libstdc++: Move some ranges algos to a new header <bits/ranges_algobase.h>

This roughly mirrors the existing split between <bits/stl_algo.h> and
<bits/stl_algobase.h>.  The ranges [specialized.algorithms] will use this new
header to avoid including all of of <bits/ranges_algo.h>.

libstdc++-v3/ChangeLog:

	* include/Makefile.am: Add bits/ranges_algobase.h
	* include/Makefile.in: Regenerate.
	* bits/ranges_algo.h: Include <bits/ranges_algobase.h> and refactor
	existing #includes.
	(__detail::__is_normal_iterator, __detail::is_reverse_iterator,
	__detail::__is_move_iterator, copy_result, move_result,
	__equal, equal, copy_result, move_result, move_backward_result,
	copy_backward_result, __copy_or_move_backward, __copy_or_move, copy,
	move, copy_backward, move_backward, copy_n_result, copy_n, fill_n,
	fill): Split out into ...
	* bits/range_algobase.h: ... this new header.
This commit is contained in:
Patrick Palka 2020-02-12 12:30:57 -05:00
parent bacdd5e978
commit 90fc7b3ce0
5 changed files with 573 additions and 507 deletions

View File

@ -1,3 +1,17 @@
2020-02-13 Patrick Palka <ppalka@redhat.com>
* include/Makefile.am: Add bits/ranges_algobase.h
* include/Makefile.in: Regenerate.
* bits/ranges_algo.h: Include <bits/ranges_algobase.h> and refactor
existing #includes.
(__detail::__is_normal_iterator, __detail::is_reverse_iterator,
__detail::__is_move_iterator, copy_result, move_result,
__equal, equal, copy_result, move_result, move_backward_result,
copy_backward_result, __copy_or_move_backward, __copy_or_move, copy,
move, copy_backward, move_backward, copy_n_result, copy_n, fill_n,
fill): Split out into ...
* bits/range_algobase.h: ... this new header.
2020-02-12 Patrick Palka <ppalka@redhat.com> 2020-02-12 Patrick Palka <ppalka@redhat.com>
LWG 3389 and LWG 3390 LWG 3389 and LWG 3390

View File

@ -157,6 +157,7 @@ bits_headers = \
${bits_srcdir}/random.tcc \ ${bits_srcdir}/random.tcc \
${bits_srcdir}/range_access.h \ ${bits_srcdir}/range_access.h \
${bits_srcdir}/range_cmp.h \ ${bits_srcdir}/range_cmp.h \
${bits_srcdir}/ranges_algobase.h \
${bits_srcdir}/ranges_algo.h \ ${bits_srcdir}/ranges_algo.h \
${bits_srcdir}/refwrap.h \ ${bits_srcdir}/refwrap.h \
${bits_srcdir}/regex.h \ ${bits_srcdir}/regex.h \

View File

@ -502,6 +502,7 @@ bits_headers = \
${bits_srcdir}/random.tcc \ ${bits_srcdir}/random.tcc \
${bits_srcdir}/range_access.h \ ${bits_srcdir}/range_access.h \
${bits_srcdir}/range_cmp.h \ ${bits_srcdir}/range_cmp.h \
${bits_srcdir}/ranges_algobase.h \
${bits_srcdir}/ranges_algo.h \ ${bits_srcdir}/ranges_algo.h \
${bits_srcdir}/refwrap.h \ ${bits_srcdir}/refwrap.h \
${bits_srcdir}/regex.h \ ${bits_srcdir}/regex.h \

View File

@ -32,13 +32,7 @@
#if __cplusplus > 201703L #if __cplusplus > 201703L
#include <compare> #include <bits/ranges_algobase.h>
#include <cmath>
#include <iterator>
// #include <bits/range_concepts.h>
#include <ranges>
#include <bits/invoke.h>
#include <bits/cpp_type_traits.h> // __is_byte
#include <bits/random.h> // concept uniform_random_bit_generator #include <bits/random.h> // concept uniform_random_bit_generator
#if __cpp_lib_concepts #if __cpp_lib_concepts
@ -49,28 +43,6 @@ namespace ranges
{ {
namespace __detail namespace __detail
{ {
template<typename _Tp>
constexpr inline bool __is_normal_iterator = false;
template<typename _Iterator, typename _Container>
constexpr inline bool
__is_normal_iterator<__gnu_cxx::__normal_iterator<_Iterator,
_Container>> = true;
template<typename _Tp>
constexpr inline bool __is_reverse_iterator = false;
template<typename _Iterator>
constexpr inline bool
__is_reverse_iterator<reverse_iterator<_Iterator>> = true;
template<typename _Tp>
constexpr inline bool __is_move_iterator = false;
template<typename _Iterator>
constexpr inline bool
__is_move_iterator<move_iterator<_Iterator>> = true;
template<typename _Comp, typename _Proj> template<typename _Comp, typename _Proj>
constexpr auto constexpr auto
__make_comp_proj(_Comp& __comp, _Proj& __proj) __make_comp_proj(_Comp& __comp, _Proj& __proj)
@ -741,420 +713,6 @@ namespace ranges
std::move(__proj1), std::move(__proj2)); std::move(__proj1), std::move(__proj2));
} }
template<input_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
input_iterator _Iter2, sentinel_for<_Iter2> _Sent2,
typename _Pred, typename _Proj1, typename _Proj2>
requires indirectly_comparable<_Iter1, _Iter2, _Pred, _Proj1, _Proj2>
constexpr bool
__equal(_Iter1 __first1, _Sent1 __last1, _Iter2 __first2, _Sent2 __last2,
_Pred __pred, _Proj1 __proj1, _Proj2 __proj2)
{
// TODO: implement more specializations to at least have parity with
// std::equal.
constexpr bool __sized_iters
= (sized_sentinel_for<_Sent1, _Iter1>
&& sized_sentinel_for<_Sent2, _Iter2>);
if constexpr (__sized_iters)
{
auto __d1 = ranges::distance(__first1, __last1);
auto __d2 = ranges::distance(__first2, __last2);
if (__d1 != __d2)
return false;
using _ValueType1 = iter_value_t<_Iter1>;
using _ValueType2 = iter_value_t<_Iter2>;
constexpr bool __use_memcmp
= ((is_integral_v<_ValueType1> || is_pointer_v<_ValueType1>)
&& is_same_v<_ValueType1, _ValueType2>
&& is_pointer_v<_Iter1>
&& is_pointer_v<_Iter2>
&& is_same_v<_Pred, ranges::equal_to>
&& is_same_v<_Proj1, identity>
&& is_same_v<_Proj2, identity>);
if constexpr (__use_memcmp)
{
if (const size_t __len = (__last1 - __first1))
return !std::__memcmp(__first1, __first2, __len);
return true;
}
else
{
for (; __first1 != __last1; ++__first1, (void)++__first2)
if (!(bool)std::__invoke(__pred,
std::__invoke(__proj1, *__first1),
std::__invoke(__proj2, *__first2)))
return false;
return true;
}
}
else
{
for (; __first1 != __last1 && __first2 != __last2;
++__first1, (void)++__first2)
if (!(bool)std::__invoke(__pred,
std::__invoke(__proj1, *__first1),
std::__invoke(__proj2, *__first2)))
return false;
return __first1 == __last1 && __first2 == __last2;
}
}
template<input_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
input_iterator _Iter2, sentinel_for<_Iter2> _Sent2,
typename _Pred = ranges::equal_to,
typename _Proj1 = identity, typename _Proj2 = identity>
requires indirectly_comparable<_Iter1, _Iter2, _Pred, _Proj1, _Proj2>
constexpr bool
equal(_Iter1 __first1, _Sent1 __last1, _Iter2 __first2, _Sent2 __last2,
_Pred __pred = {}, _Proj1 __proj1 = {}, _Proj2 __proj2 = {})
{
return ranges::__equal(std::__niter_base(std::move(__first1)),
std::__niter_base(std::move(__last1)),
std::__niter_base(std::move(__first2)),
std::__niter_base(std::move(__last2)),
std::move(__pred),
std::move(__proj1), std::move(__proj2));
}
template<input_range _Range1, input_range _Range2,
typename _Pred = ranges::equal_to,
typename _Proj1 = identity, typename _Proj2 = identity>
requires indirectly_comparable<iterator_t<_Range1>, iterator_t<_Range2>,
_Pred, _Proj1, _Proj2>
constexpr bool
equal(_Range1&& __r1, _Range2&& __r2,
_Pred __pred = {}, _Proj1 __proj1 = {}, _Proj2 __proj2 = {})
{
return ranges::equal(ranges::begin(__r1), ranges::end(__r1),
ranges::begin(__r2), ranges::end(__r2),
std::move(__pred),
std::move(__proj1), std::move(__proj2));
}
template<typename _Iter, typename _Out>
struct copy_result
{
[[no_unique_address]] _Iter in;
[[no_unique_address]] _Out out;
template<typename _Iter2, typename _Out2>
requires convertible_to<const _Iter&, _Iter2>
&& convertible_to<const _Out&, _Out2>
operator copy_result<_Iter2, _Out2>() const &
{ return {in, out}; }
template<typename _Iter2, typename _Out2>
requires convertible_to<_Iter, _Iter2>
&& convertible_to<_Out, _Out2>
operator copy_result<_Iter2, _Out2>() &&
{ return {std::move(in), std::move(out)}; }
};
template<typename _Iter, typename _Out>
using move_result = copy_result<_Iter, _Out>;
template<typename _Iter1, typename _Iter2>
using move_backward_result = copy_result<_Iter1, _Iter2>;
template<typename _Iter1, typename _Iter2>
using copy_backward_result = copy_result<_Iter1, _Iter2>;
template<bool _IsMove,
bidirectional_iterator _Iter, sentinel_for<_Iter> _Sent,
bidirectional_iterator _Out>
requires (_IsMove
? indirectly_movable<_Iter, _Out>
: indirectly_copyable<_Iter, _Out>)
constexpr conditional_t<_IsMove,
move_backward_result<_Iter, _Out>,
copy_backward_result<_Iter, _Out>>
__copy_or_move_backward(_Iter __first, _Sent __last, _Out __result);
template<bool _IsMove,
input_iterator _Iter, sentinel_for<_Iter> _Sent,
weakly_incrementable _Out>
requires (_IsMove
? indirectly_movable<_Iter, _Out>
: indirectly_copyable<_Iter, _Out>)
constexpr conditional_t<_IsMove,
move_result<_Iter, _Out>,
copy_result<_Iter, _Out>>
__copy_or_move(_Iter __first, _Sent __last, _Out __result)
{
// TODO: implement more specializations to be at least on par with
// std::copy/std::move.
constexpr bool __normal_iterator_p
= (__detail::__is_normal_iterator<_Iter>
|| __detail::__is_normal_iterator<_Out>);
constexpr bool __reverse_p
= (__detail::__is_reverse_iterator<_Iter>
&& __detail::__is_reverse_iterator<_Out>);
constexpr bool __move_iterator_p = __detail::__is_move_iterator<_Iter>;
if constexpr (__move_iterator_p)
{
auto [__in, __out]
= ranges::__copy_or_move<true>(std::move(__first).base(),
std::move(__last).base(),
std::move(__result));
return {move_iterator{std::move(__in)}, std::move(__out)};
}
else if constexpr (__reverse_p)
{
auto [__in,__out]
= ranges::__copy_or_move_backward<_IsMove>(__last.base(),
__first.base(),
__result.base());
return {reverse_iterator{std::move(__in)},
reverse_iterator{std::move(__out)}};
}
else if constexpr (__normal_iterator_p)
{
auto [__in,__out]
= ranges::__copy_or_move<_IsMove>(std::__niter_base(__first),
std::__niter_base(__last),
std::__niter_base(__result));
return {std::__niter_wrap(__first, std::move(__in)),
std::__niter_wrap(__result, std::move(__out))};
}
else if constexpr (sized_sentinel_for<_Sent, _Iter>)
{
using _ValueTypeI = iter_value_t<_Iter>;
using _ValueTypeO = iter_value_t<_Out>;
constexpr bool __use_memmove
= (is_trivially_copyable_v<_ValueTypeI>
&& is_same_v<_ValueTypeI, _ValueTypeO>
&& is_pointer_v<_Iter>
&& is_pointer_v<_Out>);
if constexpr (__use_memmove)
{
static_assert(_IsMove
? is_move_assignable_v<_ValueTypeI>
: is_copy_assignable_v<_ValueTypeI>);
auto __num = __last - __first;
if (__num)
std::__memmove<_IsMove>(__result, __first, __num);
return {__first + __num, __result + __num};
}
else
{
for (auto __n = __last - __first; __n > 0; --__n)
{
if constexpr (_IsMove)
*__result = std::move(*__first);
else
*__result = *__first;
++__first;
++__result;
}
return {std::move(__first), std::move(__result)};
}
}
else
{
while (__first != __last)
{
if constexpr (_IsMove)
*__result = std::move(*__first);
else
*__result = *__first;
++__first;
++__result;
}
return {std::move(__first), std::move(__result)};
}
}
template<input_iterator _Iter, sentinel_for<_Iter> _Sent,
weakly_incrementable _Out>
requires indirectly_copyable<_Iter, _Out>
constexpr copy_result<_Iter, _Out>
copy(_Iter __first, _Sent __last, _Out __result)
{
return ranges::__copy_or_move<false>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<input_range _Range, weakly_incrementable _Out>
requires indirectly_copyable<iterator_t<_Range>, _Out>
constexpr copy_result<safe_iterator_t<_Range>, _Out>
copy(_Range&& __r, _Out __result)
{
return ranges::copy(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<input_iterator _Iter, sentinel_for<_Iter> _Sent,
weakly_incrementable _Out>
requires indirectly_movable<_Iter, _Out>
constexpr move_result<_Iter, _Out>
move(_Iter __first, _Sent __last, _Out __result)
{
return ranges::__copy_or_move<true>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<input_range _Range, weakly_incrementable _Out>
requires indirectly_movable<iterator_t<_Range>, _Out>
constexpr move_result<safe_iterator_t<_Range>, _Out>
move(_Range&& __r, _Out __result)
{
return ranges::move(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<bool _IsMove,
bidirectional_iterator _Iter, sentinel_for<_Iter> _Sent,
bidirectional_iterator _Out>
requires (_IsMove
? indirectly_movable<_Iter, _Out>
: indirectly_copyable<_Iter, _Out>)
constexpr conditional_t<_IsMove,
move_backward_result<_Iter, _Out>,
copy_backward_result<_Iter, _Out>>
__copy_or_move_backward(_Iter __first, _Sent __last, _Out __result)
{
// TODO: implement more specializations to be at least on par with
// std::copy_backward/std::move_backward.
constexpr bool __normal_iterator_p
= (__detail::__is_normal_iterator<_Iter>
|| __detail::__is_normal_iterator<_Out>);
constexpr bool __reverse_p
= (__detail::__is_reverse_iterator<_Iter>
&& __detail::__is_reverse_iterator<_Out>);
if constexpr (__reverse_p)
{
auto [__in,__out]
= ranges::__copy_or_move<_IsMove>(__last.base(),
__first.base(),
__result.base());
return {reverse_iterator{std::move(__in)},
reverse_iterator{std::move(__out)}};
}
else if constexpr (__normal_iterator_p)
{
auto [__in,__out]
= ranges::__copy_or_move_backward<_IsMove>
(std::__niter_base(__first),
std::__niter_base(__last),
std::__niter_base(__result));
return {std::__niter_wrap(__first, std::move(__in)),
std::__niter_wrap(__result, std::move(__out))};
}
else if constexpr (sized_sentinel_for<_Sent, _Iter>)
{
using _ValueTypeI = iter_value_t<_Iter>;
using _ValueTypeO = iter_value_t<_Out>;
constexpr bool __use_memmove
= (is_trivially_copyable_v<_ValueTypeI>
&& is_same_v<_ValueTypeI, _ValueTypeO>
&& is_pointer_v<_Iter>
&& is_pointer_v<_Out>);
if constexpr (__use_memmove)
{
static_assert(_IsMove
? is_move_assignable_v<_ValueTypeI>
: is_copy_assignable_v<_ValueTypeI>);
auto __num = __last - __first;
if (__num)
std::__memmove<_IsMove>(__result - __num, __first, __num);
return {__first + __num, __result - __num};
}
else
{
auto __lasti = ranges::next(__first, __last);
auto __tail = __lasti;
for (auto __n = __last - __first; __n > 0; --__n)
{
--__tail;
--__result;
if constexpr (_IsMove)
*__result = std::move(*__tail);
else
*__result = *__tail;
}
return {std::move(__lasti), std::move(__result)};
}
}
else
{
auto __lasti = ranges::next(__first, __last);
auto __tail = __lasti;
while (__first != __tail)
{
--__tail;
--__result;
if constexpr (_IsMove)
*__result = std::move(*__tail);
else
*__result = *__tail;
}
return {std::move(__lasti), std::move(__result)};
}
}
template<bidirectional_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
bidirectional_iterator _Iter2>
requires indirectly_copyable<_Iter1, _Iter2>
constexpr copy_backward_result<_Iter1, _Iter2>
copy_backward(_Iter1 __first, _Sent1 __last, _Iter2 __result)
{
return ranges::__copy_or_move_backward<false>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<bidirectional_range _Range, bidirectional_iterator _Iter>
requires indirectly_copyable<iterator_t<_Range>, _Iter>
constexpr copy_backward_result<safe_iterator_t<_Range>, _Iter>
copy_backward(_Range&& __r, _Iter __result)
{
return ranges::copy_backward(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<bidirectional_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
bidirectional_iterator _Iter2>
requires indirectly_movable<_Iter1, _Iter2>
constexpr move_backward_result<_Iter1, _Iter2>
move_backward(_Iter1 __first, _Sent1 __last, _Iter2 __result)
{
return ranges::__copy_or_move_backward<true>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<bidirectional_range _Range, bidirectional_iterator _Iter>
requires indirectly_movable<iterator_t<_Range>, _Iter>
constexpr move_backward_result<safe_iterator_t<_Range>, _Iter>
move_backward(_Range&& __r, _Iter __result)
{
return ranges::move_backward(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<typename _Iter, typename _Out>
using copy_n_result = copy_result<_Iter, _Out>;
template<input_iterator _Iter, weakly_incrementable _Out>
requires indirectly_copyable<_Iter, _Out>
constexpr copy_n_result<_Iter, _Out>
copy_n(_Iter __first, iter_difference_t<_Iter> __n, _Out __result)
{
if constexpr (random_access_iterator<_Iter>)
return ranges::copy(__first, __first + __n, std::move(__result));
else
{
for (; __n > 0; --__n, (void)++__result, (void)++__first)
*__result = *__first;
return {std::move(__first), std::move(__result)};
}
}
template<typename _Iter, typename _Out> template<typename _Iter, typename _Out>
using copy_if_result = copy_result<_Iter, _Out>; using copy_if_result = copy_result<_Iter, _Out>;
@ -1434,70 +992,6 @@ namespace ranges
__new_value, std::move(__proj)); __new_value, std::move(__proj));
} }
template<typename _Tp, output_iterator<const _Tp&> _Out>
constexpr _Out
fill_n(_Out __first, iter_difference_t<_Out> __n, const _Tp& __value)
{
// TODO: implement more specializations to be at least on par with
// std::fill_n
if (__n <= 0)
return __first;
// TODO: is __is_byte the best condition?
if constexpr (is_pointer_v<_Out> && __is_byte<_Tp>::__value)
{
__builtin_memset(__first, static_cast<unsigned char>(__value), __n);
return __first + __n;
}
else if constexpr (is_scalar_v<_Tp>)
{
const auto __tmp = __value;
for (; __n > 0; --__n, (void)++__first)
*__first = __tmp;
return __first;
}
else
{
for (; __n > 0; --__n, (void)++__first)
*__first = __value;
return __first;
}
}
template<typename _Tp,
output_iterator<const _Tp&> _Out, sentinel_for<_Out> _Sent>
constexpr _Out
fill(_Out __first, _Sent __last, const _Tp& __value)
{
// TODO: implement more specializations to be at least on par with
// std::fill
if constexpr (sized_sentinel_for<_Sent, _Out>)
{
const auto __len = __last - __first;
return ranges::fill_n(__first, __len, __value);
}
else if constexpr (is_scalar_v<_Tp>)
{
const auto __tmp = __value;
for (; __first != __last; ++__first)
*__first = __tmp;
return __first;
}
else
{
for (; __first != __last; ++__first)
*__first = __value;
return __first;
}
}
template<typename _Tp, output_range<const _Tp&> _Range>
constexpr safe_iterator_t<_Range>
fill(_Range&& __r, const _Tp& __value)
{
return ranges::fill(ranges::begin(__r), ranges::end(__r), __value);
}
template<input_or_output_iterator _Out, copy_constructible _Fp> template<input_or_output_iterator _Out, copy_constructible _Fp>
requires invocable<_Fp&> requires invocable<_Fp&>
&& indirectly_writable<_Out, invoke_result_t<_Fp&>> && indirectly_writable<_Out, invoke_result_t<_Fp&>>

View File

@ -0,0 +1,556 @@
// Core algorithmic facilities -*- C++ -*-
// Copyright (C) 2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/ranges_algobase.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{algorithm}
*/
#ifndef _RANGES_ALGOBASE_H
#define _RANGES_ALGOBASE_H 1
#if __cplusplus > 201703L
#include <cmath>
#include <compare>
#include <iterator>
// #include <bits/range_concepts.h>
#include <ranges>
#include <bits/invoke.h>
#include <bits/cpp_type_traits.h> // __is_byte
#if __cpp_lib_concepts
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
namespace ranges
{
namespace __detail
{
template<typename _Tp>
constexpr inline bool __is_normal_iterator = false;
template<typename _Iterator, typename _Container>
constexpr inline bool
__is_normal_iterator<__gnu_cxx::__normal_iterator<_Iterator,
_Container>> = true;
template<typename _Tp>
constexpr inline bool __is_reverse_iterator = false;
template<typename _Iterator>
constexpr inline bool
__is_reverse_iterator<reverse_iterator<_Iterator>> = true;
template<typename _Tp>
constexpr inline bool __is_move_iterator = false;
template<typename _Iterator>
constexpr inline bool
__is_move_iterator<move_iterator<_Iterator>> = true;
} // namespace __detail
template<input_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
input_iterator _Iter2, sentinel_for<_Iter2> _Sent2,
typename _Pred, typename _Proj1, typename _Proj2>
requires indirectly_comparable<_Iter1, _Iter2, _Pred, _Proj1, _Proj2>
constexpr bool
__equal(_Iter1 __first1, _Sent1 __last1, _Iter2 __first2, _Sent2 __last2,
_Pred __pred, _Proj1 __proj1, _Proj2 __proj2)
{
// TODO: implement more specializations to at least have parity with
// std::equal.
constexpr bool __sized_iters
= (sized_sentinel_for<_Sent1, _Iter1>
&& sized_sentinel_for<_Sent2, _Iter2>);
if constexpr (__sized_iters)
{
auto __d1 = ranges::distance(__first1, __last1);
auto __d2 = ranges::distance(__first2, __last2);
if (__d1 != __d2)
return false;
using _ValueType1 = iter_value_t<_Iter1>;
using _ValueType2 = iter_value_t<_Iter2>;
constexpr bool __use_memcmp
= ((is_integral_v<_ValueType1> || is_pointer_v<_ValueType1>)
&& is_same_v<_ValueType1, _ValueType2>
&& is_pointer_v<_Iter1>
&& is_pointer_v<_Iter2>
&& is_same_v<_Pred, ranges::equal_to>
&& is_same_v<_Proj1, identity>
&& is_same_v<_Proj2, identity>);
if constexpr (__use_memcmp)
{
if (const size_t __len = (__last1 - __first1))
return !std::__memcmp(__first1, __first2, __len);
return true;
}
else
{
for (; __first1 != __last1; ++__first1, (void)++__first2)
if (!(bool)std::__invoke(__pred,
std::__invoke(__proj1, *__first1),
std::__invoke(__proj2, *__first2)))
return false;
return true;
}
}
else
{
for (; __first1 != __last1 && __first2 != __last2;
++__first1, (void)++__first2)
if (!(bool)std::__invoke(__pred,
std::__invoke(__proj1, *__first1),
std::__invoke(__proj2, *__first2)))
return false;
return __first1 == __last1 && __first2 == __last2;
}
}
template<input_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
input_iterator _Iter2, sentinel_for<_Iter2> _Sent2,
typename _Pred = ranges::equal_to,
typename _Proj1 = identity, typename _Proj2 = identity>
requires indirectly_comparable<_Iter1, _Iter2, _Pred, _Proj1, _Proj2>
constexpr bool
equal(_Iter1 __first1, _Sent1 __last1, _Iter2 __first2, _Sent2 __last2,
_Pred __pred = {}, _Proj1 __proj1 = {}, _Proj2 __proj2 = {})
{
return ranges::__equal(std::__niter_base(std::move(__first1)),
std::__niter_base(std::move(__last1)),
std::__niter_base(std::move(__first2)),
std::__niter_base(std::move(__last2)),
std::move(__pred),
std::move(__proj1), std::move(__proj2));
}
template<input_range _Range1, input_range _Range2,
typename _Pred = ranges::equal_to,
typename _Proj1 = identity, typename _Proj2 = identity>
requires indirectly_comparable<iterator_t<_Range1>, iterator_t<_Range2>,
_Pred, _Proj1, _Proj2>
constexpr bool
equal(_Range1&& __r1, _Range2&& __r2,
_Pred __pred = {}, _Proj1 __proj1 = {}, _Proj2 __proj2 = {})
{
return ranges::equal(ranges::begin(__r1), ranges::end(__r1),
ranges::begin(__r2), ranges::end(__r2),
std::move(__pred),
std::move(__proj1), std::move(__proj2));
}
template<typename _Iter, typename _Out>
struct copy_result
{
[[no_unique_address]] _Iter in;
[[no_unique_address]] _Out out;
template<typename _Iter2, typename _Out2>
requires convertible_to<const _Iter&, _Iter2>
&& convertible_to<const _Out&, _Out2>
operator copy_result<_Iter2, _Out2>() const &
{ return {in, out}; }
template<typename _Iter2, typename _Out2>
requires convertible_to<_Iter, _Iter2>
&& convertible_to<_Out, _Out2>
operator copy_result<_Iter2, _Out2>() &&
{ return {std::move(in), std::move(out)}; }
};
template<typename _Iter, typename _Out>
using move_result = copy_result<_Iter, _Out>;
template<typename _Iter1, typename _Iter2>
using move_backward_result = copy_result<_Iter1, _Iter2>;
template<typename _Iter1, typename _Iter2>
using copy_backward_result = copy_result<_Iter1, _Iter2>;
template<bool _IsMove,
bidirectional_iterator _Iter, sentinel_for<_Iter> _Sent,
bidirectional_iterator _Out>
requires (_IsMove
? indirectly_movable<_Iter, _Out>
: indirectly_copyable<_Iter, _Out>)
constexpr conditional_t<_IsMove,
move_backward_result<_Iter, _Out>,
copy_backward_result<_Iter, _Out>>
__copy_or_move_backward(_Iter __first, _Sent __last, _Out __result);
template<bool _IsMove,
input_iterator _Iter, sentinel_for<_Iter> _Sent,
weakly_incrementable _Out>
requires (_IsMove
? indirectly_movable<_Iter, _Out>
: indirectly_copyable<_Iter, _Out>)
constexpr conditional_t<_IsMove,
move_result<_Iter, _Out>,
copy_result<_Iter, _Out>>
__copy_or_move(_Iter __first, _Sent __last, _Out __result)
{
// TODO: implement more specializations to be at least on par with
// std::copy/std::move.
constexpr bool __normal_iterator_p
= (__detail::__is_normal_iterator<_Iter>
|| __detail::__is_normal_iterator<_Out>);
constexpr bool __reverse_p
= (__detail::__is_reverse_iterator<_Iter>
&& __detail::__is_reverse_iterator<_Out>);
constexpr bool __move_iterator_p = __detail::__is_move_iterator<_Iter>;
if constexpr (__move_iterator_p)
{
auto [__in, __out]
= ranges::__copy_or_move<true>(std::move(__first).base(),
std::move(__last).base(),
std::move(__result));
return {move_iterator{std::move(__in)}, std::move(__out)};
}
else if constexpr (__reverse_p)
{
auto [__in,__out]
= ranges::__copy_or_move_backward<_IsMove>(__last.base(),
__first.base(),
__result.base());
return {reverse_iterator{std::move(__in)},
reverse_iterator{std::move(__out)}};
}
else if constexpr (__normal_iterator_p)
{
auto [__in,__out]
= ranges::__copy_or_move<_IsMove>(std::__niter_base(__first),
std::__niter_base(__last),
std::__niter_base(__result));
return {std::__niter_wrap(__first, std::move(__in)),
std::__niter_wrap(__result, std::move(__out))};
}
else if constexpr (sized_sentinel_for<_Sent, _Iter>)
{
using _ValueTypeI = iter_value_t<_Iter>;
using _ValueTypeO = iter_value_t<_Out>;
constexpr bool __use_memmove
= (is_trivially_copyable_v<_ValueTypeI>
&& is_same_v<_ValueTypeI, _ValueTypeO>
&& is_pointer_v<_Iter>
&& is_pointer_v<_Out>);
if constexpr (__use_memmove)
{
static_assert(_IsMove
? is_move_assignable_v<_ValueTypeI>
: is_copy_assignable_v<_ValueTypeI>);
auto __num = __last - __first;
if (__num)
std::__memmove<_IsMove>(__result, __first, __num);
return {__first + __num, __result + __num};
}
else
{
for (auto __n = __last - __first; __n > 0; --__n)
{
if constexpr (_IsMove)
*__result = std::move(*__first);
else
*__result = *__first;
++__first;
++__result;
}
return {std::move(__first), std::move(__result)};
}
}
else
{
while (__first != __last)
{
if constexpr (_IsMove)
*__result = std::move(*__first);
else
*__result = *__first;
++__first;
++__result;
}
return {std::move(__first), std::move(__result)};
}
}
template<input_iterator _Iter, sentinel_for<_Iter> _Sent,
weakly_incrementable _Out>
requires indirectly_copyable<_Iter, _Out>
constexpr copy_result<_Iter, _Out>
copy(_Iter __first, _Sent __last, _Out __result)
{
return ranges::__copy_or_move<false>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<input_range _Range, weakly_incrementable _Out>
requires indirectly_copyable<iterator_t<_Range>, _Out>
constexpr copy_result<safe_iterator_t<_Range>, _Out>
copy(_Range&& __r, _Out __result)
{
return ranges::copy(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<input_iterator _Iter, sentinel_for<_Iter> _Sent,
weakly_incrementable _Out>
requires indirectly_movable<_Iter, _Out>
constexpr move_result<_Iter, _Out>
move(_Iter __first, _Sent __last, _Out __result)
{
return ranges::__copy_or_move<true>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<input_range _Range, weakly_incrementable _Out>
requires indirectly_movable<iterator_t<_Range>, _Out>
constexpr move_result<safe_iterator_t<_Range>, _Out>
move(_Range&& __r, _Out __result)
{
return ranges::move(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<bool _IsMove,
bidirectional_iterator _Iter, sentinel_for<_Iter> _Sent,
bidirectional_iterator _Out>
requires (_IsMove
? indirectly_movable<_Iter, _Out>
: indirectly_copyable<_Iter, _Out>)
constexpr conditional_t<_IsMove,
move_backward_result<_Iter, _Out>,
copy_backward_result<_Iter, _Out>>
__copy_or_move_backward(_Iter __first, _Sent __last, _Out __result)
{
// TODO: implement more specializations to be at least on par with
// std::copy_backward/std::move_backward.
constexpr bool __normal_iterator_p
= (__detail::__is_normal_iterator<_Iter>
|| __detail::__is_normal_iterator<_Out>);
constexpr bool __reverse_p
= (__detail::__is_reverse_iterator<_Iter>
&& __detail::__is_reverse_iterator<_Out>);
if constexpr (__reverse_p)
{
auto [__in,__out]
= ranges::__copy_or_move<_IsMove>(__last.base(),
__first.base(),
__result.base());
return {reverse_iterator{std::move(__in)},
reverse_iterator{std::move(__out)}};
}
else if constexpr (__normal_iterator_p)
{
auto [__in,__out]
= ranges::__copy_or_move_backward<_IsMove>
(std::__niter_base(__first),
std::__niter_base(__last),
std::__niter_base(__result));
return {std::__niter_wrap(__first, std::move(__in)),
std::__niter_wrap(__result, std::move(__out))};
}
else if constexpr (sized_sentinel_for<_Sent, _Iter>)
{
using _ValueTypeI = iter_value_t<_Iter>;
using _ValueTypeO = iter_value_t<_Out>;
constexpr bool __use_memmove
= (is_trivially_copyable_v<_ValueTypeI>
&& is_same_v<_ValueTypeI, _ValueTypeO>
&& is_pointer_v<_Iter>
&& is_pointer_v<_Out>);
if constexpr (__use_memmove)
{
static_assert(_IsMove
? is_move_assignable_v<_ValueTypeI>
: is_copy_assignable_v<_ValueTypeI>);
auto __num = __last - __first;
if (__num)
std::__memmove<_IsMove>(__result - __num, __first, __num);
return {__first + __num, __result - __num};
}
else
{
auto __lasti = ranges::next(__first, __last);
auto __tail = __lasti;
for (auto __n = __last - __first; __n > 0; --__n)
{
--__tail;
--__result;
if constexpr (_IsMove)
*__result = std::move(*__tail);
else
*__result = *__tail;
}
return {std::move(__lasti), std::move(__result)};
}
}
else
{
auto __lasti = ranges::next(__first, __last);
auto __tail = __lasti;
while (__first != __tail)
{
--__tail;
--__result;
if constexpr (_IsMove)
*__result = std::move(*__tail);
else
*__result = *__tail;
}
return {std::move(__lasti), std::move(__result)};
}
}
template<bidirectional_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
bidirectional_iterator _Iter2>
requires indirectly_copyable<_Iter1, _Iter2>
constexpr copy_backward_result<_Iter1, _Iter2>
copy_backward(_Iter1 __first, _Sent1 __last, _Iter2 __result)
{
return ranges::__copy_or_move_backward<false>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<bidirectional_range _Range, bidirectional_iterator _Iter>
requires indirectly_copyable<iterator_t<_Range>, _Iter>
constexpr copy_backward_result<safe_iterator_t<_Range>, _Iter>
copy_backward(_Range&& __r, _Iter __result)
{
return ranges::copy_backward(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<bidirectional_iterator _Iter1, sentinel_for<_Iter1> _Sent1,
bidirectional_iterator _Iter2>
requires indirectly_movable<_Iter1, _Iter2>
constexpr move_backward_result<_Iter1, _Iter2>
move_backward(_Iter1 __first, _Sent1 __last, _Iter2 __result)
{
return ranges::__copy_or_move_backward<true>(std::move(__first),
std::move(__last),
std::move(__result));
}
template<bidirectional_range _Range, bidirectional_iterator _Iter>
requires indirectly_movable<iterator_t<_Range>, _Iter>
constexpr move_backward_result<safe_iterator_t<_Range>, _Iter>
move_backward(_Range&& __r, _Iter __result)
{
return ranges::move_backward(ranges::begin(__r), ranges::end(__r),
std::move(__result));
}
template<typename _Iter, typename _Out>
using copy_n_result = copy_result<_Iter, _Out>;
template<input_iterator _Iter, weakly_incrementable _Out>
requires indirectly_copyable<_Iter, _Out>
constexpr copy_n_result<_Iter, _Out>
copy_n(_Iter __first, iter_difference_t<_Iter> __n, _Out __result)
{
if constexpr (random_access_iterator<_Iter>)
return ranges::copy(__first, __first + __n, std::move(__result));
else
{
for (; __n > 0; --__n, (void)++__result, (void)++__first)
*__result = *__first;
return {std::move(__first), std::move(__result)};
}
}
template<typename _Tp, output_iterator<const _Tp&> _Out>
constexpr _Out
fill_n(_Out __first, iter_difference_t<_Out> __n, const _Tp& __value)
{
// TODO: implement more specializations to be at least on par with
// std::fill_n
if (__n <= 0)
return __first;
// TODO: is __is_byte the best condition?
if constexpr (is_pointer_v<_Out> && __is_byte<_Tp>::__value)
{
__builtin_memset(__first, static_cast<unsigned char>(__value), __n);
return __first + __n;
}
else if constexpr (is_scalar_v<_Tp>)
{
const auto __tmp = __value;
for (; __n > 0; --__n, (void)++__first)
*__first = __tmp;
return __first;
}
else
{
for (; __n > 0; --__n, (void)++__first)
*__first = __value;
return __first;
}
}
template<typename _Tp,
output_iterator<const _Tp&> _Out, sentinel_for<_Out> _Sent>
constexpr _Out
fill(_Out __first, _Sent __last, const _Tp& __value)
{
// TODO: implement more specializations to be at least on par with
// std::fill
if constexpr (sized_sentinel_for<_Sent, _Out>)
{
const auto __len = __last - __first;
return ranges::fill_n(__first, __len, __value);
}
else if constexpr (is_scalar_v<_Tp>)
{
const auto __tmp = __value;
for (; __first != __last; ++__first)
*__first = __tmp;
return __first;
}
else
{
for (; __first != __last; ++__first)
*__first = __value;
return __first;
}
}
template<typename _Tp, output_range<const _Tp&> _Range>
constexpr safe_iterator_t<_Range>
fill(_Range&& __r, const _Tp& __value)
{
return ranges::fill(ranges::begin(__r), ranges::end(__r), __value);
}
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif // concepts
#endif // C++20
#endif // _RANGES_ALGOBASE_H