can only given once
* to a Timer. (The Timer will use the TimerTask object for bookkeeping,
* in this implementation).
* <p>
* This class also implements <code>Runnable</code> to make it possible to
* give a TimerTask directly as a target to a <code>Thread</code>.
*
* @see Timer
* @since 1.3
* @author Mark Wielaard (mark@klomp.org)
*/
public abstract class TimerTask implements Runnable {
/**
* If positive the next time this task should be run.
* If negative this TimerTask is canceled or executed for the last time.
*/
long scheduled;
/**
* If positive the last time this task was run.
* If negative this TimerTask has not yet been scheduled.
*/
long lastExecutionTime;
/**
* If positive the number of milliseconds between runs of this task.
* If -1 this task doesn't have to be run more then once.
*/
long period;
/**
* If true the next time this task should be run is relative to
* the last scheduled time, otherwise it can drift in time.
*/
boolean fixed;
/**
* Creates a TimerTask and marks it as not yet scheduled.
*/
protected TimerTask() {
this.scheduled = 0;
this.lastExecutionTime = -1;
}
/**
* Marks the task as canceled and prevents any further execution.
* Returns true if the task was scheduled for any execution in the future
* and this cancel operation prevents that execution from happening.
* <p>
* A task that has been canceled can never be scheduled again.
* <p>
* In this implementation the TimerTask it is possible that the Timer does
* keep a reference to the TimerTask until the first time the TimerTask
* is actually scheduled. But the reference will disappear immediatly when
* cancel is called from within the TimerTask run method.
*/
public boolean cancel() {
boolean prevented_execution = (this.scheduled >= 0);
this.scheduled = -1;
return prevented_execution;
}
/**
* Method that is called when this task is scheduled for execution.
*/
public abstract void run();
/**
* Returns the last time this task was scheduled or (when called by the
* task from the run method) the time the current execution of the task
* was scheduled. When the task has not yet run the return value is
* undefined.
* <p>
* Can be used (when the task is scheduled at fixed rate) to see the
* difference between the requested schedule time and the actual time
* that can be found with <code>System.currentTimeMillis()</code>.
*/
public long scheduledExecutionTime() {
return lastExecutionTime;
}
}