abstract regset stuff into macros

From-SVN: r14147
This commit is contained in:
Michael Meissner 1997-06-05 10:24:03 +00:00
parent 2217c9f0e8
commit 916b1701c2
6 changed files with 457 additions and 443 deletions

View File

@ -19,9 +19,11 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Number of bits in each actual element of a regset. */
/* Number of bits in each actual element of a regset. We get slightly
better code for reg%bits and reg/bits if bits is unsigned, assuming
it is a power of 2. */
#define REGSET_ELT_BITS HOST_BITS_PER_WIDE_INT
#define REGSET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDE_INT)
/* Type to use for a regset element. Note that lots of code assumes
that the initial part of a regset that contains information on the
@ -40,6 +42,221 @@ typedef REGSET_ELT_TYPE *regset;
extern int regset_bytes;
extern int regset_size;
/* clear a register set */
#define CLEAR_REG_SET(TO) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ = 0; } while (0)
/* copy a register to another register */
#define COPY_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ = *scan_fp_++; } while (0)
/* complent a register set, storing it in a second register set. */
#define COMPL_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ = ~ *scan_fp_++; } while (0)
/* and a register set with a second register set. */
#define AND_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ &= *scan_fp_++; } while (0)
/* and the complement of a register set to a register set. */
#define AND_COMPL_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ &= ~ *scan_fp_++; } while (0)
/* inclusive or a register set with a second register set. */
#define IOR_REG_SET(TO, FROM) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ |= *scan_fp_++; } while (0)
/* complement two register sets and or in the result into a third. */
#define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
do { register REGSET_ELT_TYPE *scan_tp_ = (TO); \
register REGSET_ELT_TYPE *scan_fp1_ = (FROM1); \
register REGSET_ELT_TYPE *scan_fp2_ = (FROM2); \
register int i_; \
for (i_ = 0; i_ < regset_size; i_++) \
*scan_tp_++ |= *scan_fp1_++ & ~ *scan_fp2_++; } while (0)
/* Clear a single register in a register set. */
#define CLEAR_REGNO_REG_SET(TO, REG) \
do { \
register REGSET_ELT_TYPE *tp_ = (TO); \
tp_[ (REG) / REGSET_ELT_BITS ] \
&= ~ ((REGSET_ELT_TYPE) 1 << ((REG) % REGSET_ELT_BITS)); } while (0);
/* Set a single register in a register set. */
#define SET_REGNO_REG_SET(TO, REG) \
do { \
register REGSET_ELT_TYPE *tp_ = (TO); \
tp_[ (REG) / REGSET_ELT_BITS ] \
|= ((REGSET_ELT_TYPE) 1 << ((REG) % REGSET_ELT_BITS)); } while (0);
/* Return true if a register is set in a register set. */
#define REGNO_REG_SET_P(TO, REG) \
(((TO)[ (REG) / REGSET_ELT_BITS ] \
& (((REGSET_ELT_TYPE)1) << (REG) % REGSET_ELT_BITS)) != 0)
/* Copy the hard registers in a register set to the hard register set. */
#define REG_SET_TO_HARD_REG_SET(TO, FROM) \
do { \
int i_; \
CLEAR_HARD_REG_SET (TO); \
for (i_ = 0; i < FIRST_PSEUDO_REGISTER; i++) \
if (REGNO_REG_SET_P (FROM, i_)) \
SET_HARD_REG_BIT (TO, i_); \
} while (0)
/* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
register number and executing CODE for all registers that are set. */
#define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs_ = (REGSET); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Like EXECUTE_IF_SET_IN_REG_SET, but also clear the register set. */
#define EXECUTE_IF_SET_AND_RESET_IN_REG_SET(REGSET, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs_ = (REGSET); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
scan_rs_[-1] = 0; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
REGNUM to the register number and executing CODE for all registers that are
set in both regsets. */
#define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs1_ = (REGSET1); \
register REGSET_ELT_TYPE *scan_rs2_ = (REGSET2); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs1_++ & *scan_rs2_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
REGNUM to the register number and executing CODE for all registers that are
set in the first regset and not set in the second. */
#define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
do { \
register REGSET_ELT_TYPE *scan_rs1_ = (REGSET1); \
register REGSET_ELT_TYPE *scan_rs2_ = (REGSET2); \
register int i_; \
register int shift_ = (MIN) % REGSET_ELT_BITS; \
for (i_ = (MIN) / REGSET_ELT_BITS; i_ < regset_size; i_++) \
{ \
REGSET_ELT_TYPE word_ = *scan_rs1_++ & ~ *scan_rs2_++; \
if (word_) \
{ \
REGSET_ELT_TYPE j_; \
REGNUM = (i_ * REGSET_ELT_BITS) + shift_; \
for (j_ = ((REGSET_ELT_TYPE)1) << shift_; \
j_ != 0; \
(j_ <<= 1), REGNUM++) \
{ \
if (word_ & j_) \
{ \
CODE; \
word_ &= ~ j_; \
if (!word_) \
break; \
} \
} \
} \
shift_ = 0; \
} \
} while (0)
/* Allocate a register set with oballoc. */
#define OBALLOC_REG_SET() \
((regset) obstack_alloc (&flow_obstack, regset_bytes))
/* Allocate a register set with alloca. */
#define ALLOCA_REG_SET() ((regset) alloca (regset_bytes))
/* Number of basic blocks in the current function. */
extern int n_basic_blocks;

View File

@ -367,31 +367,20 @@ save_call_clobbered_regs (insn_mode)
saved because we restore all of them before the end of the basic
block. */
#ifdef HARD_REG_SET
hard_regs_live = *regs_live;
#else
COPY_HARD_REG_SET (hard_regs_live, regs_live);
#endif
REG_SET_TO_HARD_REG_SET (hard_regs_live, regs_live);
CLEAR_HARD_REG_SET (hard_regs_saved);
CLEAR_HARD_REG_SET (hard_regs_need_restore);
n_regs_saved = 0;
for (offset = 0, i = 0; offset < regset_size; offset++)
{
if (regs_live[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
if ((regs_live[offset] & bit)
&& (regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (hard_regs_live, j);
}
EXECUTE_IF_SET_IN_REG_SET (regs_live, 0, i,
{
if ((regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (hard_regs_live, j);
});
/* Now scan the insns in the block, keeping track of what hard
regs are live as we go. When we see a call, save the live

View File

@ -1024,12 +1024,10 @@ life_analysis (f, nregs)
{
/* If exiting needs the right stack value,
consider the stack pointer live at the end of the function. */
basic_block_live_at_end[n_basic_blocks - 1]
[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
basic_block_new_live_at_end[n_basic_blocks - 1]
[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
STACK_POINTER_REGNUM);
SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
STACK_POINTER_REGNUM);
}
/* Mark the frame pointer is needed at the end of the function. If
@ -1038,22 +1036,16 @@ life_analysis (f, nregs)
if (n_basic_blocks > 0)
{
basic_block_live_at_end[n_basic_blocks - 1]
[FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
basic_block_new_live_at_end[n_basic_blocks - 1]
[FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
FRAME_POINTER_REGNUM);
SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
/* If they are different, also mark the hard frame pointer as live */
basic_block_live_at_end[n_basic_blocks - 1]
[HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
% REGSET_ELT_BITS);
basic_block_new_live_at_end[n_basic_blocks - 1]
[HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
% REGSET_ELT_BITS);
SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
HARD_FRAME_POINTER_REGNUM);
SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
HARD_FRAME_POINTER_REGNUM);
#endif
}
@ -1069,12 +1061,8 @@ life_analysis (f, nregs)
#endif
)
{
basic_block_live_at_end[n_basic_blocks - 1]
[i / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
basic_block_new_live_at_end[n_basic_blocks - 1]
[i / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1], i);
SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], i);
}
/* Propagate life info through the basic blocks
@ -1109,21 +1097,18 @@ life_analysis (f, nregs)
reg that is live at the end now but was not live there before
is one of the significant regs of this basic block). */
for (j = 0; j < regset_size; j++)
{
register REGSET_ELT_TYPE x
= (basic_block_new_live_at_end[i][j]
& ~basic_block_live_at_end[i][j]);
if (x)
consider = 1;
if (x & basic_block_significant[i][j])
{
must_rescan = 1;
consider = 1;
break;
}
}
EXECUTE_IF_AND_COMPL_IN_REG_SET (basic_block_new_live_at_end[i],
basic_block_live_at_end[i],
0, j,
{
consider = 1;
if (REGNO_REG_SET_P (basic_block_significant[i], j))
{
must_rescan = 1;
goto done;
}
});
done:
if (! consider)
continue;
}
@ -1137,23 +1122,22 @@ life_analysis (f, nregs)
/* No complete rescan needed;
just record those variables newly known live at end
as live at start as well. */
for (j = 0; j < regset_size; j++)
{
register REGSET_ELT_TYPE x
= (basic_block_new_live_at_end[i][j]
& ~basic_block_live_at_end[i][j]);
basic_block_live_at_start[i][j] |= x;
basic_block_live_at_end[i][j] |= x;
}
IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i],
basic_block_new_live_at_end[i],
basic_block_live_at_end[i]);
IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i],
basic_block_new_live_at_end[i],
basic_block_live_at_end[i]);
}
else
{
/* Update the basic_block_live_at_start
by propagation backwards through the block. */
bcopy ((char *) basic_block_new_live_at_end[i],
(char *) basic_block_live_at_end[i], regset_bytes);
bcopy ((char *) basic_block_live_at_end[i],
(char *) basic_block_live_at_start[i], regset_bytes);
COPY_REG_SET (basic_block_live_at_end[i],
basic_block_new_live_at_end[i]);
COPY_REG_SET (basic_block_live_at_start[i],
basic_block_live_at_end[i]);
propagate_block (basic_block_live_at_start[i],
basic_block_head[i], basic_block_end[i], 0,
first_pass ? basic_block_significant[i]
@ -1168,12 +1152,8 @@ life_analysis (f, nregs)
that falls through into this one (if any). */
head = basic_block_head[i];
if (basic_block_drops_in[i])
{
register int j;
for (j = 0; j < regset_size; j++)
basic_block_new_live_at_end[i-1][j]
|= basic_block_live_at_start[i][j];
}
IOR_REG_SET (basic_block_new_live_at_end[i-1],
basic_block_live_at_start[i]);
/* Update the basic_block_new_live_at_end's of
all the blocks that jump to this one. */
@ -1183,10 +1163,8 @@ life_analysis (f, nregs)
jump = LABEL_NEXTREF (jump))
{
register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
register int j;
for (j = 0; j < regset_size; j++)
basic_block_new_live_at_end[from_block][j]
|= basic_block_live_at_start[i][j];
IOR_REG_SET (basic_block_new_live_at_end[from_block],
basic_block_live_at_start[i]);
}
}
#ifdef USE_C_ALLOCA
@ -1202,10 +1180,11 @@ life_analysis (f, nregs)
one basic block. */
if (n_basic_blocks > 0)
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0],
FIRST_PSEUDO_REGISTER, i,
{
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
});
/* Now the life information is accurate.
Make one more pass over each basic block
@ -1236,14 +1215,16 @@ life_analysis (f, nregs)
But we don't need to do this for the user's variables, since
ANSI says only volatile variables need this. */
#ifdef LONGJMP_RESTORE_FROM_STACK
for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
&& regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
{
REG_LIVE_LENGTH (i) = -1;
REG_BASIC_BLOCK (i) = -1;
}
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
FIRST_PSEUDO_REGISTER, i,
{
if (regno_reg_rtx[i] != 0
&& ! REG_USERVAR_P (regno_reg_rtx[i]))
{
REG_LIVE_LENGTH (i) = -1;
REG_BASIC_BLOCK (i) = -1;
}
});
#endif
#endif
@ -1256,14 +1237,15 @@ life_analysis (f, nregs)
If the pseudo goes in a hard reg, some other value may occupy
that hard reg where this pseudo is dead, thus clobbering the pseudo.
Conclusion: such a pseudo must not go in a hard reg. */
for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
&& regno_reg_rtx[i] != 0)
{
REG_LIVE_LENGTH (i) = -1;
REG_BASIC_BLOCK (i) = -1;
}
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
FIRST_PSEUDO_REGISTER, i,
{
if (regno_reg_rtx[i] != 0)
{
REG_LIVE_LENGTH (i) = -1;
REG_BASIC_BLOCK (i) = -1;
}
});
obstack_free (&flow_obstack, NULL_PTR);
}
@ -1360,11 +1342,8 @@ propagate_block (old, first, last, final, significant, bnum)
/* The following variables are used only if FINAL is nonzero. */
/* This vector gets one element for each reg that has been live
at any point in the basic block that has been scanned so far.
SOMETIMES_MAX says how many elements are in use so far.
In each element, OFFSET is the byte-number within a regset
for the register described by the element, and BIT is a mask
for that register's bit within the byte. */
register struct sometimes { short offset; short bit; } *regs_sometimes_live;
SOMETIMES_MAX says how many elements are in use so far. */
register int *regs_sometimes_live;
int sometimes_max = 0;
/* This regset has 1 for each reg that we have seen live so far.
It and REGS_SOMETIMES_LIVE are updated together. */
@ -1396,32 +1375,22 @@ propagate_block (old, first, last, final, significant, bnum)
if (final)
{
register int i, offset;
REGSET_ELT_TYPE bit;
register int i;
num_scratch = 0;
maxlive = (regset) alloca (regset_bytes);
bcopy ((char *) old, (char *) maxlive, regset_bytes);
regs_sometimes_live
= (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
COPY_REG_SET (maxlive, old);
regs_sometimes_live = (int *) alloca (max_regno * sizeof (int));
/* Process the regs live at the end of the block.
Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
Also mark them as not local to any one basic block. */
for (offset = 0, i = 0; offset < regset_size; offset++)
for (bit = 1; bit; bit <<= 1, i++)
{
if (i == max_regno)
break;
if (old[offset] & bit)
{
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
regs_sometimes_live[sometimes_max].offset = offset;
regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
sometimes_max++;
}
}
Also mark them as not local to any one basic block. */
EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
{
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
regs_sometimes_live[sometimes_max] = i;
sometimes_max++;
});
}
/* Scan the block an insn at a time from end to beginning. */
@ -1448,11 +1417,7 @@ propagate_block (old, first, last, final, significant, bnum)
warn if any non-volatile datum is live. */
if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
{
int i;
for (i = 0; i < regset_size; i++)
regs_live_at_setjmp[i] |= old[i];
}
IOR_REG_SET (regs_live_at_setjmp, old);
}
/* Update the life-status of regs for this insn.
@ -1508,11 +1473,8 @@ propagate_block (old, first, last, final, significant, bnum)
goto flushed;
}
for (i = 0; i < regset_size; i++)
{
dead[i] = 0; /* Faster than bzero here */
live[i] = 0; /* since regset_size is usually small */
}
CLEAR_REG_SET (dead);
CLEAR_REG_SET (live);
/* See if this is an increment or decrement that can be
merged into a following memory address. */
@ -1602,13 +1564,10 @@ propagate_block (old, first, last, final, significant, bnum)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i] && ! global_regs[i]
&& ! fixed_regs[i])
dead[i / REGSET_ELT_BITS]
|= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
SET_REGNO_REG_SET (dead, i);
/* The stack ptr is used (honorarily) by a CALL insn. */
live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
|= ((REGSET_ELT_TYPE) 1
<< (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
/* Calls may also reference any of the global registers,
so they are made live. */
@ -1623,11 +1582,8 @@ propagate_block (old, first, last, final, significant, bnum)
}
/* Update OLD for the registers used or set. */
for (i = 0; i < regset_size; i++)
{
old[i] &= ~dead[i];
old[i] |= live[i];
}
AND_COMPL_REG_SET (old, dead);
IOR_REG_SET (old, live);
if (GET_CODE (insn) == CALL_INSN && final)
{
@ -1635,11 +1591,11 @@ propagate_block (old, first, last, final, significant, bnum)
must not go in a register clobbered by calls.
Find all regs now live and record this for them. */
register struct sometimes *p = regs_sometimes_live;
register int *p = regs_sometimes_live;
for (i = 0; i < sometimes_max; i++, p++)
if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
REG_N_CALLS_CROSSED (p->offset * REGSET_ELT_BITS + p->bit)++;
if (REGNO_REG_SET_P (old, *p))
REG_N_CALLS_CROSSED (*p)++;
}
}
@ -1649,33 +1605,22 @@ propagate_block (old, first, last, final, significant, bnum)
if (final)
{
for (i = 0; i < regset_size; i++)
register int regno;
register int *p;
EXECUTE_IF_AND_COMPL_IN_REG_SET (live, maxlive, 0, regno,
{
regs_sometimes_live[sometimes_max++] = regno;
SET_REGNO_REG_SET (maxlive, regno);
});
p = regs_sometimes_live;
for (i = 0; i < sometimes_max; i++)
{
register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
if (diff)
{
register int regno;
maxlive[i] |= diff;
for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
if (diff & ((REGSET_ELT_TYPE) 1 << regno))
{
regs_sometimes_live[sometimes_max].offset = i;
regs_sometimes_live[sometimes_max].bit = regno;
diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
sometimes_max++;
}
}
regno = *p++;
if (REGNO_REG_SET_P (old, regno))
REG_LIVE_LENGTH (regno)++;
}
{
register struct sometimes *p = regs_sometimes_live;
for (i = 0; i < sometimes_max; i++, p++)
{
if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
REG_LIVE_LENGTH (p->offset * REGSET_ELT_BITS + p->bit)++;
}
}
}
}
flushed: ;
@ -1728,9 +1673,6 @@ insn_dead_p (x, needed, call_ok)
if (GET_CODE (r) == REG)
{
register int regno = REGNO (r);
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
/* Don't delete insns to set global regs. */
if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
@ -1745,7 +1687,7 @@ insn_dead_p (x, needed, call_ok)
it, so we can treat it normally). */
|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
|| (needed[offset] & bit) != 0)
|| REGNO_REG_SET_P (needed, regno))
return 0;
/* If this is a hard register, verify that subsequent words are
@ -1755,9 +1697,7 @@ insn_dead_p (x, needed, call_ok)
int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
while (--n > 0)
if ((needed[(regno + n) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1
<< ((regno + n) % REGSET_ELT_BITS))) != 0)
if (REGNO_REG_SET_P (needed, regno+n))
return 0;
}
@ -1866,8 +1806,7 @@ regno_uninitialized (regno)
&& (global_regs[regno] || FUNCTION_ARG_REGNO_P (regno))))
return 0;
return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
return REGNO_REG_SET_P (basic_block_live_at_start[0], regno);
}
/* 1 if register REGNO was alive at a place where `setjmp' was called
@ -1882,10 +1821,8 @@ regno_clobbered_at_setjmp (regno)
return 0;
return ((REG_N_SETS (regno) > 1
|| (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
&& (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
|| REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
&& REGNO_REG_SET_P (regs_live_at_setjmp, regno));
}
/* Process the registers that are set within X.
@ -1978,18 +1915,15 @@ mark_set_1 (needed, dead, x, insn, significant)
&& ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
/* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
{
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
REGSET_ELT_TYPE some_not_needed = (~ needed[offset]) & bit;
int some_needed = REGNO_REG_SET_P (needed, regno);
int some_not_needed = ! some_needed;
/* Mark it as a significant register for this basic block. */
if (significant)
significant[offset] |= bit;
SET_REGNO_REG_SET (significant, regno);
/* Mark it as as dead before this insn. */
dead[offset] |= bit;
SET_REGNO_REG_SET (dead, regno);
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
@ -2005,17 +1939,14 @@ mark_set_1 (needed, dead, x, insn, significant)
n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--n > 0)
{
REGSET_ELT_TYPE n_bit
= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
int regno_n = regno + n;
int needed_regno = REGNO_REG_SET_P (needed, regno_n);
if (significant)
significant[(regno + n) / REGSET_ELT_BITS] |= n_bit;
SET_REGNO_REG_SET (significant, regno_n);
dead[(regno + n) / REGSET_ELT_BITS] |= n_bit;
some_needed
|= (needed[(regno + n) / REGSET_ELT_BITS] & n_bit);
some_not_needed
|= ((~ needed[(regno + n) / REGSET_ELT_BITS]) & n_bit);
SET_REGNO_REG_SET (dead, regno_n);
some_needed |= needed_regno;
some_not_needed |= ! needed_regno;
}
}
/* Additional data to record if this is the final pass. */
@ -2106,9 +2037,7 @@ mark_set_1 (needed, dead, x, insn, significant)
for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
i >= 0; i--)
if ((needed[(regno + i) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1
<< ((regno + i) % REGSET_ELT_BITS))) == 0)
if (!REGNO_REG_SET_P (needed, regno + i))
REG_NOTES (insn)
= gen_rtx (EXPR_LIST, REG_UNUSED,
gen_rtx (REG, reg_raw_mode[regno + i],
@ -2271,8 +2200,7 @@ find_auto_inc (needed, x, insn)
it previously wasn't live here. If we don't mark
it as needed, we'll put a REG_DEAD note for it
on this insn, which is incorrect. */
needed[regno / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
SET_REGNO_REG_SET (needed, regno);
/* If there are any calls between INSN and INCR, show
that REGNO now crosses them. */
@ -2407,13 +2335,10 @@ mark_used_regs (needed, live, x, final, insn)
regno = REGNO (x);
{
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
REGSET_ELT_TYPE some_needed = needed[offset] & bit;
REGSET_ELT_TYPE some_not_needed = (~ needed[offset]) & bit;
REGSET_ELT_TYPE some_needed = REGNO_REG_SET_P (needed, regno);
REGSET_ELT_TYPE some_not_needed = ! some_needed;
live[offset] |= bit;
SET_REGNO_REG_SET (live, regno);
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
@ -2455,13 +2380,12 @@ mark_used_regs (needed, live, x, final, insn)
n = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--n > 0)
{
REGSET_ELT_TYPE n_bit
= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
int regno_n = regno + n;
int needed_regno = REGNO_REG_SET_P (needed, regno_n);
live[(regno + n) / REGSET_ELT_BITS] |= n_bit;
some_needed |= (needed[(regno + n) / REGSET_ELT_BITS] & n_bit);
some_not_needed
|= ((~ needed[(regno + n) / REGSET_ELT_BITS]) & n_bit);
SET_REGNO_REG_SET (live, regno_n);
some_needed |= needed_regno;
some_not_needed != ! needed_regno;
}
}
if (final)
@ -2539,9 +2463,7 @@ mark_used_regs (needed, live, x, final, insn)
for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
i >= 0; i--)
if ((needed[(regno + i) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1
<< ((regno + i) % REGSET_ELT_BITS))) == 0
if (!REGNO_REG_SET_P (needed, regno + i)
&& ! dead_or_set_regno_p (insn, regno + i))
REG_NOTES (insn)
= gen_rtx (EXPR_LIST, REG_DEAD,
@ -2635,8 +2557,7 @@ mark_used_regs (needed, live, x, final, insn)
if (! EXIT_IGNORE_STACK
|| (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
#endif
live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i]
@ -2644,8 +2565,7 @@ mark_used_regs (needed, live, x, final, insn)
|| EPILOGUE_USES (i)
#endif
)
live[i / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
SET_REGNO_REG_SET (live, i);
break;
}
@ -2945,13 +2865,8 @@ dump_flow_info (file)
}
fprintf (file, "\nRegisters live at start:");
for (regno = 0; regno < max_regno; regno++)
{
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
if (basic_block_live_at_start[i][offset] & bit)
fprintf (file, " %d", regno);
}
if (REGNO_REG_SET_P (basic_block_live_at_start[i], regno))
fprintf (file, " %d", regno);
fprintf (file, "\n");
}
fprintf (file, "\n");

View File

@ -642,36 +642,21 @@ global_conflicts ()
are explicitly marked in basic_block_live_at_start. */
{
register int offset;
REGSET_ELT_TYPE bit;
register regset old = basic_block_live_at_start[b];
int ax = 0;
#ifdef HARD_REG_SET
hard_regs_live = old[0];
#else
COPY_HARD_REG_SET (hard_regs_live, old);
#endif
for (offset = 0, i = 0; offset < regset_size; offset++)
if (old[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit; bit <<= 1, i++)
{
if (i >= max_regno)
break;
if (old[offset] & bit)
{
register int a = reg_allocno[i];
if (a >= 0)
{
SET_ALLOCNO_LIVE (a);
block_start_allocnos[ax++] = a;
}
else if ((a = reg_renumber[i]) >= 0)
mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
}
}
REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
{
register int a = reg_allocno[i];
if (a >= 0)
{
SET_ALLOCNO_LIVE (a);
block_start_allocnos[ax++] = a;
}
else if ((a = reg_renumber[i]) >= 0)
mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
});
/* Record that each allocno now live conflicts with each other
allocno now live, and with each hard reg now live. */
@ -1640,13 +1625,10 @@ mark_elimination (from, to)
int i;
for (i = 0; i < n_basic_blocks; i++)
if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
if (REGNO_REG_SET_P (basic_block_live_at_start[i], from))
{
basic_block_live_at_start[i][from / REGSET_ELT_BITS]
&= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
basic_block_live_at_start[i][to / REGSET_ELT_BITS]
|= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
CLEAR_REGNO_REG_SET (basic_block_live_at_start[i], from);
SET_REGNO_REG_SET (basic_block_live_at_start[i], to);
}
}

View File

@ -2762,25 +2762,17 @@ mark_target_live_regs (target, res)
marked live, plus live pseudo regs that have been renumbered to
hard regs. */
#ifdef HARD_REG_SET
current_live_regs = *regs_live;
#else
COPY_HARD_REG_SET (current_live_regs, regs_live);
#endif
REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
for (offset = 0, i = 0; offset < regset_size; offset++)
{
if (regs_live[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
if ((regs_live[offset] & bit)
&& (regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (current_live_regs, j);
EXECUTE_IF_SET_IN_REG_SET (regs_live, 0, i,
{
if ((regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (current_live_regs, j);
});
}
/* Get starting and ending insn, handling the case where each might

View File

@ -289,8 +289,7 @@ static int *insn_tick;
struct sometimes
{
int offset;
int bit;
int regno;
int live_length;
int calls_crossed;
};
@ -333,8 +332,7 @@ static void create_reg_dead_note PROTO((rtx, rtx));
static void attach_deaths PROTO((rtx, rtx, int));
static void attach_deaths_insn PROTO((rtx));
static rtx unlink_notes PROTO((rtx, rtx));
static int new_sometimes_live PROTO((struct sometimes *, int, int,
int));
static int new_sometimes_live PROTO((struct sometimes *, int, int));
static void finish_sometimes_live PROTO((struct sometimes *, int));
static rtx reemit_notes PROTO((rtx, rtx));
static void schedule_block PROTO((int, FILE *));
@ -1733,8 +1731,7 @@ sched_analyze_1 (x, insn)
if (reg_last_sets[regno + i])
add_dependence (insn, reg_last_sets[regno + i],
REG_DEP_OUTPUT);
reg_pending_sets[(regno + i) / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << ((regno + i) % REGSET_ELT_BITS);
SET_REGNO_REG_SET (reg_pending_sets, regno + i);
if ((call_used_regs[i] || global_regs[i])
&& last_function_call)
/* Function calls clobber all call_used regs. */
@ -1750,8 +1747,7 @@ sched_analyze_1 (x, insn)
reg_last_uses[regno] = 0;
if (reg_last_sets[regno])
add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
reg_pending_sets[regno / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
SET_REGNO_REG_SET (reg_pending_sets, regno);
/* Pseudos that are REG_EQUIV to something may be replaced
by that during reloading. We need only add dependencies for
@ -2132,18 +2128,11 @@ sched_analyze_insn (x, insn, loop_notes)
sched_analyze_2 (XEXP (note, 0), insn);
}
for (i = 0; i < regset_size; i++)
{
REGSET_ELT_TYPE sets = reg_pending_sets[i];
if (sets)
{
register int bit;
for (bit = 0; bit < REGSET_ELT_BITS; bit++)
if (sets & ((REGSET_ELT_TYPE) 1 << bit))
reg_last_sets[i * REGSET_ELT_BITS + bit] = insn;
reg_pending_sets[i] = 0;
}
}
EXECUTE_IF_SET_AND_RESET_IN_REG_SET (reg_pending_sets, 0, i,
{
reg_last_sets[i] = insn;
});
if (reg_pending_sets_all)
{
for (i = 0; i < maxreg; i++)
@ -2264,8 +2253,7 @@ sched_analyze (head, tail)
reg_last_uses[i] = 0;
if (reg_last_sets[i])
add_dependence (insn, reg_last_sets[i], REG_DEP_ANTI);
reg_pending_sets[i / REGSET_ELT_BITS]
|= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
SET_REGNO_REG_SET (reg_pending_sets, i);
}
}
@ -2358,10 +2346,6 @@ sched_note_set (b, x, death)
regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
{
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
if (death)
{
/* If we only set part of the register, then this set does not
@ -2375,17 +2359,14 @@ sched_note_set (b, x, death)
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
SET_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, regno);
SET_REGNO_REG_SET (bb_dead_regs, regno);
}
}
else
@ -2396,17 +2377,14 @@ sched_note_set (b, x, death)
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
bb_live_regs[offset] |= bit;
bb_dead_regs[offset] &= ~bit;
SET_REGNO_REG_SET (bb_live_regs, regno + j);
CLEAR_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
bb_live_regs[offset] |= bit;
bb_dead_regs[offset] &= ~bit;
SET_REGNO_REG_SET (bb_live_regs, regno);
CLEAR_REGNO_REG_SET (bb_dead_regs, regno);
}
}
}
@ -2524,14 +2502,12 @@ birthing_insn_p (pat)
{
rtx dest = SET_DEST (pat);
int i = REGNO (dest);
int offset = i / REGSET_ELT_BITS;
REGSET_ELT_TYPE bit = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
/* It would be more accurate to use refers_to_regno_p or
reg_mentioned_p to determine when the dest is not live before this
insn. */
if (bb_live_regs[offset] & bit)
if (REGNO_REG_SET_P (bb_live_regs, i))
return (REG_N_SETS (i) == 1);
return 0;
@ -2859,16 +2835,15 @@ attach_deaths (x, insn, set_p)
/* This code is very similar to mark_used_1 (if set_p is false)
and mark_set_1 (if set_p is true) in flow.c. */
register int regno = REGNO (x);
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
REGSET_ELT_TYPE all_needed = (old_live_regs[offset] & bit);
REGSET_ELT_TYPE some_needed = (old_live_regs[offset] & bit);
register int regno;
int some_needed;
int all_needed;
if (set_p)
return;
regno = REGNO (x);
all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
if (regno < FIRST_PSEUDO_REGISTER)
{
int n;
@ -2876,12 +2851,9 @@ attach_deaths (x, insn, set_p)
n = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--n > 0)
{
some_needed |= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1
<< ((regno + n) % REGSET_ELT_BITS)));
all_needed &= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1
<< ((regno + n) % REGSET_ELT_BITS)));
int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
some_needed |= needed;
all_needed &= needed;
}
}
@ -2943,9 +2915,7 @@ attach_deaths (x, insn, set_p)
register that is set in the insn. */
for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
i >= 0; i--)
if ((old_live_regs[(regno + i) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1
<< ((regno +i) % REGSET_ELT_BITS))) == 0
if (REGNO_REG_SET_P (old_live_regs, regno + i)
&& ! dead_or_set_regno_p (insn, regno + i))
create_reg_dead_note (gen_rtx (REG,
reg_raw_mode[regno + i],
@ -2960,18 +2930,14 @@ attach_deaths (x, insn, set_p)
int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit
= (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
bb_dead_regs[offset] &= ~bit;
bb_live_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_dead_regs, regno + j);
SET_REGNO_REG_SET (bb_live_regs, regno + j);
}
}
else
{
bb_dead_regs[offset] &= ~bit;
bb_live_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_dead_regs, regno);
SET_REGNO_REG_SET (bb_live_regs, regno);
}
}
return;
@ -3113,13 +3079,12 @@ unlink_notes (insn, tail)
/* Constructor for `sometimes' data structure. */
static int
new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
struct sometimes *regs_sometimes_live;
int offset, bit;
int regno;
int sometimes_max;
{
register struct sometimes *p;
register int regno = offset * REGSET_ELT_BITS + bit;
/* There should never be a register greater than max_regno here. If there
is, it means that a define_split has created a new pseudo reg. This
@ -3129,8 +3094,7 @@ new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
abort ();
p = &regs_sometimes_live[sometimes_max];
p->offset = offset;
p->bit = bit;
p->regno = regno;
p->live_length = 0;
p->calls_crossed = 0;
sometimes_max++;
@ -3150,9 +3114,7 @@ finish_sometimes_live (regs_sometimes_live, sometimes_max)
for (i = 0; i < sometimes_max; i++)
{
register struct sometimes *p = &regs_sometimes_live[i];
int regno;
regno = p->offset * REGSET_ELT_BITS + p->bit;
int regno = p->regno;
sched_reg_live_length[regno] += p->live_length;
sched_reg_n_calls_crossed[regno] += p->calls_crossed;
@ -3240,8 +3202,8 @@ schedule_block (b, file)
bzero ((char *) reg_last_uses, i * sizeof (rtx));
reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
bzero ((char *) reg_last_sets, i * sizeof (rtx));
reg_pending_sets = (regset) alloca (regset_bytes);
bzero ((char *) reg_pending_sets, regset_bytes);
reg_pending_sets = ALLOCA_REG_SET ();
CLEAR_REG_SET (reg_pending_sets);
reg_pending_sets_all = 0;
clear_units ();
@ -3526,12 +3488,8 @@ schedule_block (b, file)
if (call_used_regs[j] && ! global_regs[j]
&& ! fixed_regs[j])
{
register int offset = j / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (j % REGSET_ELT_BITS);
bb_live_regs[offset] |= bit;
bb_dead_regs[offset] &= ~bit;
SET_REGNO_REG_SET (bb_live_regs, j);
CLEAR_REGNO_REG_SET (bb_dead_regs, j);
}
}
@ -3543,9 +3501,6 @@ schedule_block (b, file)
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int regno = REGNO (XEXP (link, 0));
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
if (regno < FIRST_PSEUDO_REGISTER)
{
@ -3553,18 +3508,14 @@ schedule_block (b, file)
GET_MODE (XEXP (link, 0)));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = ((REGSET_ELT_TYPE) 1
<< ((regno + j) % REGSET_ELT_BITS));
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
SET_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, regno);
SET_REGNO_REG_SET (bb_dead_regs, regno);
}
}
}
@ -3647,12 +3598,8 @@ schedule_block (b, file)
if (call_used_regs[j] && ! global_regs[j]
&& ! fixed_regs[j])
{
register int offset = j / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (j % REGSET_ELT_BITS);
bb_live_regs[offset] |= bit;
bb_dead_regs[offset] &= ~bit;
SET_REGNO_REG_SET (bb_live_regs, j);
CLEAR_REGNO_REG_SET (bb_dead_regs, j);
}
}
@ -3666,9 +3613,6 @@ schedule_block (b, file)
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int regno = REGNO (XEXP (link, 0));
register int offset = regno / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
/* Only unlink REG_DEAD notes; leave REG_UNUSED notes
alone. */
@ -3690,18 +3634,14 @@ schedule_block (b, file)
GET_MODE (XEXP (link, 0)));
while (--j >= 0)
{
offset = (regno + j) / REGSET_ELT_BITS;
bit = ((REGSET_ELT_TYPE) 1
<< ((regno + j) % REGSET_ELT_BITS));
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
SET_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, regno);
SET_REGNO_REG_SET (bb_dead_regs, regno);
}
}
else
@ -3713,25 +3653,19 @@ schedule_block (b, file)
if (reload_completed == 0)
{
/* Keep track of register lives. */
old_live_regs = (regset) alloca (regset_bytes);
old_live_regs = ALLOCA_REG_SET ();
regs_sometimes_live
= (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
sometimes_max = 0;
/* Start with registers live at end. */
for (j = 0; j < regset_size; j++)
{
REGSET_ELT_TYPE live = bb_live_regs[j];
old_live_regs[j] = live;
if (live)
{
register int bit;
for (bit = 0; bit < REGSET_ELT_BITS; bit++)
if (live & ((REGSET_ELT_TYPE) 1 << bit))
sometimes_max = new_sometimes_live (regs_sometimes_live, j,
bit, sometimes_max);
}
}
COPY_REG_SET (old_live_regs, bb_live_regs);
EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
{
sometimes_max
= new_sometimes_live (regs_sometimes_live,
j, sometimes_max);
});
}
SCHED_SORT (ready, n_ready, 1);
@ -3902,12 +3836,8 @@ schedule_block (b, file)
if (call_used_regs[i] && ! global_regs[i]
&& ! fixed_regs[i])
{
register int offset = i / REGSET_ELT_BITS;
register REGSET_ELT_TYPE bit
= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
bb_live_regs[offset] &= ~bit;
bb_dead_regs[offset] |= bit;
CLEAR_REGNO_REG_SET (bb_live_regs, i);
SET_REGNO_REG_SET (bb_dead_regs, i);
}
/* Regs live at the time of a call instruction must not
@ -3918,8 +3848,7 @@ schedule_block (b, file)
(below). */
p = regs_sometimes_live;
for (i = 0; i < sometimes_max; i++, p++)
if (bb_live_regs[p->offset]
& ((REGSET_ELT_TYPE) 1 << p->bit))
if (REGNO_REG_SET_P (bb_live_regs, p->regno))
p->calls_crossed += 1;
}
@ -3928,20 +3857,12 @@ schedule_block (b, file)
attach_deaths_insn (insn);
/* Find registers now made live by that instruction. */
for (i = 0; i < regset_size; i++)
{
REGSET_ELT_TYPE diff = bb_live_regs[i] & ~old_live_regs[i];
if (diff)
{
register int bit;
old_live_regs[i] |= diff;
for (bit = 0; bit < REGSET_ELT_BITS; bit++)
if (diff & ((REGSET_ELT_TYPE) 1 << bit))
sometimes_max
= new_sometimes_live (regs_sometimes_live, i, bit,
sometimes_max);
}
}
EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, i,
{
sometimes_max
= new_sometimes_live (regs_sometimes_live,
i, sometimes_max);
});
/* Count lengths of all regs we are worrying about now,
and handle registers no longer live. */
@ -3949,20 +3870,18 @@ schedule_block (b, file)
for (i = 0; i < sometimes_max; i++)
{
register struct sometimes *p = &regs_sometimes_live[i];
int regno = p->offset*REGSET_ELT_BITS + p->bit;
int regno = p->regno;
p->live_length += 1;
if ((bb_live_regs[p->offset]
& ((REGSET_ELT_TYPE) 1 << p->bit)) == 0)
if (REGNO_REG_SET_P (bb_live_regs, p->regno))
{
/* This is the end of one of this register's lifetime
segments. Save the lifetime info collected so far,
and clear its bit in the old_live_regs entry. */
sched_reg_live_length[regno] += p->live_length;
sched_reg_n_calls_crossed[regno] += p->calls_crossed;
old_live_regs[p->offset]
&= ~((REGSET_ELT_TYPE) 1 << p->bit);
CLEAR_REGNO_REG_SET (old_live_regs, p->regno);
/* Delete the reg_sometimes_live entry for this reg by
copying the last entry over top of it. */
@ -4875,8 +4794,8 @@ schedule_insns (dump_file)
{
sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
bb_dead_regs = (regset) alloca (regset_bytes);
bb_live_regs = (regset) alloca (regset_bytes);
bb_dead_regs = ALLOCA_REG_SET ();
bb_live_regs = ALLOCA_REG_SET ();
bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
init_alias_analysis ();