tree-vect-stmts.c (vect_get_vec_def_for_operand): Convert constants to vector element type.

2011-10-24  Richard Guenther  <rguenther@suse.de>

	* tree-vect-stmts.c (vect_get_vec_def_for_operand): Convert constants
	to vector element type.
	(vectorizable_assignment): Bail out for non-mode-precision operations.
	(vectorizable_shift): Likewise.
	(vectorizable_operation): Likewise.
	(vectorizable_type_demotion): Likewise.
	(vectorizable_type_promotion): Likewise.
	(vectorizable_store): Handle non-mode-precision stores.
	(vectorizable_load): Handle non-mode-precision loads.
	(get_vectype_for_scalar_type_and_size): Return a vector type
	for non-mode-precision integers.
	* tree-vect-loop.c (vectorizable_reduction): Bail out for
	non-mode-precision reductions.

	* gcc.dg/vect/vect-bool-1.c: New testcase.

From-SVN: r180384
This commit is contained in:
Richard Guenther 2011-10-24 14:24:36 +00:00 committed by Richard Biener
parent 695074beca
commit 7b7b1813da
5 changed files with 118 additions and 30 deletions

View File

@ -1,3 +1,19 @@
2011-10-24 Richard Guenther <rguenther@suse.de>
* tree-vect-stmts.c (vect_get_vec_def_for_operand): Convert constants
to vector element type.
(vectorizable_assignment): Bail out for non-mode-precision operations.
(vectorizable_shift): Likewise.
(vectorizable_operation): Likewise.
(vectorizable_type_demotion): Likewise.
(vectorizable_type_promotion): Likewise.
(vectorizable_store): Handle non-mode-precision stores.
(vectorizable_load): Handle non-mode-precision loads.
(get_vectype_for_scalar_type_and_size): Return a vector type
for non-mode-precision integers.
* tree-vect-loop.c (vectorizable_reduction): Bail out for
non-mode-precision reductions.
2011-10-24 Julian Brown <julian@codesourcery.com>
* config/m68k/m68k.c (notice_update_cc): Tighten condition for

View File

@ -1,3 +1,7 @@
2011-10-24 Richard Guenther <rguenther@suse.de>
* gcc.dg/vect/vect-bool-1.c: New testcase.
2011-10-24 Richard Guenther <rguenther@suse.de>
PR tree-optimization/50838

View File

@ -0,0 +1,15 @@
/* { dg-do compile } */
/* { dg-require-effective-target vect_int } */
_Bool a[1024];
_Bool b[1024];
_Bool c[1024];
void foo (void)
{
unsigned i;
for (i = 0; i < 1024; ++i)
a[i] = b[i] | c[i];
}
/* { dg-final { scan-tree-dump "vectorized 1 loops" "vect" } } */
/* { dg-final { cleanup-tree-dump "vect" } } */

View File

@ -4422,6 +4422,11 @@ vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
return false;
/* Do not try to vectorize bit-precision reductions. */
if ((TYPE_PRECISION (scalar_type)
!= GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
return false;
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. In case of nested cycle this
assumption is not true: we use reduc_index to record the index of the

View File

@ -1204,7 +1204,9 @@ vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
vec_cst = build_vector_from_val (vector_type, op);
vec_cst = build_vector_from_val (vector_type,
fold_convert (TREE_TYPE (vector_type),
op));
return vect_init_vector (stmt, vec_cst, vector_type, NULL);
}
@ -2173,6 +2175,25 @@ vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
!= GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
return false;
/* We do not handle bit-precision changes. */
if ((CONVERT_EXPR_CODE_P (code)
|| code == VIEW_CONVERT_EXPR)
&& INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
&& ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
|| ((TYPE_PRECISION (TREE_TYPE (op))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
/* But a conversion that does not change the bit-pattern is ok. */
&& !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
> TYPE_PRECISION (TREE_TYPE (op)))
&& TYPE_UNSIGNED (TREE_TYPE (op))))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "type conversion to/from bit-precision "
"unsupported.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
@ -2326,6 +2347,13 @@ vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
scalar_dest = gimple_assign_lhs (stmt);
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bit-precision shifts not supported.");
return false;
}
op0 = gimple_assign_rhs1 (stmt);
if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
@ -2660,6 +2688,20 @@ vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
scalar_dest = gimple_assign_lhs (stmt);
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
/* Most operations cannot handle bit-precision types without extra
truncations. */
if ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
/* Exception are bitwise binary operations. */
&& code != BIT_IOR_EXPR
&& code != BIT_XOR_EXPR
&& code != BIT_AND_EXPR)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bit-precision arithmetic not supported.");
return false;
}
op0 = gimple_assign_rhs1 (stmt);
if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
&def_stmt, &def, &dt[0], &vectype))
@ -3082,9 +3124,20 @@ vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|| (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
&& CONVERT_EXPR_CODE_P (code))))
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0)))))
return false;
if (INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
&& ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
|| ((TYPE_PRECISION (TREE_TYPE (op0))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op0)))))))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "type demotion to/from bit-precision unsupported.");
return false;
}
if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
&def_stmt, &def, &dt[0], &vectype_in))
{
@ -3365,6 +3418,19 @@ vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
&& CONVERT_EXPR_CODE_P (code))))
return false;
if (INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
&& ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
|| ((TYPE_PRECISION (TREE_TYPE (op0))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op0)))))))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "type promotion to/from bit-precision "
"unsupported.");
return false;
}
if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
&def_stmt, &def, &dt[0], &vectype_in))
{
@ -3673,17 +3739,9 @@ vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
return false;
}
/* The scalar rhs type needs to be trivially convertible to the vector
component type. This should always be the case. */
elem_type = TREE_TYPE (vectype);
if (!useless_type_conversion_p (elem_type, TREE_TYPE (op)))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "??? operands of different types");
return false;
}
vec_mode = TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - array initialization with 0). */
if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
@ -4117,7 +4175,6 @@ vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
bool strided_load = false;
bool load_lanes_p = false;
gimple first_stmt;
tree scalar_type;
bool inv_p;
bool negative;
bool compute_in_loop = false;
@ -4192,7 +4249,7 @@ vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
return false;
}
scalar_type = TREE_TYPE (DR_REF (dr));
elem_type = TREE_TYPE (vectype);
mode = TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
@ -4204,16 +4261,6 @@ vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
return false;
}
/* The vector component type needs to be trivially convertible to the
scalar lhs. This should always be the case. */
elem_type = TREE_TYPE (vectype);
if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), elem_type))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "??? operands of different types");
return false;
}
/* Check if the load is a part of an interleaving chain. */
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
{
@ -4560,7 +4607,7 @@ vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
msq = new_temp;
bump = size_binop (MULT_EXPR, vs_minus_1,
TYPE_SIZE_UNIT (scalar_type));
TYPE_SIZE_UNIT (elem_type));
ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
new_stmt = gimple_build_assign_with_ops
(BIT_AND_EXPR, NULL_TREE, ptr,
@ -5441,13 +5488,14 @@ get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
return NULL_TREE;
/* If we'd build a vector type of elements whose mode precision doesn't
match their types precision we'll get mismatched types on vector
extracts via BIT_FIELD_REFs. This effectively means we disable
vectorization of bool and/or enum types in some languages. */
/* For vector types of elements whose mode precision doesn't
match their types precision we use a element type of mode
precision. The vectorization routines will have to make sure
they support the proper result truncation/extension. */
if (INTEGRAL_TYPE_P (scalar_type)
&& GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type))
return NULL_TREE;
scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
TYPE_UNSIGNED (scalar_type));
if (GET_MODE_CLASS (inner_mode) != MODE_INT
&& GET_MODE_CLASS (inner_mode) != MODE_FLOAT)