re PR rtl-optimization/2391 (Exponential compilation time explosion in combine)

PR opt/2391
        * combine.c: Fix spelling in comment.
        (cached_nonzero_bits): New function.
        (cached_num_sign_bit_copies): New function.
	(nonzero_bits_with_known): New macro.
	(num_sign_bit_copies_with_known): New macro.
        (nonzero_bits1): Rename from nonzero_bits.  Add three new
	arguments.  Change calls from nonzero_bits to
	nonzero_bits_with_known.
        (num_sign_bit_copies1): Rename from num_sign_bit_copies.  Add
	three new arguments.  Change calls from num_sign_bit_copies to
	num_sign_bit_copies_with_known.
        (nonzero_bits): New macro.
        (num_sign_bit_copies): New macro.
        (update_table_tick): Don't traverse identical subexpression more
	than once.
        (get_last_value_validate): Likewise.

From-SVN: r62893
This commit is contained in:
Adam Nemet 2003-02-14 07:35:44 +00:00 committed by Adam Nemet
parent fd295cb213
commit 8fd737543f
2 changed files with 285 additions and 53 deletions

View File

@ -1,3 +1,22 @@
2003-02-13 Adam Nemet <anemet@lnxw.com>
PR opt/2391
* combine.c: Fix spelling in comment.
(cached_nonzero_bits): New function.
(cached_num_sign_bit_copies): New function.
(nonzero_bits_with_known): New macro.
(num_sign_bit_copies_with_known): New macro.
(nonzero_bits1): Rename from nonzero_bits. Add three new
arguments. Change calls from nonzero_bits to
nonzero_bits_with_known.
(num_sign_bit_copies1): Rename from num_sign_bit_copies. Add
three new arguments. Change calls from num_sign_bit_copies to
num_sign_bit_copies_with_known.
(nonzero_bits): New macro.
(num_sign_bit_copies): New macro.
(update_table_tick): Don't traverse identical subexpression more
than once.
(get_last_value_validate): Likewise.
2003-02-13 Zack Weinberg <zack@codesourcery.com>
* emit-rtl.c (init_emit): Use ggc_alloc for regno_reg_rtx.

View File

@ -139,6 +139,12 @@ static int max_uid_cuid;
#define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
(((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
#define nonzero_bits(X, M) \
cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
#define num_sign_bit_copies(X, M) \
cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
/* Maximum register number, which is the size of the tables below. */
static unsigned int combine_max_regno;
@ -198,7 +204,7 @@ static basic_block this_basic_block;
static sbitmap refresh_blocks;
/* The next group of arrays allows the recording of the last value assigned
to (hard or pseudo) register n. We use this information to see if a
to (hard or pseudo) register n. We use this information to see if an
operation being processed is redundant given a prior operation performed
on the register. For example, an `and' with a constant is redundant if
all the zero bits are already known to be turned off.
@ -371,8 +377,20 @@ static rtx make_field_assignment PARAMS ((rtx));
static rtx apply_distributive_law PARAMS ((rtx));
static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
unsigned HOST_WIDE_INT));
static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
static unsigned HOST_WIDE_INT cached_nonzero_bits
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode,
unsigned HOST_WIDE_INT));
static unsigned HOST_WIDE_INT nonzero_bits1
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode,
unsigned HOST_WIDE_INT));
static unsigned int cached_num_sign_bit_copies
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode, unsigned int));
static unsigned int num_sign_bit_copies1
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode, unsigned int));
static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
enum rtx_code, HOST_WIDE_INT,
enum machine_mode, int *));
@ -8161,12 +8179,62 @@ simplify_and_const_int (x, mode, varop, constop)
return x;
}
#define nonzero_bits_with_known(X, MODE) \
cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
It avoids exponential behavior in nonzero_bits1 when X has
identical subexpressions on the first or the second level. */
static unsigned HOST_WIDE_INT
cached_nonzero_bits (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned HOST_WIDE_INT known_ret;
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
nonzero_bits1 on X with the subexpressions as KNOWN_X and the
precomputed value for the subexpression as KNOWN_RET. */
if (GET_RTX_CLASS (GET_CODE (x)) == '2'
|| GET_RTX_CLASS (GET_CODE (x)) == 'c')
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return nonzero_bits1 (x, mode, x0, mode,
nonzero_bits_with_known (x0, mode));
/* Check the second level. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return nonzero_bits1 (x, mode, x1, mode,
nonzero_bits_with_known (x1, mode));
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return nonzero_bits1 (x, mode, x0, mode,
nonzero_bits_with_known (x0, mode));
}
return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
}
/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
We don't let nonzero_bits recur into num_sign_bit_copies, because that
is less useful. We can't allow both, because that results in exponential
run time recursion. There is a nullstone testcase that triggered
this. This macro avoids accidental uses of num_sign_bit_copies. */
#define num_sign_bit_copies()
#define cached_num_sign_bit_copies()
/* Given an expression, X, compute which bits in X can be nonzero.
We don't care about bits outside of those defined in MODE.
@ -8175,9 +8243,12 @@ simplify_and_const_int (x, mode, varop, constop)
a shift, AND, or zero_extract, we can do better. */
static unsigned HOST_WIDE_INT
nonzero_bits (x, mode)
nonzero_bits1 (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned HOST_WIDE_INT known_ret;
{
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
unsigned HOST_WIDE_INT inner_nz;
@ -8215,7 +8286,7 @@ nonzero_bits (x, mode)
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
{
nonzero &= nonzero_bits (x, GET_MODE (x));
nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
return nonzero;
}
@ -8297,7 +8368,7 @@ nonzero_bits (x, mode)
| ((HOST_WIDE_INT) (-1)
<< GET_MODE_BITSIZE (GET_MODE (x))));
#endif
return nonzero_bits (tem, mode) & nonzero;
return nonzero_bits_with_known (tem, mode) & nonzero;
}
else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
{
@ -8372,11 +8443,12 @@ nonzero_bits (x, mode)
break;
case TRUNCATE:
nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
& GET_MODE_MASK (mode));
break;
case ZERO_EXTEND:
nonzero &= nonzero_bits (XEXP (x, 0), mode);
nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
break;
@ -8385,7 +8457,7 @@ nonzero_bits (x, mode)
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
Otherwise, show all the bits in the outer mode but not the inner
may be nonzero. */
inner_nz = nonzero_bits (XEXP (x, 0), mode);
inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
{
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
@ -8400,19 +8472,21 @@ nonzero_bits (x, mode)
break;
case AND:
nonzero &= (nonzero_bits (XEXP (x, 0), mode)
& nonzero_bits (XEXP (x, 1), mode));
nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
& nonzero_bits_with_known (XEXP (x, 1), mode));
break;
case XOR: case IOR:
case UMIN: case UMAX: case SMIN: case SMAX:
{
unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT nonzero0 =
nonzero_bits_with_known (XEXP (x, 0), mode);
/* Don't call nonzero_bits for the second time if it cannot change
anything. */
if ((nonzero & nonzero0) != nonzero)
nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
nonzero &= (nonzero0
| nonzero_bits_with_known (XEXP (x, 1), mode));
}
break;
@ -8425,8 +8499,10 @@ nonzero_bits (x, mode)
computing the width (position of the highest-order nonzero bit)
and the number of low-order zero bits for each value. */
{
unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
unsigned HOST_WIDE_INT nz0 =
nonzero_bits_with_known (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT nz1 =
nonzero_bits_with_known (XEXP (x, 1), mode);
int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
int width0 = floor_log2 (nz0) + 1;
int width1 = floor_log2 (nz1) + 1;
@ -8511,7 +8587,7 @@ nonzero_bits (x, mode)
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
nonzero = (GET_MODE_MASK (GET_MODE (x))
& nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
& nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
/* If the inner mode is a single word for both the host and target
machines, we can compute this from which bits of the inner
@ -8520,7 +8596,7 @@ nonzero_bits (x, mode)
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
<= HOST_BITS_PER_WIDE_INT))
{
nonzero &= nonzero_bits (SUBREG_REG (x), mode);
nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
/* If this is a typical RISC machine, we only have to worry
@ -8563,7 +8639,8 @@ nonzero_bits (x, mode)
unsigned int width = GET_MODE_BITSIZE (inner_mode);
int count = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT op_nonzero =
nonzero_bits_with_known (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
unsigned HOST_WIDE_INT outer = 0;
@ -8621,8 +8698,8 @@ nonzero_bits (x, mode)
break;
case IF_THEN_ELSE:
nonzero &= (nonzero_bits (XEXP (x, 1), mode)
| nonzero_bits (XEXP (x, 2), mode));
nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
| nonzero_bits_with_known (XEXP (x, 2), mode));
break;
default:
@ -8633,17 +8710,74 @@ nonzero_bits (x, mode)
}
/* See the macro definition above. */
#undef num_sign_bit_copies
#undef cached_num_sign_bit_copies
#define num_sign_bit_copies_with_known(X, M) \
cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
/* The function cached_num_sign_bit_copies is a wrapper around
num_sign_bit_copies1. It avoids exponential behavior in
num_sign_bit_copies1 when X has identical subexpressions on the
first or the second level. */
static unsigned int
cached_num_sign_bit_copies (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned int known_ret;
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
the precomputed value for the subexpression as KNOWN_RET. */
if (GET_RTX_CLASS (GET_CODE (x)) == '2'
|| GET_RTX_CLASS (GET_CODE (x)) == 'c')
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return
num_sign_bit_copies1 (x, mode, x0, mode,
num_sign_bit_copies_with_known (x0, mode));
/* Check the second level. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return
num_sign_bit_copies1 (x, mode, x1, mode,
num_sign_bit_copies_with_known (x1, mode));
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return
num_sign_bit_copies1 (x, mode, x0, mode,
num_sign_bit_copies_with_known (x0, mode));
}
return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
}
/* Return the number of bits at the high-order end of X that are known to
be equal to the sign bit. X will be used in mode MODE; if MODE is
VOIDmode, X will be used in its own mode. The returned value will always
be between 1 and the number of bits in MODE. */
static unsigned int
num_sign_bit_copies (x, mode)
num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned int known_ret;
{
enum rtx_code code = GET_CODE (x);
unsigned int bitwidth;
@ -8666,7 +8800,7 @@ num_sign_bit_copies (x, mode)
/* For a smaller object, just ignore the high bits. */
if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
{
num0 = num_sign_bit_copies (x, GET_MODE (x));
num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
return MAX (1,
num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
}
@ -8715,7 +8849,7 @@ num_sign_bit_copies (x, mode)
tem = get_last_value (x);
if (tem != 0)
return num_sign_bit_copies (tem, mode);
return num_sign_bit_copies_with_known (tem, mode);
if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
&& GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
@ -8748,7 +8882,7 @@ num_sign_bit_copies (x, mode)
if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
{
num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
return MAX ((int) bitwidth
- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
num0);
@ -8757,7 +8891,7 @@ num_sign_bit_copies (x, mode)
/* For a smaller object, just ignore the high bits. */
if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
{
num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- bitwidth)));
@ -8779,7 +8913,7 @@ num_sign_bit_copies (x, mode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
&& GET_CODE (SUBREG_REG (x)) == MEM)
return num_sign_bit_copies (SUBREG_REG (x), mode);
return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
#endif
#endif
break;
@ -8791,16 +8925,16 @@ num_sign_bit_copies (x, mode)
case SIGN_EXTEND:
return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ num_sign_bit_copies (XEXP (x, 0), VOIDmode));
+ num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
case TRUNCATE:
/* For a smaller object, just ignore the high bits. */
num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- bitwidth)));
case NOT:
return num_sign_bit_copies (XEXP (x, 0), mode);
return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
case ROTATE: case ROTATERT:
/* If we are rotating left by a number of bits less than the number
@ -8810,7 +8944,7 @@ num_sign_bit_copies (x, mode)
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < (int) bitwidth)
{
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
: (int) bitwidth - INTVAL (XEXP (x, 1))));
}
@ -8821,7 +8955,7 @@ num_sign_bit_copies (x, mode)
is known to be positive, the number of sign bit copies is the
same as that of the input. Finally, if the input has just one bit
that might be nonzero, all the bits are copies of the sign bit. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return num0 > 1 ? num0 - 1 : 1;
@ -8839,8 +8973,8 @@ num_sign_bit_copies (x, mode)
case SMIN: case SMAX: case UMIN: case UMAX:
/* Logical operations will preserve the number of sign-bit copies.
MIN and MAX operations always return one of the operands. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
return MIN (num0, num1);
case PLUS: case MINUS:
@ -8858,8 +8992,8 @@ num_sign_bit_copies (x, mode)
: bitwidth - floor_log2 (nonzero) - 1);
}
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
result = MAX (1, MIN (num0, num1) - 1);
#ifdef POINTERS_EXTEND_UNSIGNED
@ -8881,8 +9015,8 @@ num_sign_bit_copies (x, mode)
to be positive, we must allow for an additional bit since negating
a negative number can remove one sign bit copy. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
if (result > 0
@ -8905,17 +9039,17 @@ num_sign_bit_copies (x, mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
return 1;
else
return num_sign_bit_copies (XEXP (x, 0), mode);
return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
case UMOD:
/* The result must be <= the second operand. */
return num_sign_bit_copies (XEXP (x, 1), mode);
return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
case DIV:
/* Similar to unsigned division, except that we have to worry about
the case where the divisor is negative, in which case we have
to add 1. */
result = num_sign_bit_copies (XEXP (x, 0), mode);
result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
@ -8925,7 +9059,7 @@ num_sign_bit_copies (x, mode)
return result;
case MOD:
result = num_sign_bit_copies (XEXP (x, 1), mode);
result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
@ -8937,7 +9071,7 @@ num_sign_bit_copies (x, mode)
case ASHIFTRT:
/* Shifts by a constant add to the number of bits equal to the
sign bit. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) > 0)
num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
@ -8951,12 +9085,12 @@ num_sign_bit_copies (x, mode)
|| INTVAL (XEXP (x, 1)) >= (int) bitwidth)
return 1;
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
case IF_THEN_ELSE:
num0 = num_sign_bit_copies (XEXP (x, 1), mode);
num1 = num_sign_bit_copies (XEXP (x, 2), mode);
num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
return MIN (num0, num1);
case EQ: case NE: case GE: case GT: case LE: case LT:
@ -11405,7 +11539,45 @@ update_table_tick (x)
/* Note that we can't have an "E" in values stored; see
get_last_value_validate. */
if (fmt[i] == 'e')
update_table_tick (XEXP (x, i));
{
/* Check for identical subexpressions. If x contains
identical subexpression we only have to traverse one of
them. */
if (i == 0
&& (GET_RTX_CLASS (code) == '2'
|| GET_RTX_CLASS (code) == 'c'))
{
/* Note that at this point x1 has already been
processed. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* If x0 and x1 are identical then there is no need to
process x0. */
if (x0 == x1)
break;
/* If x0 is identical to a subexpression of x1 then while
processing x1, x0 has already been processed. Thus we
are done with x. */
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
break;
/* If x1 is identical to a subexpression of x0 then we
still have to process the rest of x0. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
{
update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
break;
}
}
update_table_tick (XEXP (x, i));
}
}
/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
@ -11758,11 +11930,52 @@ get_last_value_validate (loc, insn, tick, replace)
}
for (i = 0; i < len; i++)
if ((fmt[i] == 'e'
&& get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
/* Don't bother with these. They shouldn't occur anyway. */
|| fmt[i] == 'E')
return 0;
{
if (fmt[i] == 'e')
{
/* Check for identical subexpressions. If x contains
identical subexpression we only have to traverse one of
them. */
if (i == 1
&& (GET_RTX_CLASS (GET_CODE (x)) == '2'
|| GET_RTX_CLASS (GET_CODE (x)) == 'c'))
{
/* Note that at this point x0 has already been checked
and found valid. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* If x0 and x1 are identical then x is also valid. */
if (x0 == x1)
return 1;
/* If x1 is identical to a subexpression of x0 then
while checking x0, x1 has already been checked. Thus
it is valid and so as x. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return 1;
/* If x0 is identical to a subexpression of x1 then x is
valid iff the rest of x1 is valid. */
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return
get_last_value_validate (&XEXP (x1,
x0 == XEXP (x1, 0) ? 1 : 0),
insn, tick, replace);
}
if (get_last_value_validate (&XEXP (x, i), insn, tick,
replace) == 0)
return 0;
}
/* Don't bother with these. They shouldn't occur anyway. */
else if (fmt[i] == 'E')
return 0;
}
/* If we haven't found a reason for it to be invalid, it is valid. */
return 1;