[AArch64] Emit division using the Newton series

2016-06-13  Evandro Menezes  <e.menezes@samsung.com>
            Wilco Dijkstra  <Wilco.Dijkstra@arm.com>

gcc/
	* config/aarch64/aarch64-protos.h
	(cpu_approx_modes): Add new member "division".
	(aarch64_emit_approx_div): Declare new function.
	* config/aarch64/aarch64.c
	(generic_approx_modes): New member "division".
	(exynosm1_approx_modes): Likewise.
	(xgene1_approx_modes): Likewise.
	(aarch64_emit_approx_div): Define new function.
	* config/aarch64/aarch64.md ("div<mode>3"): New expansion.
	* config/aarch64/aarch64-simd.md ("div<mode>3"): Likewise.
	* config/aarch64/aarch64.opt (-mlow-precision-div): Add new option.
	* doc/invoke.texi (-mlow-precision-div): Describe new option.

From-SVN: r237397
This commit is contained in:
Evandro Menezes 2016-06-13 19:03:00 +00:00
parent 98daafa0b3
commit 79a2bc2dc9
6 changed files with 139 additions and 5 deletions

View File

@ -192,6 +192,7 @@ struct cpu_branch_cost
/* Allowed modes for approximations. */
struct cpu_approx_modes
{
const unsigned int division; /* Division. */
const unsigned int sqrt; /* Square root. */
const unsigned int recip_sqrt; /* Reciprocal square root. */
};
@ -303,6 +304,7 @@ int aarch64_branch_cost (bool, bool);
enum aarch64_symbol_type aarch64_classify_symbolic_expression (rtx);
bool aarch64_const_vec_all_same_int_p (rtx, HOST_WIDE_INT);
bool aarch64_constant_address_p (rtx);
bool aarch64_emit_approx_div (rtx, rtx, rtx);
bool aarch64_emit_approx_sqrt (rtx, rtx, bool);
bool aarch64_expand_movmem (rtx *);
bool aarch64_float_const_zero_rtx_p (rtx);

View File

@ -1500,7 +1500,19 @@
[(set_attr "type" "neon_fp_mul_<Vetype><q>")]
)
(define_insn "div<mode>3"
(define_expand "div<mode>3"
[(set (match_operand:VDQF 0 "register_operand")
(div:VDQF (match_operand:VDQF 1 "general_operand")
(match_operand:VDQF 2 "register_operand")))]
"TARGET_SIMD"
{
if (aarch64_emit_approx_div (operands[0], operands[1], operands[2]))
DONE;
operands[1] = force_reg (<MODE>mode, operands[1]);
})
(define_insn "*div<mode>3"
[(set (match_operand:VDQF 0 "register_operand" "=w")
(div:VDQF (match_operand:VDQF 1 "register_operand" "w")
(match_operand:VDQF 2 "register_operand" "w")))]

View File

@ -396,6 +396,7 @@ static const struct cpu_branch_cost cortexa57_branch_cost =
/* Generic approximation modes. */
static const cpu_approx_modes generic_approx_modes =
{
AARCH64_APPROX_NONE, /* division */
AARCH64_APPROX_NONE, /* sqrt */
AARCH64_APPROX_NONE /* recip_sqrt */
};
@ -403,6 +404,7 @@ static const cpu_approx_modes generic_approx_modes =
/* Approximation modes for Exynos M1. */
static const cpu_approx_modes exynosm1_approx_modes =
{
AARCH64_APPROX_NONE, /* division */
AARCH64_APPROX_ALL, /* sqrt */
AARCH64_APPROX_ALL /* recip_sqrt */
};
@ -410,6 +412,7 @@ static const cpu_approx_modes exynosm1_approx_modes =
/* Approximation modes for X-Gene 1. */
static const cpu_approx_modes xgene1_approx_modes =
{
AARCH64_APPROX_NONE, /* division */
AARCH64_APPROX_NONE, /* sqrt */
AARCH64_APPROX_ALL /* recip_sqrt */
};
@ -7488,6 +7491,95 @@ aarch64_emit_approx_sqrt (rtx dst, rtx src, bool recp)
return true;
}
typedef rtx (*recpe_type) (rtx, rtx);
/* Select reciprocal initial estimate insn depending on machine mode. */
static recpe_type
get_recpe_type (machine_mode mode)
{
switch (mode)
{
case SFmode: return (gen_aarch64_frecpesf);
case V2SFmode: return (gen_aarch64_frecpev2sf);
case V4SFmode: return (gen_aarch64_frecpev4sf);
case DFmode: return (gen_aarch64_frecpedf);
case V2DFmode: return (gen_aarch64_frecpev2df);
default: gcc_unreachable ();
}
}
typedef rtx (*recps_type) (rtx, rtx, rtx);
/* Select reciprocal series step insn depending on machine mode. */
static recps_type
get_recps_type (machine_mode mode)
{
switch (mode)
{
case SFmode: return (gen_aarch64_frecpssf);
case V2SFmode: return (gen_aarch64_frecpsv2sf);
case V4SFmode: return (gen_aarch64_frecpsv4sf);
case DFmode: return (gen_aarch64_frecpsdf);
case V2DFmode: return (gen_aarch64_frecpsv2df);
default: gcc_unreachable ();
}
}
/* Emit the instruction sequence to compute the approximation for the division
of NUM by DEN in QUO and return whether the sequence was emitted or not. */
bool
aarch64_emit_approx_div (rtx quo, rtx num, rtx den)
{
machine_mode mode = GET_MODE (quo);
bool use_approx_division_p = (flag_mlow_precision_div
|| (aarch64_tune_params.approx_modes->division
& AARCH64_APPROX_MODE (mode)));
if (!flag_finite_math_only
|| flag_trapping_math
|| !flag_unsafe_math_optimizations
|| optimize_function_for_size_p (cfun)
|| !use_approx_division_p)
return false;
/* Estimate the approximate reciprocal. */
rtx xrcp = gen_reg_rtx (mode);
emit_insn ((*get_recpe_type (mode)) (xrcp, den));
/* Iterate over the series twice for SF and thrice for DF. */
int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;
/* Optionally iterate over the series once less for faster performance,
while sacrificing the accuracy. */
if (flag_mlow_precision_div)
iterations--;
/* Iterate over the series to calculate the approximate reciprocal. */
rtx xtmp = gen_reg_rtx (mode);
while (iterations--)
{
emit_insn ((*get_recps_type (mode)) (xtmp, xrcp, den));
if (iterations > 0)
emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xtmp));
}
if (num != CONST1_RTX (mode))
{
/* As the approximate reciprocal of DEN is already calculated, only
calculate the approximate division when NUM is not 1.0. */
rtx xnum = force_reg (mode, num);
emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xnum));
}
/* Finalize the approximation. */
emit_set_insn (quo, gen_rtx_MULT (mode, xrcp, xtmp));
return true;
}
/* Return the number of instructions that can be issued per cycle. */
static int
aarch64_sched_issue_rate (void)

View File

@ -4715,11 +4715,22 @@
[(set_attr "type" "fmul<s>")]
)
(define_insn "div<mode>3"
(define_expand "div<mode>3"
[(set (match_operand:GPF 0 "register_operand")
(div:GPF (match_operand:GPF 1 "general_operand")
(match_operand:GPF 2 "register_operand")))]
"TARGET_SIMD"
{
if (aarch64_emit_approx_div (operands[0], operands[1], operands[2]))
DONE;
operands[1] = force_reg (<MODE>mode, operands[1]);
})
(define_insn "*div<mode>3"
[(set (match_operand:GPF 0 "register_operand" "=w")
(div:GPF
(match_operand:GPF 1 "register_operand" "w")
(match_operand:GPF 2 "register_operand" "w")))]
(div:GPF (match_operand:GPF 1 "register_operand" "w")
(match_operand:GPF 2 "register_operand" "w")))]
"TARGET_FLOAT"
"fdiv\\t%<s>0, %<s>1, %<s>2"
[(set_attr "type" "fdiv<s>")]

View File

@ -161,3 +161,9 @@ Enable the square root approximation. Enabling this reduces
precision of square root results to about 16 bits for
single precision and to 32 bits for double precision.
If enabled, it implies -mlow-precision-recip-sqrt.
mlow-precision-div
Common Var(flag_mlow_precision_div) Optimization
Enable the division approximation. Enabling this reduces
precision of division results to about 16 bits for
single precision and to 32 bits for double precision.

View File

@ -577,6 +577,7 @@ Objective-C and Objective-C++ Dialects}.
-mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
-mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt@gol
-mlow-precision-sqrt -mno-low-precision-sqrt@gol
-mlow-precision-div -mno-low-precision-div @gol
-march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
@emph{Adapteva Epiphany Options}
@ -13040,6 +13041,16 @@ precision of square root results to about 16 bits for
single precision and to 32 bits for double precision.
If enabled, it implies @option{-mlow-precision-recip-sqrt}.
@item -mlow-precision-div
@item -mno-low-precision-div
@opindex -mlow-precision-div
@opindex -mno-low-precision-div
Enable or disable the division approximation.
This option only has an effect if @option{-ffast-math} or
@option{-funsafe-math-optimizations} is used as well. Enabling this reduces
precision of division results to about 16 bits for
single precision and to 32 bits for double precision.
@item -march=@var{name}
@opindex march
Specify the name of the target architecture and, optionally, one or