* arm.md (bunordered, bordered, bungt, bunlt, bunge, bunle, buneq)

(bltgt, arm_buneq, arm_bltgt, sunordered, sordered, sungt, sunge)
	(sunlt, sunle): Enable patterns on VFP.

	* arm.md (attribute 'type'): Add new types - f_loads floadd, f_stores,
	f_stored, f_flag, f_cvt.
	(generic_sched): No-longer used for the arm1020e and arm1022e cores.
	Include arm1020e.md.
	* vfp.md (fmstat): New cpu unit.  Add an exclusion set between it and
	the ds and fmac pipelines.  Re-work all load and store patterns and
	all conversion patterns to use new attributes.  Adjust reservation
	descriptions accordingly.
	* arm1020e.md: New file.
	* t-arm: Add dependency.

From-SVN: r100452
This commit is contained in:
Richard Earnshaw 2005-06-01 14:52:16 +00:00 committed by Richard Earnshaw
parent f7f7ac5a61
commit 75fe7b2f40
5 changed files with 478 additions and 50 deletions

View File

@ -1,3 +1,20 @@
2005-06-01 Richard Earnshaw <richard.earnshaw@arm.com>
* arm.md (bunordered, bordered, bungt, bunlt, bunge, bunle, buneq)
(bltgt, arm_buneq, arm_bltgt, sunordered, sordered, sungt, sunge)
(sunlt, sunle): Enable patterns on VFP.
* arm.md (attribute 'type'): Add new types - f_loads floadd, f_stores,
f_stored, f_flag, f_cvt.
(generic_sched): No-longer used for the arm1020e and arm1022e cores.
Include arm1020e.md.
* vfp.md (fmstat): New cpu unit. Add an exclusion set between it and
the ds and fmac pipelines. Re-work all load and store patterns and
all conversion patterns to use new attributes. Adjust reservation
descriptions accordingly.
* arm1020e.md: New file.
* t-arm: Add dependency.
2005-06-01 Jan Hubicka <jh@suse.cz>
* except.c (struct eh_region): Kill unused fields.

View File

@ -202,10 +202,14 @@
; even on a machine with an fpa.
; f_load a floating point load from memory
; f_store a floating point store to memory
; f_load[sd] single/double load from memeory
; f_store[sd] single/double store to memeory
; f_flag a transfer of co-processor flags to the CPSR
; f_mem_r a transfer of a floating point register to a real reg via mem
; r_mem_f the reverse of f_mem_r
; f_2_r fast transfer float to arm (no memory needed)
; r_2_f fast transfer arm to float
; f_cvt convert floating<->integral
; branch a branch
; call a subroutine call
; load_byte load byte(s) from memory to arm registers
@ -222,7 +226,7 @@
; mav_dmult Double multiplies (7 cycle)
;
(define_attr "type"
"alu,alu_shift,alu_shift_reg,mult,block,float,fdivx,fdivd,fdivs,fmul,ffmul,farith,ffarith,float_em,f_load,f_store,f_mem_r,r_mem_f,f_2_r,r_2_f,branch,call,load_byte,load1,load2,load3,load4,store1,store2,store3,store4,mav_farith,mav_dmult"
"alu,alu_shift,alu_shift_reg,mult,block,float,fdivx,fdivd,fdivs,fmul,ffmul,farith,ffarith,f_flag,float_em,f_load,f_store,f_loads,f_loadd,f_stores,f_stored,f_mem_r,r_mem_f,f_2_r,r_2_f,f_cvt,branch,call,load_byte,load1,load2,load3,load4,store1,store2,store3,store4,mav_farith,mav_dmult"
(if_then_else
(eq_attr "insn" "smulxy,smlaxy,smlalxy,smulwy,smlawx,mul,muls,mla,mlas,umull,umulls,umlal,umlals,smull,smulls,smlal,smlals")
(const_string "mult")
@ -313,12 +317,20 @@
(define_attr "generic_sched" "yes,no"
(const (if_then_else
(eq_attr "tune" "arm926ejs,arm1026ejs,arm1136js,arm1136jfs")
(eq_attr "tune" "arm926ejs,arm1020e,arm1026ejs,arm1136js,arm1136jfs")
(const_string "no")
(const_string "yes"))))
(define_attr "generic_vfp" "yes,no"
(const (if_then_else
(and (eq_attr "fpu" "vfp")
(eq_attr "tune" "!arm1020e,arm1022e"))
(const_string "yes")
(const_string "no"))))
(include "arm-generic.md")
(include "arm926ejs.md")
(include "arm1020e.md")
(include "arm1026ejs.md")
(include "arm1136jfs.md")
@ -6963,7 +6975,7 @@
(if_then_else (unordered (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNORDERED, arm_compare_op0,
arm_compare_op1);"
)
@ -6973,7 +6985,7 @@
(if_then_else (ordered (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (ORDERED, arm_compare_op0,
arm_compare_op1);"
)
@ -6983,7 +6995,7 @@
(if_then_else (ungt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNGT, arm_compare_op0, arm_compare_op1);"
)
@ -6992,7 +7004,7 @@
(if_then_else (unlt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNLT, arm_compare_op0, arm_compare_op1);"
)
@ -7001,7 +7013,7 @@
(if_then_else (unge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNGE, arm_compare_op0, arm_compare_op1);"
)
@ -7010,7 +7022,7 @@
(if_then_else (unle (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNLE, arm_compare_op0, arm_compare_op1);"
)
@ -7021,7 +7033,7 @@
(if_then_else (uneq (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNEQ, arm_compare_op0, arm_compare_op1);"
)
@ -7030,7 +7042,7 @@
(if_then_else (ltgt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (LTGT, arm_compare_op0, arm_compare_op1);"
)
@ -7044,7 +7056,7 @@
(if_then_else (uneq (match_operand 1 "cc_register" "") (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"*
gcc_assert (!arm_ccfsm_state);
@ -7060,7 +7072,7 @@
(if_then_else (ltgt (match_operand 1 "cc_register" "") (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"*
gcc_assert (!arm_ccfsm_state);
@ -7095,7 +7107,7 @@
(if_then_else (uneq (match_operand 1 "cc_register" "") (const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"*
gcc_assert (!arm_ccfsm_state);
@ -7111,7 +7123,7 @@
(if_then_else (ltgt (match_operand 1 "cc_register" "") (const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"*
gcc_assert (!arm_ccfsm_state);
@ -7217,7 +7229,7 @@
(define_expand "sunordered"
[(set (match_operand:SI 0 "s_register_operand" "")
(unordered:SI (match_dup 1) (const_int 0)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNORDERED, arm_compare_op0,
arm_compare_op1);"
)
@ -7225,7 +7237,7 @@
(define_expand "sordered"
[(set (match_operand:SI 0 "s_register_operand" "")
(ordered:SI (match_dup 1) (const_int 0)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (ORDERED, arm_compare_op0,
arm_compare_op1);"
)
@ -7233,7 +7245,7 @@
(define_expand "sungt"
[(set (match_operand:SI 0 "s_register_operand" "")
(ungt:SI (match_dup 1) (const_int 0)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNGT, arm_compare_op0,
arm_compare_op1);"
)
@ -7241,7 +7253,7 @@
(define_expand "sunge"
[(set (match_operand:SI 0 "s_register_operand" "")
(unge:SI (match_dup 1) (const_int 0)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNGE, arm_compare_op0,
arm_compare_op1);"
)
@ -7249,7 +7261,7 @@
(define_expand "sunlt"
[(set (match_operand:SI 0 "s_register_operand" "")
(unlt:SI (match_dup 1) (const_int 0)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNLT, arm_compare_op0,
arm_compare_op1);"
)
@ -7257,7 +7269,7 @@
(define_expand "sunle"
[(set (match_operand:SI 0 "s_register_operand" "")
(unle:SI (match_dup 1) (const_int 0)))]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
"TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
"operands[1] = arm_gen_compare_reg (UNLE, arm_compare_op0,
arm_compare_op1);"
)
@ -7268,14 +7280,14 @@
; (define_expand "suneq"
; [(set (match_operand:SI 0 "s_register_operand" "")
; (uneq:SI (match_dup 1) (const_int 0)))]
; "TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
; "TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
; "gcc_unreachable ();"
; )
;
; (define_expand "sltgt"
; [(set (match_operand:SI 0 "s_register_operand" "")
; (ltgt:SI (match_dup 1) (const_int 0)))]
; "TARGET_ARM && TARGET_HARD_FLOAT && TARGET_FPA"
; "TARGET_ARM && TARGET_HARD_FLOAT && (TARGET_FPA || TARGET_VFP)"
; "gcc_unreachable ();"
; )

388
gcc/config/arm/arm1020e.md Normal file
View File

@ -0,0 +1,388 @@
;; ARM 1020E & ARM 1022E Pipeline Description
;; Copyright (C) 2005 Free Software Foundation, Inc.
;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING. If not, write to the Free
;; Software Foundation, 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA. */
;; These descriptions are based on the information contained in the
;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
;; Limited.
;;
;; This automaton provides a pipeline description for the ARM
;; 1020E core.
;;
;; The model given here assumes that the condition for all conditional
;; instructions is "true", i.e., that all of the instructions are
;; actually executed.
(define_automaton "arm1020e")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Pipelines
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; There are two pipelines:
;;
;; - An Arithmetic Logic Unit (ALU) pipeline.
;;
;; The ALU pipeline has fetch, issue, decode, execute, memory, and
;; write stages. We only need to model the execute, memory and write
;; stages.
;;
;; - A Load-Store Unit (LSU) pipeline.
;;
;; The LSU pipeline has decode, execute, memory, and write stages.
;; We only model the execute, memory and write stages.
(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions require three cycles to execute, and use the ALU
;; pipeline in each of the three stages. The results are available
;; after the execute stage stage has finished.
;;
;; If the destination register is the PC, the pipelines are stalled
;; for several cycles. That case is not modeled here.
;; ALU operations with no shifted operand
(define_insn_reservation "1020alu_op" 1
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "alu"))
"1020a_e,1020a_m,1020a_w")
;; ALU operations with a shift-by-constant operand
(define_insn_reservation "1020alu_shift_op" 1
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "alu_shift"))
"1020a_e,1020a_m,1020a_w")
;; ALU operations with a shift-by-register operand
;; These really stall in the decoder, in order to read
;; the shift value in a second cycle. Pretend we take two cycles in
;; the execute stage.
(define_insn_reservation "1020alu_shift_reg_op" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "alu_shift_reg"))
"1020a_e*2,1020a_m,1020a_w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication instructions loop in the execute stage until the
;; instruction has been passed through the multiplier array enough
;; times.
;; The result of the "smul" and "smulw" instructions is not available
;; until after the memory stage.
(define_insn_reservation "1020mult1" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "insn" "smulxy,smulwy"))
"1020a_e,1020a_m,1020a_w")
;; The "smlaxy" and "smlawx" instructions require two iterations through
;; the execute stage; the result is available immediately following
;; the execute stage.
(define_insn_reservation "1020mult2" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "insn" "smlaxy,smlalxy,smlawx"))
"1020a_e*2,1020a_m,1020a_w")
;; The "smlalxy", "mul", and "mla" instructions require two iterations
;; through the execute stage; the result is not available until after
;; the memory stage.
(define_insn_reservation "1020mult3" 3
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "insn" "smlalxy,mul,mla"))
"1020a_e*2,1020a_m,1020a_w")
;; The "muls" and "mlas" instructions loop in the execute stage for
;; four iterations in order to set the flags. The value result is
;; available after three iterations.
(define_insn_reservation "1020mult4" 3
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "insn" "muls,mlas"))
"1020a_e*4,1020a_m,1020a_w")
;; Long multiply instructions that produce two registers of
;; output (such as umull) make their results available in two cycles;
;; the least significant word is available before the most significant
;; word. That fact is not modeled; instead, the instructions are
;; described.as if the entire result was available at the end of the
;; cycle in which both words are available.
;; The "umull", "umlal", "smull", and "smlal" instructions all take
;; three iterations through the execute cycle, and make their results
;; available after the memory cycle.
(define_insn_reservation "1020mult5" 4
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "insn" "umull,umlal,smull,smlal"))
"1020a_e*3,1020a_m,1020a_w")
;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
;; the execute stage for five iterations in order to set the flags.
;; The value result is available after four iterations.
(define_insn_reservation "1020mult6" 4
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "insn" "umulls,umlals,smulls,smlals"))
"1020a_e*5,1020a_m,1020a_w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/Store Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The models for load/store instructions do not accurately describe
;; the difference between operations with a base register writeback
;; (such as "ldm!"). These models assume that all memory references
;; hit in dcache.
;; LSU instructions require six cycles to execute. They use the ALU
;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
;; three through six.
;; Loads and stores which use a scaled register offset or scaled
;; register pre-indexed addressing mode take three cycles EXCEPT for
;; those that are base + offset with LSL of 0 or 2, or base - offset
;; with LSL of zero. The remainder take 1 cycle to execute.
;; For 4byte loads there is a bypass from the load stage
(define_insn_reservation "1020load1_op" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "load_byte,load1"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "1020store1_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "store1"))
"1020a_e+1020l_e,1020l_m,1020l_w")
;; A load's result can be stored by an immediately following store
(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
;; On a LDM/STM operation, the LSU pipeline iterates until all of the
;; registers have been processed.
;;
;; The time it takes to load the data depends on whether or not the
;; base address is 64-bit aligned; if it is not, an additional cycle
;; is required. This model assumes that the address is always 64-bit
;; aligned. Because the processor can load two registers per cycle,
;; that assumption means that we use the same instruction reservations
;; for loading 2k and 2k - 1 registers.
;;
;; The ALU pipeline is decoupled after the first cycle unless there is
;; a register dependency; the depency is cleared as soon as the LDM/STM
;; has dealt with the corresponding register. So for exmple,
;; stmia sp, {r0-r3}
;; add r0, r0, #4
;; will have one fewer stalls than
;; stmia sp, {r0-r3}
;; add r3, r3, #4
;;
;; As with ALU operations, if one of the destination registers is the
;; PC, there are additional stalls; that is not modeled.
(define_insn_reservation "1020load2_op" 2
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "load2"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "1020store2_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "store2"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "1020load34_op" 3
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "load3,load4"))
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
(define_insn_reservation "1020store34_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "store3,store4"))
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch and Call Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch instructions are difficult to model accurately. The ARM
;; core can predict most branches. If the branch is predicted
;; correctly, and predicted early enough, the branch can be completely
;; eliminated from the instruction stream. Some branches can
;; therefore appear to require zero cycles to execute. We assume that
;; all branches are predicted correctly, and that the latency is
;; therefore the minimum value.
(define_insn_reservation "1020branch_op" 0
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "branch"))
"1020a_e")
;; The latency for a call is not predictable. Therefore, we use 32 as
;; roughly equivalent to positive infinity.
(define_insn_reservation "1020call_op" 32
(and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "type" "call"))
"1020a_e*32")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_cpu_unit "v10_fmac" "arm1020e")
(define_cpu_unit "v10_ds" "arm1020e")
(define_cpu_unit "v10_fmstat" "arm1020e")
(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
;; fmstat is a serializing instruction. It will stall the core until
;; the mac and ds units have completed.
(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
(define_attr "vfp10" "yes,no"
(const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
(eq_attr "fpu" "vfp"))
(const_string "yes") (const_string "no"))))
;; The VFP "type" attributes differ from those used in the FPA model.
;; ffarith Fast floating point insns, e.g. abs, neg, cpy, cmp.
;; farith Most arithmetic insns.
;; fmul Double precision multiply.
;; fdivs Single precision sqrt or division.
;; fdivd Double precision sqrt or division.
;; f_flag fmstat operation
;; f_load Floating point load from memory.
;; f_store Floating point store to memory.
;; f_2_r Transfer vfp to arm reg.
;; r_2_f Transfer arm to vfp reg.
;; Note, no instruction can issue to the VFP if the core is stalled in the
;; first execute state. We model this by using 1020a_e in the first cycle.
(define_insn_reservation "v10_ffarith" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "ffarith"))
"1020a_e+v10_fmac")
(define_insn_reservation "v10_farith" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "farith"))
"1020a_e+v10_fmac")
(define_insn_reservation "v10_cvt" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_cvt"))
"1020a_e+v10_fmac")
(define_insn_reservation "v10_fmul" 6
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fmul"))
"1020a_e+v10_fmac*2")
(define_insn_reservation "v10_fdivs" 18
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fdivs"))
"1020a_e+v10_ds*14")
(define_insn_reservation "v10_fdivd" 32
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "fdivd"))
"1020a_e+v10_fmac+v10_ds*28")
(define_insn_reservation "v10_floads" 4
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_loads"))
"1020a_e+1020l_e+v10_ls1,v10_ls2")
;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
;; This gives the correct mix between single-and double loads where a flds
;; followed by and fldd will stall for one cycle, but two back-to-back fldd
;; insns stall for two cycles.
(define_insn_reservation "v10_floadd" 5
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_loadd"))
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
;; Moves to/from arm regs also use the load/store pipeline.
(define_insn_reservation "v10_c2v" 4
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "r_2_f"))
"1020a_e+1020l_e+v10_ls1,v10_ls2")
(define_insn_reservation "v10_fstores" 1
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_stores"))
"1020a_e+1020l_e+v10_ls1,v10_ls2")
(define_insn_reservation "v10_fstored" 1
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_stored"))
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
(define_insn_reservation "v10_v2c" 1
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_2_r"))
"1020a_e+1020l_e,1020l_m,1020l_w")
(define_insn_reservation "v10_to_cpsr" 2
(and (eq_attr "vfp10" "yes")
(eq_attr "type" "f_flag"))
"1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
;; VFP bypasses
;; There are bypasses for most operations other than store
(define_bypass 3
"v10_c2v,v10_floads"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
(define_bypass 4
"v10_floadd"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
;; Arithmetic to other arithmetic saves a cycle due to forwarding
(define_bypass 4
"v10_ffarith,v10_farith"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
(define_bypass 5
"v10_fmul"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
(define_bypass 17
"v10_fdivs"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
(define_bypass 31
"v10_fdivd"
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
;; VFP anti-dependencies.
;; There is one anti-dependence in the following case (not yet modelled):
;; - After a store: one extra cycle for both fsts and fstd
;; Note, back-to-back fstd instructions will overload the load/store datapath
;; causing a two-cycle stall.

View File

@ -3,6 +3,7 @@
MD_INCLUDES= $(srcdir)/config/arm/arm-tune.md \
$(srcdir)/config/arm/predicates.md \
$(srcdir)/config/arm/arm-generic.md \
$(srcdir)/config/arm/arm1020e.md \
$(srcdir)/config/arm/arm1026ejs.md \
$(srcdir)/config/arm/arm1136jfs.md \
$(srcdir)/config/arm/arm926ejs.md \

View File

@ -55,53 +55,63 @@
(define_cpu_unit "vfp_ls" "vfp11")
(define_cpu_unit "fmstat" "vfp11")
(exclusion_set "fmac,ds" "fmstat")
;; The VFP "type" attributes differ from those used in the FPA model.
;; ffarith Fast floating point insns, e.g. abs, neg, cpy, cmp.
;; farith Most arithmetic insns.
;; fmul Double precision multiply.
;; fdivs Single precision sqrt or division.
;; fdivd Double precision sqrt or division.
;; f_load Floating point load from memory.
;; f_store Floating point store to memory.
;; f_flag fmstat operation
;; f_load[sd] Floating point load from memory.
;; f_store[sd] Floating point store to memory.
;; f_2_r Transfer vfp to arm reg.
;; r_2_f Transfer arm to vfp reg.
;; f_cvt Convert floating<->integral
(define_insn_reservation "vfp_ffarith" 4
(and (eq_attr "fpu" "vfp")
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "ffarith"))
"fmac")
(define_insn_reservation "vfp_farith" 8
(and (eq_attr "fpu" "vfp")
(eq_attr "type" "farith"))
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "farith,f_cvt"))
"fmac")
(define_insn_reservation "vfp_fmul" 9
(and (eq_attr "fpu" "vfp")
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "fmul"))
"fmac*2")
(define_insn_reservation "vfp_fdivs" 19
(and (eq_attr "fpu" "vfp")
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "fdivs"))
"ds*15")
(define_insn_reservation "vfp_fdivd" 33
(and (eq_attr "fpu" "vfp")
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "fdivd"))
"fmac+ds*29")
;; Moves to/from arm regs also use the load/store pipeline.
(define_insn_reservation "vfp_fload" 4
(and (eq_attr "fpu" "vfp")
(eq_attr "type" "f_load,r_2_f"))
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "f_loads,f_loadd,r_2_f"))
"vfp_ls")
(define_insn_reservation "vfp_fstore" 4
(and (eq_attr "fpu" "vfp")
(eq_attr "type" "f_load,f_2_r"))
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "f_stores,f_stored,f_2_r"))
"vfp_ls")
(define_insn_reservation "vfp_to_cpsr" 4
(and (eq_attr "generic_vfp" "yes")
(eq_attr "type" "f_flag"))
"fmstat,vfp_ls*3")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Insn pattern
@ -127,7 +137,7 @@
flds%?\\t%0, %1\\t%@ int
fsts%?\\t%1, %0\\t%@ int"
[(set_attr "predicable" "yes")
(set_attr "type" "*,*,load1,store1,r_2_f,f_2_r,ffarith,f_load,f_store")
(set_attr "type" "*,*,load1,store1,r_2_f,f_2_r,ffarith,f_loads,f_stores")
(set_attr "pool_range" "*,*,4096,*,*,*,*,1020,*")
(set_attr "neg_pool_range" "*,*,4084,*,*,*,*,1008,*")]
)
@ -161,7 +171,7 @@
gcc_unreachable ();
}
"
[(set_attr "type" "*,load2,store2,r_2_f,f_2_r,ffarith,f_load,f_store")
[(set_attr "type" "*,load2,store2,r_2_f,f_2_r,ffarith,f_loadd,f_stored")
(set_attr "length" "8,8,8,4,4,4,4,4")
(set_attr "pool_range" "*,1020,*,*,*,*,1020,*")
(set_attr "neg_pool_range" "*,1008,*,*,*,*,1008,*")]
@ -186,7 +196,7 @@
fcpys%?\\t%0, %1
mov%?\\t%0, %1\\t%@ float"
[(set_attr "predicable" "yes")
(set_attr "type" "r_2_f,f_2_r,ffarith,*,f_load,f_store,load1,store1")
(set_attr "type" "r_2_f,f_2_r,ffarith,*,f_loads,f_stores,load1,store1")
(set_attr "pool_range" "*,*,1020,*,4096,*,*,*")
(set_attr "neg_pool_range" "*,*,1008,*,4080,*,*,*")]
)
@ -221,7 +231,7 @@
}
}
"
[(set_attr "type" "r_2_f,f_2_r,ffarith,*,load2,store2,f_load,f_store")
[(set_attr "type" "r_2_f,f_2_r,ffarith,*,load2,store2,f_loadd,f_stored")
(set_attr "length" "4,4,8,8,4,4,4,8")
(set_attr "pool_range" "*,*,1020,*,1020,*,*,*")
(set_attr "neg_pool_range" "*,*,1008,*,1008,*,*,*")]
@ -572,7 +582,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fcvtds%?\\t%P0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
(define_insn "*truncdfsf2_vfp"
@ -581,7 +591,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fcvtsd%?\\t%0, %P1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
(define_insn "*truncsisf2_vfp"
@ -590,7 +600,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"ftosizs%?\\t%0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
(define_insn "*truncsidf2_vfp"
@ -599,7 +609,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"ftosizd%?\\t%0, %P1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
@ -609,7 +619,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"ftouizs%?\\t%0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
(define_insn "fixuns_truncdfsi2"
@ -618,7 +628,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"ftouizd%?\\t%0, %P1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
@ -628,7 +638,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fsitos%?\\t%0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
(define_insn "*floatsidf2_vfp"
@ -637,7 +647,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fsitod%?\\t%P0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
@ -647,7 +657,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fuitos%?\\t%0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
(define_insn "floatunssidf2"
@ -656,7 +666,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fuitod%?\\t%P0, %1"
[(set_attr "predicable" "yes")
(set_attr "type" "farith")]
(set_attr "type" "f_cvt")]
)
@ -689,7 +699,7 @@
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"fmstat%?"
[(set_attr "conds" "set")
(set_attr "type" "ffarith")]
(set_attr "type" "f_flag")]
)
(define_insn_and_split "*cmpsf_split_vfp"
@ -813,7 +823,7 @@
UNSPEC_PUSH_MULT))])]
"TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP"
"* return vfp_output_fstmx (operands);"
[(set_attr "type" "f_store")]
[(set_attr "type" "f_stored")]
)