* Integrate alias analysis changes from jfc@mit.edu

* Makefile.in (OBJS): Add alias.o
        (alias.o): Add dependencies.
        * alias.c: New file.
        * sched.c: Remove alias analysis code.  It lives in alias.c now.
        (reg_last_uses_size): Declare.
        (sched_analyze_2): Add new arguments to true_dependence.
        (sched_analyze_insn): Use reg_last_uses_size instead of max_reg.
        (schedule_block): Initialize reg_last_uses_size.
        (schedule_insns): Always call init_alias_analysis.
        * calls.c (expand_call): Note calls to malloc, calloc, and realloc;
        mark return value from such functions as a pointer and keep track of
        them for alias analysis.  If a return value from a function is a
        pointer, mark it as such.
        * combine.c (distribute_notes): Handle REG_NOALIAS.
        * cse.c (struct write_data): Delete.  No longer needed.
        (invalidate): Don't call set_nonvarying_address_components anymore.
        Use true_dependence to decide if an entry should be removed from
        the hash table.
        (invalidate_memory): Remove WRITES argument, simplify appropriately.
        Fix all callers.
        (note_mem_written): Similarly for WRITE_PTR argument.
        (invalidate_from_clobbers): Similarly for W argument.
        (invalidate_for_call): Remove memory elements from the hash table.
        (refers_to_mem_p, cse_rtx_addr_varies_p): Deleted.
        (cse_rtx_varies_p): New function.  Derived from old
        cse_rtx_addr_varies_p.
        (cse_insn): Remove WRITES_MEMORY and INIT variables and all references.
        Don't call note_mem_written anymore.  Stack pushes invalidate the stack
        pointer if PUSH_ROUNDING is defined.  No longer need to call
        cse_rtx_addr_varies_p to decide if a MEM should be invalidated.
        (skipped_writes_memory): Remove variable.
        (invalidate_skipped_set): Simplify and wewrite to use invalidate_memory.
        (invalidate_skipped_block): Simplify for new alias analysis code.
        (cse_set_around_loop): Likewise.
        (cse_main): Call init_alias_analysis.
        * flags.h (flag_alias_check, flag_argument_noalias): Declare.
        * toplev.c (flag_alias_check, flag_argument_noalias): Define.
        (f_options): Add new alias checking arguments.
        (main): Set flag_alias_check when optimizing.
        * local_alloc (validate_equiv_mem_from_store): Add new arguments
        to true_dependence.
        (memref_referenced_p): Likewise.
        * loop.c (NUM_STORES): Increase to 30.
        (prescan_loop): Only non-constant calls set unknown_address_altered.
        (invariant_p): Add new arguments to true_dependence.
        (record_giv): Initialize unrolled and shared fields.
        (emit_iv_add_mult): Call record_base_value as needed.
        * loop.h (struct induction): Add unrolled and shared fields.
        * unroll.c  (unroll_loop): Call record_base_value as needed.
        (copy_loop_body): Likewise.
        (final_biv_value): Likewise.
        (final_giv_value): Likewise.
        (find_splittable_regs): Likewise.  Only create one new pseudo
        if we have multiple address GIVs that were combined with the same
        dst_reg GIV.  Note when a new register is created due to unrolling.
        * rtl.c (reg_note_name): Add REG_NOALIAS.
        * rtl.h (enum reg_note): Similarly.
        (rtx_varies_p, may_trap_p, side_effects_p): Declare.
        (volatile_refs_p, volatile_insn_p, remove_note): Likewise.
        (note_stores, refers_to_regno_p, reg_overlap_mentioned_p): Likewise.
        (true_dependence, read_dependence, anti_dependence): Likewise.
        (output_dependence, init_alias_analysis, end_alias_analysis): Likewise.
        (mark_user_reg, mark_reg_pointer): Likewise.
jfc's alias analysis code.

From-SVN: r14768
This commit is contained in:
Jeffrey A Law 1997-08-11 20:07:24 +00:00 committed by Jeff Law
parent 5fa39bfeb7
commit 9ae8ffe751
15 changed files with 1372 additions and 904 deletions

View File

@ -1,6 +1,72 @@
Mon Aug 11 10:04:49 1997 Jeffrey A Law (law@cygnus.com)
* Integrate reload bugfix from Wilson which enables the PA port
* Integrate alias analysis changes from jfc@mit.edu
* Makefile.in (OBJS): Add alias.o
(alias.o): Add dependencies.
* alias.c: New file.
* sched.c: Remove alias analysis code. It lives in alias.c now.
(reg_last_uses_size): Declare.
(sched_analyze_2): Add new arguments to true_dependence.
(sched_analyze_insn): Use reg_last_uses_size instead of max_reg.
(schedule_block): Initialize reg_last_uses_size.
(schedule_insns): Always call init_alias_analysis.
* calls.c (expand_call): Note calls to malloc, calloc, and realloc;
mark return value from such functions as a pointer and keep track of
them for alias analysis. If a return value from a function is a
pointer, mark it as such.
* combine.c (distribute_notes): Handle REG_NOALIAS.
* cse.c (struct write_data): Delete. No longer needed.
(invalidate): Don't call set_nonvarying_address_components anymore.
Use true_dependence to decide if an entry should be removed from
the hash table.
(invalidate_memory): Remove WRITES argument, simplify appropriately.
Fix all callers.
(note_mem_written): Similarly for WRITE_PTR argument.
(invalidate_from_clobbers): Similarly for W argument.
(invalidate_for_call): Remove memory elements from the hash table.
(refers_to_mem_p, cse_rtx_addr_varies_p): Deleted.
(cse_rtx_varies_p): New function. Derived from old
cse_rtx_addr_varies_p.
(cse_insn): Remove WRITES_MEMORY and INIT variables and all references.
Don't call note_mem_written anymore. Stack pushes invalidate the stack
pointer if PUSH_ROUNDING is defined. No longer need to call
cse_rtx_addr_varies_p to decide if a MEM should be invalidated.
(skipped_writes_memory): Remove variable.
(invalidate_skipped_set): Simplify and wewrite to use invalidate_memory.
(invalidate_skipped_block): Simplify for new alias analysis code.
(cse_set_around_loop): Likewise.
(cse_main): Call init_alias_analysis.
* flags.h (flag_alias_check, flag_argument_noalias): Declare.
* toplev.c (flag_alias_check, flag_argument_noalias): Define.
(f_options): Add new alias checking arguments.
(main): Set flag_alias_check when optimizing.
* local_alloc (validate_equiv_mem_from_store): Add new arguments
to true_dependence.
(memref_referenced_p): Likewise.
* loop.c (NUM_STORES): Increase to 30.
(prescan_loop): Only non-constant calls set unknown_address_altered.
(invariant_p): Add new arguments to true_dependence.
(record_giv): Initialize unrolled and shared fields.
(emit_iv_add_mult): Call record_base_value as needed.
* loop.h (struct induction): Add unrolled and shared fields.
* unroll.c (unroll_loop): Call record_base_value as needed.
(copy_loop_body): Likewise.
(final_biv_value): Likewise.
(final_giv_value): Likewise.
(find_splittable_regs): Likewise. Only create one new pseudo
if we have multiple address GIVs that were combined with the same
dst_reg GIV. Note when a new register is created due to unrolling.
* rtl.c (reg_note_name): Add REG_NOALIAS.
* rtl.h (enum reg_note): Similarly.
(rtx_varies_p, may_trap_p, side_effects_p): Declare.
(volatile_refs_p, volatile_insn_p, remove_note): Likewise.
(note_stores, refers_to_regno_p, reg_overlap_mentioned_p): Likewise.
(true_dependence, read_dependence, anti_dependence): Likewise.
(output_dependence, init_alias_analysis, end_alias_analysis): Likewise.
(mark_user_reg, mark_reg_pointer): Likewise.
* Integrate reload bugfix from Wilon which enables the PA port
to bootstrap again.
* reload1.c (reload): Sum needs for both OPADDR_ADDR and and
OPERAND_ADDRESS when computing how many registers an insn needs.

View File

@ -554,7 +554,7 @@ OBJS = toplev.o version.o tree.o print-tree.o stor-layout.o fold-const.o \
dbxout.o sdbout.o dwarfout.o dwarf2out.o xcoffout.o bitmap.o \
integrate.o jump.o cse.o loop.o unroll.o flow.o stupid.o combine.o \
regclass.o local-alloc.o global.o reload.o reload1.o caller-save.o \
insn-peep.o reorg.o sched.o final.o recog.o reg-stack.o \
insn-peep.o reorg.o alias.o sched.o final.o recog.o reg-stack.o \
insn-opinit.o insn-recog.o insn-extract.o insn-output.o insn-emit.o \
profile.o insn-attrtab.o $(out_object_file) getpwd.o convert.o $(EXTRA_OBJS)
@ -1321,6 +1321,8 @@ caller-save.o : caller-save.c $(CONFIG_H) $(RTL_H) flags.h \
reorg.o : reorg.c $(CONFIG_H) $(RTL_H) conditions.h hard-reg-set.h \
$(BASIC_BLOCK_H) regs.h insn-config.h insn-attr.h insn-flags.h recog.h \
flags.h output.h
alias.o : alias.c $(CONFIG_H) $(RTL_H) flags.h hard-reg-set.h regs.h \
insn-codes.h
sched.o : $(SCHED_PREFIX)sched.c $(CONFIG_H) $(RTL_H) $(BASIC_BLOCK_H) regs.h hard-reg-set.h \
flags.h insn-config.h insn-attr.h
final.o : final.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h regs.h \

1015
gcc/alias.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -563,6 +563,8 @@ expand_call (exp, target, ignore)
/* Nonzero if it is plausible that this is a call to alloca. */
int may_be_alloca;
/* Nonzero if this is a call to malloc or a related function. */
int is_malloc;
/* Nonzero if this is a call to setjmp or a related function. */
int returns_twice;
/* Nonzero if this is a call to `longjmp'. */
@ -841,6 +843,7 @@ expand_call (exp, target, ignore)
returns_twice = 0;
is_longjmp = 0;
is_malloc = 0;
if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 15)
{
@ -880,6 +883,12 @@ expand_call (exp, target, ignore)
else if (tname[0] == 'l' && tname[1] == 'o'
&& ! strcmp (tname, "longjmp"))
is_longjmp = 1;
/* Only recognize malloc when alias analysis is enabled. */
else if (flag_alias_check
&& ((tname[0] == 'm' && ! strcmp(tname + 1, "alloc"))
|| (tname[0] == 'c' && ! strcmp(tname + 1, "alloc"))
|| (tname[0] == 'r' && ! strcmp(tname + 1, "ealloc"))))
is_malloc = 1;
}
if (may_be_alloca)
@ -1366,7 +1375,7 @@ expand_call (exp, target, ignore)
/* Now we are about to start emitting insns that can be deleted
if a libcall is deleted. */
if (is_const)
if (is_const || is_malloc)
start_sequence ();
/* If we have no actual push instructions, or shouldn't use them,
@ -1948,6 +1957,13 @@ expand_call (exp, target, ignore)
rtx temp = gen_reg_rtx (GET_MODE (valreg));
rtx insns;
/* Mark the return value as a pointer if needed. */
if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
{
tree pointed_to = TREE_TYPE (TREE_TYPE (exp));
mark_reg_pointer (temp, TYPE_ALIGN (pointed_to) / BITS_PER_UNIT);
}
/* Construct an "equal form" for the value which mentions all the
arguments in order as well as the function name. */
#ifdef PUSH_ARGS_REVERSED
@ -1974,6 +1990,29 @@ expand_call (exp, target, ignore)
end_sequence ();
emit_insns (insns);
}
else if (is_malloc)
{
rtx temp = gen_reg_rtx (GET_MODE (valreg));
rtx last, insns;
/* The return value from a malloc-like function is a pointer. */
if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
mark_reg_pointer (temp, BIGGEST_ALIGNMENT / BITS_PER_UNIT);
emit_move_insn (temp, valreg);
/* The return value from a malloc-like function can not alias
anything else. */
last = get_last_insn ();
REG_NOTES (last) =
gen_rtx (EXPR_LIST, REG_NOALIAS, temp, REG_NOTES (last));
/* Write out the sequence. */
insns = get_insns ();
end_sequence ();
emit_insns (insns);
valreg = temp;
}
/* For calls to `setjmp', etc., inform flow.c it should complain
if nonvolatile values are live. */

View File

@ -11058,6 +11058,7 @@ distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
case REG_EQUAL:
case REG_EQUIV:
case REG_NONNEG:
case REG_NOALIAS:
/* These notes say something about results of an insn. We can
only support them if they used to be on I3 in which case they
remain on I3. Otherwise they are ignored.

432
gcc/cse.c
View File

@ -519,27 +519,6 @@ static struct table_elt *last_jump_equiv_class;
static int constant_pool_entries_cost;
/* Bits describing what kind of values in memory must be invalidated
for a particular instruction. If all three bits are zero,
no memory refs need to be invalidated. Each bit is more powerful
than the preceding ones, and if a bit is set then the preceding
bits are also set.
Here is how the bits are set:
Pushing onto the stack invalidates only the stack pointer,
writing at a fixed address invalidates only variable addresses,
writing in a structure element at variable address
invalidates all but scalar variables,
and writing in anything else at variable address invalidates everything. */
struct write_data
{
int sp : 1; /* Invalidate stack pointer. */
int var : 1; /* Invalidate variable addresses. */
int nonscalar : 1; /* Invalidate all but scalar variables. */
int all : 1; /* Invalidate all memory refs. */
};
/* Define maximum length of a branch path. */
#define PATHLENGTH 10
@ -626,9 +605,10 @@ static struct table_elt *insert PROTO((rtx, struct table_elt *, unsigned,
static void merge_equiv_classes PROTO((struct table_elt *,
struct table_elt *));
static void invalidate PROTO((rtx, enum machine_mode));
static int cse_rtx_varies_p PROTO((rtx));
static void remove_invalid_refs PROTO((int));
static void rehash_using_reg PROTO((rtx));
static void invalidate_memory PROTO((struct write_data *));
static void invalidate_memory PROTO((void));
static void invalidate_for_call PROTO((void));
static rtx use_related_value PROTO((rtx, struct table_elt *));
static unsigned canon_hash PROTO((rtx, enum machine_mode));
@ -638,9 +618,6 @@ static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
HOST_WIDE_INT *,
HOST_WIDE_INT *));
static int refers_to_p PROTO((rtx, rtx));
static int refers_to_mem_p PROTO((rtx, rtx, HOST_WIDE_INT,
HOST_WIDE_INT));
static int cse_rtx_addr_varies_p PROTO((rtx));
static rtx canon_reg PROTO((rtx, rtx));
static void find_best_addr PROTO((rtx, rtx *));
static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
@ -656,8 +633,8 @@ static void record_jump_equiv PROTO((rtx, int));
static void record_jump_cond PROTO((enum rtx_code, enum machine_mode,
rtx, rtx, int));
static void cse_insn PROTO((rtx, int));
static void note_mem_written PROTO((rtx, struct write_data *));
static void invalidate_from_clobbers PROTO((struct write_data *, rtx));
static int note_mem_written PROTO((rtx));
static void invalidate_from_clobbers PROTO((rtx));
static rtx cse_process_notes PROTO((rtx, rtx));
static void cse_around_loop PROTO((rtx));
static void invalidate_skipped_set PROTO((rtx, rtx));
@ -1534,8 +1511,6 @@ invalidate (x, full_mode)
{
register int i;
register struct table_elt *p;
rtx base;
HOST_WIDE_INT start, end;
/* If X is a register, dependencies on its contents
are recorded through the qty number mechanism.
@ -1627,16 +1602,17 @@ invalidate (x, full_mode)
if (full_mode == VOIDmode)
full_mode = GET_MODE (x);
set_nonvarying_address_components (XEXP (x, 0), GET_MODE_SIZE (full_mode),
&base, &start, &end);
for (i = 0; i < NBUCKETS; i++)
{
register struct table_elt *next;
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (refers_to_mem_p (p->exp, base, start, end))
/* Invalidate ASM_OPERANDS which reference memory (this is easier
than checking all the aliases). */
if (p->in_memory
&& (GET_CODE (p->exp) != MEM
|| true_dependence (x, full_mode, p->exp, cse_rtx_varies_p)))
remove_from_table (p, i);
}
}
@ -1717,30 +1693,6 @@ rehash_using_reg (x)
}
}
/* Remove from the hash table all expressions that reference memory,
or some of them as specified by *WRITES. */
static void
invalidate_memory (writes)
struct write_data *writes;
{
register int i;
register struct table_elt *p, *next;
int all = writes->all;
int nonscalar = writes->nonscalar;
for (i = 0; i < NBUCKETS; i++)
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (p->in_memory
&& (all
|| (nonscalar && p->in_struct)
|| cse_rtx_addr_varies_p (p->exp)))
remove_from_table (p, i);
}
}
/* Remove from the hash table any expression that is a call-clobbered
register. Also update their TICK values. */
@ -1778,6 +1730,12 @@ invalidate_for_call ()
{
next = p->next_same_hash;
if (p->in_memory)
{
remove_from_table (p, hash);
continue;
}
if (GET_CODE (p->exp) != REG
|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
continue;
@ -2418,105 +2376,31 @@ set_nonvarying_address_components (addr, size, pbase, pstart, pend)
*pend = end;
}
/* Return 1 iff any subexpression of X refers to memory
at an address of BASE plus some offset
such that any of the bytes' offsets fall between START (inclusive)
and END (exclusive).
The value is undefined if X is a varying address (as determined by
cse_rtx_addr_varies_p). This function is not used in such cases.
When used in the cse pass, `qty_const' is nonzero, and it is used
to treat an address that is a register with a known constant value
as if it were that constant value.
In the loop pass, `qty_const' is zero, so this is not done. */
/* Return 1 if X has a value that can vary even between two
executions of the program. 0 means X can be compared reliably
against certain constants or near-constants. */
static int
refers_to_mem_p (x, base, start, end)
rtx x, base;
HOST_WIDE_INT start, end;
{
register HOST_WIDE_INT i;
register enum rtx_code code;
register char *fmt;
repeat:
if (x == 0)
return 0;
code = GET_CODE (x);
if (code == MEM)
{
register rtx addr = XEXP (x, 0); /* Get the address. */
rtx mybase;
HOST_WIDE_INT mystart, myend;
set_nonvarying_address_components (addr, GET_MODE_SIZE (GET_MODE (x)),
&mybase, &mystart, &myend);
/* refers_to_mem_p is never called with varying addresses.
If the base addresses are not equal, there is no chance
of the memory addresses conflicting. */
if (! rtx_equal_p (mybase, base))
return 0;
return myend > start && mystart < end;
}
/* X does not match, so try its subexpressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (i == 0)
{
x = XEXP (x, 0);
goto repeat;
}
else
if (refers_to_mem_p (XEXP (x, i), base, start, end))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (refers_to_mem_p (XVECEXP (x, i, j), base, start, end))
return 1;
}
return 0;
}
/* Nonzero if X refers to memory at a varying address;
except that a register which has at the moment a known constant value
isn't considered variable. */
static int
cse_rtx_addr_varies_p (x)
rtx x;
cse_rtx_varies_p (x)
register rtx x;
{
/* We need not check for X and the equivalence class being of the same
mode because if X is equivalent to a constant in some mode, it
doesn't vary in any mode. */
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == REG
&& REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
&& GET_MODE (XEXP (x, 0)) == qty_mode[reg_qty[REGNO (XEXP (x, 0))]]
&& qty_const[reg_qty[REGNO (XEXP (x, 0))]] != 0)
if (GET_CODE (x) == REG
&& REGNO_QTY_VALID_P (REGNO (x))
&& GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]]
&& qty_const[reg_qty[REGNO (x)]] != 0)
return 0;
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 0)))
&& (GET_MODE (XEXP (XEXP (x, 0), 0))
== qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
&& qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (x, 0)) == REG
&& REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
&& (GET_MODE (XEXP (x, 0))
== qty_mode[reg_qty[REGNO (XEXP (x, 0))]])
&& qty_const[reg_qty[REGNO (XEXP (x, 0))]])
return 0;
/* This can happen as the result of virtual register instantiation, if
@ -2524,21 +2408,20 @@ cse_rtx_addr_varies_p (x)
us a three instruction sequence, load large offset into a register,
load fp minus a constant into a register, then a MEM which is the
sum of the two `constant' registers. */
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == REG
&& REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 0)))
&& (GET_MODE (XEXP (XEXP (x, 0), 0))
== qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
&& qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]]
&& REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 1)))
&& (GET_MODE (XEXP (XEXP (x, 0), 1))
== qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 1))]])
&& qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 1))]])
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == REG
&& GET_CODE (XEXP (x, 1)) == REG
&& REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
&& (GET_MODE (XEXP (x, 0))
== qty_mode[reg_qty[REGNO (XEXP (x, 0))]])
&& qty_const[reg_qty[REGNO (XEXP (x, 0))]]
&& REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))
&& (GET_MODE (XEXP (x, 1))
== qty_mode[reg_qty[REGNO (XEXP (x, 1))]])
&& qty_const[reg_qty[REGNO (XEXP (x, 1))]])
return 0;
return rtx_addr_varies_p (x);
return rtx_varies_p (x);
}
/* Canonicalize an expression:
@ -6161,8 +6044,6 @@ cse_insn (insn, in_libcall_block)
/* Records what this insn does to set CC0. */
rtx this_insn_cc0 = 0;
enum machine_mode this_insn_cc0_mode;
struct write_data writes_memory;
static struct write_data init = {0, 0, 0, 0};
rtx src_eqv = 0;
struct table_elt *src_eqv_elt = 0;
@ -6174,7 +6055,6 @@ cse_insn (insn, in_libcall_block)
struct set *sets;
this_insn = insn;
writes_memory = init;
/* Find all the SETs and CLOBBERs in this instruction.
Record all the SETs in the array `set' and count them.
@ -6276,15 +6156,11 @@ cse_insn (insn, in_libcall_block)
}
else if (GET_CODE (y) == CLOBBER)
{
/* If we clobber memory, take note of that,
and canon the address.
/* If we clobber memory, canon the address.
This does nothing when a register is clobbered
because we have already invalidated the reg. */
if (GET_CODE (XEXP (y, 0)) == MEM)
{
canon_reg (XEXP (y, 0), NULL_RTX);
note_mem_written (XEXP (y, 0), &writes_memory);
}
canon_reg (XEXP (y, 0), NULL_RTX);
}
else if (GET_CODE (y) == USE
&& ! (GET_CODE (XEXP (y, 0)) == REG
@ -6303,10 +6179,7 @@ cse_insn (insn, in_libcall_block)
else if (GET_CODE (x) == CLOBBER)
{
if (GET_CODE (XEXP (x, 0)) == MEM)
{
canon_reg (XEXP (x, 0), NULL_RTX);
note_mem_written (XEXP (x, 0), &writes_memory);
}
canon_reg (XEXP (x, 0), NULL_RTX);
}
/* Canonicalize a USE of a pseudo register or memory location. */
@ -6964,7 +6837,8 @@ cse_insn (insn, in_libcall_block)
&& (src_folded == 0
|| (GET_CODE (src_folded) != MEM
&& ! src_folded_force_flag))
&& GET_MODE_CLASS (mode) != MODE_CC)
&& GET_MODE_CLASS (mode) != MODE_CC
&& mode != VOIDmode)
{
src_folded_force_flag = 1;
src_folded = trial;
@ -7087,13 +6961,15 @@ cse_insn (insn, in_libcall_block)
if (GET_CODE (dest) == MEM)
{
#ifdef PUSH_ROUNDING
/* Stack pushes invalidate the stack pointer. */
rtx addr = XEXP (dest, 0);
if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
|| GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
&& XEXP (addr, 0) == stack_pointer_rtx)
invalidate (stack_pointer_rtx, Pmode);
#endif
dest = fold_rtx (dest, insn);
/* Decide whether we invalidate everything in memory,
or just things at non-fixed places.
Writing a large aggregate must invalidate everything
because we don't know how long it is. */
note_mem_written (dest, &writes_memory);
}
/* Compute the hash code of the destination now,
@ -7338,17 +7214,15 @@ cse_insn (insn, in_libcall_block)
so that the destination goes into that class. */
sets[i].src_elt = src_eqv_elt;
invalidate_from_clobbers (&writes_memory, x);
invalidate_from_clobbers (x);
/* Some registers are invalidated by subroutine calls. Memory is
invalidated by non-constant calls. */
if (GET_CODE (insn) == CALL_INSN)
{
static struct write_data everything = {0, 1, 1, 1};
if (! CONST_CALL_P (insn))
invalidate_memory (&everything);
invalidate_memory ();
invalidate_for_call ();
}
@ -7369,8 +7243,7 @@ cse_insn (insn, in_libcall_block)
Needed for memory if this is a nonvarying address, unless
we have just done an invalidate_memory that covers even those. */
if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
|| (GET_CODE (dest) == MEM && ! writes_memory.all
&& ! cse_rtx_addr_varies_p (dest)))
|| GET_CODE (dest) == MEM)
invalidate (dest, VOIDmode);
else if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT)
@ -7638,76 +7511,33 @@ cse_insn (insn, in_libcall_block)
prev_insn = insn;
}
/* Store 1 in *WRITES_PTR for those categories of memory ref
that must be invalidated when the expression WRITTEN is stored in.
If WRITTEN is null, say everything must be invalidated. */
/* Remove from the ahsh table all expressions that reference memory. */
static void
note_mem_written (written, writes_ptr)
rtx written;
struct write_data *writes_ptr;
invalidate_memory ()
{
static struct write_data everything = {0, 1, 1, 1};
register int i;
register struct table_elt *p, *next;
if (written == 0)
*writes_ptr = everything;
else if (GET_CODE (written) == MEM)
{
/* Pushing or popping the stack invalidates just the stack pointer. */
rtx addr = XEXP (written, 0);
if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
|| GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
&& GET_CODE (XEXP (addr, 0)) == REG
&& REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
{
writes_ptr->sp = 1;
return;
}
else if (GET_MODE (written) == BLKmode)
*writes_ptr = everything;
else if (cse_rtx_addr_varies_p (written))
{
/* A varying address that is a sum indicates an array element,
and that's just as good as a structure element
in implying that we need not invalidate scalar variables.
However, we must allow QImode aliasing of scalars, because the
ANSI C standard allows character pointers to alias anything.
We must also allow AND addresses, because they may generate
accesses outside the object being referenced. This is used to
generate aligned addresses from unaligned addresses, for instance,
the alpha storeqi_unaligned pattern. */
if (! ((MEM_IN_STRUCT_P (written)
|| GET_CODE (XEXP (written, 0)) == PLUS)
&& GET_MODE (written) != QImode
&& GET_CODE (XEXP (written, 0)) != AND))
writes_ptr->all = 1;
writes_ptr->nonscalar = 1;
}
writes_ptr->var = 1;
}
for (i = 0; i < NBUCKETS; i++)
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (p->in_memory)
remove_from_table (p, i);
}
}
/* Perform invalidation on the basis of everything about an insn
except for invalidating the actual places that are SET in it.
This includes the places CLOBBERed, and anything that might
alias with something that is SET or CLOBBERed.
W points to the writes_memory for this insn, a struct write_data
saying which kinds of memory references must be invalidated.
X is the pattern of the insn. */
static void
invalidate_from_clobbers (w, x)
struct write_data *w;
rtx x;
/* XXX ??? The name of this function bears little resemblance to
what this function actually does. FIXME. */
static int
note_mem_written (addr)
register rtx addr;
{
/* If W->var is not set, W specifies no action.
If W->all is set, this step gets all memory refs
so they can be ignored in the rest of this function. */
if (w->var)
invalidate_memory (w);
if (w->sp)
/* Pushing or popping the stack invalidates just the stack pointer. */
if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
|| GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
&& GET_CODE (XEXP (addr, 0)) == REG
&& REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
{
if (reg_tick[STACK_POINTER_REGNUM] >= 0)
reg_tick[STACK_POINTER_REGNUM]++;
@ -7715,18 +7545,34 @@ invalidate_from_clobbers (w, x)
/* This should be *very* rare. */
if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
invalidate (stack_pointer_rtx, VOIDmode);
return 1;
}
return 0;
}
/* Perform invalidation on the basis of everything about an insn
except for invalidating the actual places that are SET in it.
This includes the places CLOBBERed, and anything that might
alias with something that is SET or CLOBBERed.
X is the pattern of the insn. */
static void
invalidate_from_clobbers (x)
rtx x;
{
if (GET_CODE (x) == CLOBBER)
{
rtx ref = XEXP (x, 0);
if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
|| (GET_CODE (ref) == MEM && ! w->all))
invalidate (ref, VOIDmode);
else if (GET_CODE (ref) == STRICT_LOW_PART
|| GET_CODE (ref) == ZERO_EXTRACT)
invalidate (XEXP (ref, 0), GET_MODE (ref));
if (ref)
{
if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
|| GET_CODE (ref) == MEM)
invalidate (ref, VOIDmode);
else if (GET_CODE (ref) == STRICT_LOW_PART
|| GET_CODE (ref) == ZERO_EXTRACT)
invalidate (XEXP (ref, 0), GET_MODE (ref));
}
}
else if (GET_CODE (x) == PARALLEL)
{
@ -7737,15 +7583,12 @@ invalidate_from_clobbers (w, x)
if (GET_CODE (y) == CLOBBER)
{
rtx ref = XEXP (y, 0);
if (ref)
{
if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
|| (GET_CODE (ref) == MEM && !w->all))
invalidate (ref, VOIDmode);
else if (GET_CODE (ref) == STRICT_LOW_PART
|| GET_CODE (ref) == ZERO_EXTRACT)
invalidate (XEXP (ref, 0), GET_MODE (ref));
}
if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
|| GET_CODE (ref) == MEM)
invalidate (ref, VOIDmode);
else if (GET_CODE (ref) == STRICT_LOW_PART
|| GET_CODE (ref) == ZERO_EXTRACT)
invalidate (XEXP (ref, 0), GET_MODE (ref));
}
}
}
@ -7907,10 +7750,6 @@ cse_around_loop (loop_start)
}
}
/* Variable used for communications between the next two routines. */
static struct write_data skipped_writes_memory;
/* Process one SET of an insn that was skipped. We ignore CLOBBERs
since they are done elsewhere. This function is called via note_stores. */
@ -7919,14 +7758,21 @@ invalidate_skipped_set (dest, set)
rtx set;
rtx dest;
{
if (GET_CODE (dest) == MEM)
note_mem_written (dest, &skipped_writes_memory);
enum rtx_code code = GET_CODE (dest);
/* There are times when an address can appear varying and be a PLUS
during this scan when it would be a fixed address were we to know
the proper equivalences. So promote "nonscalar" to be "all". */
if (skipped_writes_memory.nonscalar)
skipped_writes_memory.all = 1;
if (code == MEM
&& ! note_mem_written (dest) /* If this is not a stack push ... */
/* There are times when an address can appear varying and be a PLUS
during this scan when it would be a fixed address were we to know
the proper equivalences. So invalidate all memory if there is
a BLKmode or nonscalar memory reference or a reference to a
variable address. */
&& (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
|| cse_rtx_varies_p (XEXP (dest, 0))))
{
invalidate_memory ();
return;
}
if (GET_CODE (set) == CLOBBER
#ifdef HAVE_cc0
@ -7935,12 +7781,10 @@ invalidate_skipped_set (dest, set)
|| dest == pc_rtx)
return;
if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
|| (! skipped_writes_memory.all && ! cse_rtx_addr_varies_p (dest)))
invalidate (dest, VOIDmode);
else if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT)
if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
invalidate (XEXP (dest, 0), GET_MODE (dest));
else if (code == REG || code == SUBREG || code == MEM)
invalidate (dest, VOIDmode);
}
/* Invalidate all insns from START up to the end of the function or the
@ -7952,8 +7796,6 @@ invalidate_skipped_block (start)
rtx start;
{
rtx insn;
static struct write_data init = {0, 0, 0, 0};
static struct write_data everything = {0, 1, 1, 1};
for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
insn = NEXT_INSN (insn))
@ -7961,16 +7803,14 @@ invalidate_skipped_block (start)
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
skipped_writes_memory = init;
if (GET_CODE (insn) == CALL_INSN)
{
if (! CONST_CALL_P (insn))
invalidate_memory ();
invalidate_for_call ();
skipped_writes_memory = everything;
}
note_stores (PATTERN (insn), invalidate_skipped_set);
invalidate_from_clobbers (&skipped_writes_memory, PATTERN (insn));
}
}
@ -8020,10 +7860,6 @@ cse_set_around_loop (x, insn, loop_start)
rtx loop_start;
{
struct table_elt *src_elt;
static struct write_data init = {0, 0, 0, 0};
struct write_data writes_memory;
writes_memory = init;
/* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
are setting PC or CC0 or whose SET_SRC is already a register. */
@ -8083,16 +7919,11 @@ cse_set_around_loop (x, insn, loop_start)
}
/* Now invalidate anything modified by X. */
note_mem_written (SET_DEST (x), &writes_memory);
note_mem_written (SET_DEST (x));
if (writes_memory.var)
invalidate_memory (&writes_memory);
/* See comment on similar code in cse_insn for explanation of these
tests. */
/* See comment on similar code in cse_insn for explanation of these tests. */
if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
|| (GET_CODE (SET_DEST (x)) == MEM && ! writes_memory.all
&& ! cse_rtx_addr_varies_p (SET_DEST (x))))
|| GET_CODE (SET_DEST (x)) == MEM)
invalidate (SET_DEST (x), VOIDmode);
else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
|| GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
@ -8342,6 +8173,7 @@ cse_main (f, nregs, after_loop, file)
val.path_size = 0;
init_recog ();
init_alias_analysis ();
max_reg = nregs;

View File

@ -370,6 +370,19 @@ extern int flag_gnu_linker;
/* Tag all structures with __attribute__(packed) */
extern int flag_pack_struct;
/* 1 if alias checking is enabled: symbols do not alias each other
and parameters do not alias the current stack frame. */
extern int flag_alias_check;
/* This flag is only tested if alias checking is enabled.
0 if pointer arguments may alias each other. True in C.
1 if pointer arguments may not alias each other but may alias
global variables.
2 if pointer arguments may not alias each other and may not
alias global variables. True in Fortran.
The value is ignored if flag_alias_check is 0. */
extern int flag_argument_noalias;
/* Emit code to check for stack overflow; also may cause large objects
to be allocated dynamically. */
extern int flag_stack_check;

View File

@ -543,7 +543,7 @@ validate_equiv_mem_from_store (dest, set)
if ((GET_CODE (dest) == REG
&& reg_overlap_mentioned_p (dest, equiv_mem))
|| (GET_CODE (dest) == MEM
&& true_dependence (dest, equiv_mem)))
&& true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
equiv_mem_modified = 1;
}
@ -632,7 +632,7 @@ memref_referenced_p (memref, x)
reg_equiv_replacement[REGNO (x)]));
case MEM:
if (true_dependence (memref, x))
if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
return 1;
break;

View File

@ -111,8 +111,7 @@ int *loop_number_exit_count;
unsigned HOST_WIDE_INT loop_n_iterations;
/* Nonzero if there is a subroutine call in the current loop.
(unknown_address_altered is also nonzero in this case.) */
/* Nonzero if there is a subroutine call in the current loop. */
static int loop_has_call;
@ -160,7 +159,7 @@ static char *moved_once;
/* Array of MEMs that are stored in this loop. If there are too many to fit
here, we just turn on unknown_address_altered. */
#define NUM_STORES 20
#define NUM_STORES 30
static rtx loop_store_mems[NUM_STORES];
/* Index of first available slot in above array. */
@ -2199,7 +2198,8 @@ prescan_loop (start, end)
}
else if (GET_CODE (insn) == CALL_INSN)
{
unknown_address_altered = 1;
if (! CONST_CALL_P (insn))
unknown_address_altered = 1;
loop_has_call = 1;
}
else
@ -2795,7 +2795,7 @@ invariant_p (x)
/* See if there is any dependence between a store and this load. */
for (i = loop_store_mems_idx - 1; i >= 0; i--)
if (true_dependence (loop_store_mems[i], x))
if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
return 0;
/* It's not invalidated by a store in memory
@ -4523,6 +4523,8 @@ record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
v->final_value = 0;
v->same_insn = 0;
v->auto_inc_opt = 0;
v->unrolled = 0;
v->shared = 0;
/* The v->always_computable field is used in update_giv_derive, to
determine whether a giv can be used to derive another giv. For a
@ -5771,6 +5773,8 @@ emit_iv_add_mult (b, m, a, reg, insert_before)
end_sequence ();
emit_insn_before (seq, insert_before);
record_base_value (REGNO (reg), b);
}
/* Test whether A * B can be computed without

View File

@ -92,6 +92,9 @@ struct induction
would probably lose. */
unsigned auto_inc_opt : 1; /* 1 if this giv had its increment output next
to it to try to form an auto-inc address. */
unsigned unrolled : 1; /* 1 if new register has been allocated in
unrolled loop. */
unsigned shared : 1;
int lifetime; /* Length of life of this giv */
int times_used; /* # times this giv is used. */
rtx derive_adjustment; /* If nonzero, is an adjustment to be

View File

@ -181,7 +181,7 @@ char *reg_note_name[] = { "", "REG_DEAD", "REG_INC", "REG_EQUIV", "REG_WAS_0",
"REG_NONNEG", "REG_NO_CONFLICT", "REG_UNUSED",
"REG_CC_SETTER", "REG_CC_USER", "REG_LABEL",
"REG_DEP_ANTI", "REG_DEP_OUTPUT", "REG_BR_PROB",
"REG_EXEC_COUNT" };
"REG_EXEC_COUNT", "REG_NOALIAS" };
/* Allocate an rtx vector of N elements.
Store the length, and initialize all elements to zero. */

View File

@ -317,7 +317,7 @@ enum reg_note { REG_DEAD = 1, REG_INC = 2, REG_EQUIV = 3, REG_WAS_0 = 4,
REG_NONNEG = 8, REG_NO_CONFLICT = 9, REG_UNUSED = 10,
REG_CC_SETTER = 11, REG_CC_USER = 12, REG_LABEL = 13,
REG_DEP_ANTI = 14, REG_DEP_OUTPUT = 15, REG_BR_PROB = 16,
REG_EXEC_COUNT = 17 };
REG_EXEC_COUNT = 17, REG_NOALIAS = 18 };
/* The base value for branch probability notes. */
#define REG_BR_PROB_BASE 10000
@ -803,6 +803,16 @@ extern rtx gen_ble PROTO((rtx));
extern rtx eliminate_constant_term PROTO((rtx, rtx *));
extern rtx expand_complex_abs PROTO((enum machine_mode, rtx, rtx, int));
extern enum machine_mode choose_hard_reg_mode PROTO((int, int));
extern int rtx_varies_p PROTO((rtx));
extern int may_trap_p PROTO((rtx));
extern int side_effects_p PROTO((rtx));
extern int volatile_refs_p PROTO((rtx));
extern int volatile_insn_p PROTO((rtx));
extern void remove_note PROTO((rtx, rtx));
extern void note_stores PROTO((rtx, void (*)()));
extern int refers_to_regno_p PROTO((int, int, rtx, rtx *));
extern int reg_overlap_mentioned_p PROTO((rtx, rtx));
/* Maximum number of parallel sets and clobbers in any insn in this fn.
Always at least 3, since the combiner could put that many togetherm
@ -959,3 +969,12 @@ extern char *regno_pointer_align;
know what `enum tree_code' means. */
extern int rtx_to_tree_code PROTO((enum rtx_code));
extern int true_dependence PROTO((rtx, enum machine_mode, rtx, int (*)()));
extern int read_dependence PROTO((rtx, rtx));
extern int anti_dependence PROTO((rtx, rtx));
extern int output_dependence PROTO((rtx, rtx));
extern void init_alias_analysis PROTO((void));
extern void end_alias_analysis PROTO((void));
extern void mark_user_reg PROTO((rtx));
extern void mark_reg_pointer PROTO((rtx, int));

View File

@ -127,6 +127,9 @@ Boston, MA 02111-1307, USA. */
#include "insn-config.h"
#include "insn-attr.h"
extern char *reg_known_equiv_p;
extern rtx *reg_known_value;
#ifdef INSN_SCHEDULING
/* Arrays set up by scheduling for the same respective purposes as
similar-named arrays set up by flow analysis. We work with these
@ -143,6 +146,7 @@ static int *sched_reg_live_length;
such insn. Needed for new registers which may be introduced
by splitting insns. */
static rtx *reg_last_uses;
static int reg_last_uses_size;
static rtx *reg_last_sets;
static regset reg_pending_sets;
static int reg_pending_sets_all;
@ -295,11 +299,6 @@ struct sometimes
};
/* Forward declarations. */
static rtx canon_rtx PROTO((rtx));
static int rtx_equal_for_memref_p PROTO((rtx, rtx));
static rtx find_symbolic_term PROTO((rtx));
static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
HOST_WIDE_INT));
static void add_dependence PROTO((rtx, rtx, enum reg_note));
static void remove_dependence PROTO((rtx, rtx));
static rtx find_insn_list PROTO((rtx, rtx));
@ -349,567 +348,6 @@ void schedule_insns PROTO((FILE *));
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
/* Vector indexed by N giving the initial (unchanging) value known
for pseudo-register N. */
static rtx *reg_known_value;
/* Vector recording for each reg_known_value whether it is due to a
REG_EQUIV note. Future passes (viz., reload) may replace the
pseudo with the equivalent expression and so we account for the
dependences that would be introduced if that happens. */
/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
assign_parms mention the arg pointer, and there are explicit insns in the
RTL that modify the arg pointer. Thus we must ensure that such insns don't
get scheduled across each other because that would invalidate the REG_EQUIV
notes. One could argue that the REG_EQUIV notes are wrong, but solving
the problem in the scheduler will likely give better code, so we do it
here. */
static char *reg_known_equiv_p;
/* Indicates number of valid entries in reg_known_value. */
static int reg_known_value_size;
static rtx
canon_rtx (x)
rtx x;
{
/* Recursively look for equivalences. */
if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
&& REGNO (x) <= reg_known_value_size)
return reg_known_value[REGNO (x)] == x
? x : canon_rtx (reg_known_value[REGNO (x)]);
else if (GET_CODE (x) == PLUS)
{
rtx x0 = canon_rtx (XEXP (x, 0));
rtx x1 = canon_rtx (XEXP (x, 1));
if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
{
/* We can tolerate LO_SUMs being offset here; these
rtl are used for nothing other than comparisons. */
if (GET_CODE (x0) == CONST_INT)
return plus_constant_for_output (x1, INTVAL (x0));
else if (GET_CODE (x1) == CONST_INT)
return plus_constant_for_output (x0, INTVAL (x1));
return gen_rtx (PLUS, GET_MODE (x), x0, x1);
}
}
/* This gives us much better alias analysis when called from
the loop optimizer. Note we want to leave the original
MEM alone, but need to return the canonicalized MEM with
all the flags with their original values. */
else if (GET_CODE (x) == MEM)
{
rtx copy = copy_rtx (x);
XEXP (copy, 0) = canon_rtx (XEXP (copy, 0));
x = copy;
}
return x;
}
/* Set up all info needed to perform alias analysis on memory references. */
void
init_alias_analysis ()
{
int maxreg = max_reg_num ();
rtx insn;
rtx note;
rtx set;
reg_known_value_size = maxreg;
reg_known_value
= (rtx *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx))
- FIRST_PSEUDO_REGISTER;
bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER),
(maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
reg_known_equiv_p
= (char *) oballoc ((maxreg -FIRST_PSEUDO_REGISTER) * sizeof (char))
- FIRST_PSEUDO_REGISTER;
bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER,
(maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char));
/* Fill in the entries with known constant values. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if ((set = single_set (insn)) != 0
&& GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
&& (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
&& REG_N_SETS (REGNO (SET_DEST (set))) == 1)
|| (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
&& GET_CODE (XEXP (note, 0)) != EXPR_LIST)
{
int regno = REGNO (SET_DEST (set));
reg_known_value[regno] = XEXP (note, 0);
reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
}
/* Fill in the remaining entries. */
while (--maxreg >= FIRST_PSEUDO_REGISTER)
if (reg_known_value[maxreg] == 0)
reg_known_value[maxreg] = regno_reg_rtx[maxreg];
}
/* Return 1 if X and Y are identical-looking rtx's.
We use the data in reg_known_value above to see if two registers with
different numbers are, in fact, equivalent. */
static int
rtx_equal_for_memref_p (x, y)
rtx x, y;
{
register int i;
register int j;
register enum rtx_code code;
register char *fmt;
if (x == 0 && y == 0)
return 1;
if (x == 0 || y == 0)
return 0;
x = canon_rtx (x);
y = canon_rtx (y);
if (x == y)
return 1;
code = GET_CODE (x);
/* Rtx's of different codes cannot be equal. */
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
(REG:SI x) and (REG:HI x) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
if (code == REG)
return REGNO (x) == REGNO (y);
if (code == LABEL_REF)
return XEXP (x, 0) == XEXP (y, 0);
if (code == SYMBOL_REF)
return XSTR (x, 0) == XSTR (y, 0);
/* For commutative operations, the RTX match if the operand match in any
order. Also handle the simple binary and unary cases without a loop. */
if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
|| (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
else if (GET_RTX_CLASS (code) == '1')
return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case 'n':
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'V':
case 'E':
/* Two vectors must have the same length. */
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
/* And the corresponding elements must match. */
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
return 0;
break;
case 'e':
if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
return 0;
break;
case 'S':
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'u':
/* These are just backpointers, so they don't matter. */
break;
case '0':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return 1;
}
/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
X and return it, or return 0 if none found. */
static rtx
find_symbolic_term (x)
rtx x;
{
register int i;
register enum rtx_code code;
register char *fmt;
code = GET_CODE (x);
if (code == SYMBOL_REF || code == LABEL_REF)
return x;
if (GET_RTX_CLASS (code) == 'o')
return 0;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
rtx t;
if (fmt[i] == 'e')
{
t = find_symbolic_term (XEXP (x, i));
if (t != 0)
return t;
}
else if (fmt[i] == 'E')
break;
}
return 0;
}
/* Return nonzero if X and Y (memory addresses) could reference the
same location in memory. C is an offset accumulator. When
C is nonzero, we are testing aliases between X and Y + C.
XSIZE is the size in bytes of the X reference,
similarly YSIZE is the size in bytes for Y.
If XSIZE or YSIZE is zero, we do not know the amount of memory being
referenced (the reference was BLKmode), so make the most pessimistic
assumptions.
We recognize the following cases of non-conflicting memory:
(1) addresses involving the frame pointer cannot conflict
with addresses involving static variables.
(2) static variables with different addresses cannot conflict.
Nice to notice that varying addresses cannot conflict with fp if no
local variables had their addresses taken, but that's too hard now. */
/* ??? In Fortran, references to a array parameter can never conflict with
another array parameter. */
static int
memrefs_conflict_p (xsize, x, ysize, y, c)
rtx x, y;
int xsize, ysize;
HOST_WIDE_INT c;
{
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
else if (GET_CODE (x) == LO_SUM)
x = XEXP (x, 1);
else
x = canon_rtx (x);
if (GET_CODE (y) == HIGH)
y = XEXP (y, 0);
else if (GET_CODE (y) == LO_SUM)
y = XEXP (y, 1);
else
y = canon_rtx (y);
if (rtx_equal_for_memref_p (x, y))
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
if (y == frame_pointer_rtx || y == hard_frame_pointer_rtx
|| y == stack_pointer_rtx)
{
rtx t = y;
int tsize = ysize;
y = x; ysize = xsize;
x = t; xsize = tsize;
}
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx)
{
rtx y1;
if (CONSTANT_P (y))
return 0;
if (GET_CODE (y) == PLUS
&& canon_rtx (XEXP (y, 0)) == x
&& (y1 = canon_rtx (XEXP (y, 1)))
&& GET_CODE (y1) == CONST_INT)
{
c += INTVAL (y1);
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
}
if (GET_CODE (y) == PLUS
&& (y1 = canon_rtx (XEXP (y, 0)))
&& CONSTANT_P (y1))
return 0;
return 1;
}
if (GET_CODE (x) == PLUS)
{
/* The fact that X is canonicalized means that this
PLUS rtx is canonicalized. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (rtx_equal_for_memref_p (x1, y1))
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
if (rtx_equal_for_memref_p (x0, y0))
return memrefs_conflict_p (xsize, x1, ysize, y1, c);
if (GET_CODE (x1) == CONST_INT)
if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x0, ysize, y0,
c - INTVAL (x1) + INTVAL (y1));
else
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
else if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
/* Handle case where we cannot understand iteration operators,
but we notice that the base addresses are distinct objects. */
x = find_symbolic_term (x);
if (x == 0)
return 1;
y = find_symbolic_term (y);
if (y == 0)
return 1;
return rtx_equal_for_memref_p (x, y);
}
else if (GET_CODE (x1) == CONST_INT)
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
}
else if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
else
return 1;
}
if (GET_CODE (x) == GET_CODE (y))
switch (GET_CODE (x))
{
case MULT:
{
/* Handle cases where we expect the second operands to be the
same, and check only whether the first operand would conflict
or not. */
rtx x0, y0;
rtx x1 = canon_rtx (XEXP (x, 1));
rtx y1 = canon_rtx (XEXP (y, 1));
if (! rtx_equal_for_memref_p (x1, y1))
return 1;
x0 = canon_rtx (XEXP (x, 0));
y0 = canon_rtx (XEXP (y, 0));
if (rtx_equal_for_memref_p (x0, y0))
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
/* Can't properly adjust our sizes. */
if (GET_CODE (x1) != CONST_INT)
return 1;
xsize /= INTVAL (x1);
ysize /= INTVAL (x1);
c /= INTVAL (x1);
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
}
}
if (CONSTANT_P (x))
{
if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
{
c += (INTVAL (y) - INTVAL (x));
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
}
if (GET_CODE (x) == CONST)
{
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, canon_rtx (XEXP (y, 0)), c);
else
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, y, c);
}
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, x, ysize,
canon_rtx (XEXP (y, 0)), c);
if (CONSTANT_P (y))
return (rtx_equal_for_memref_p (x, y)
&& (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)));
return 1;
}
return 1;
}
/* Functions to compute memory dependencies.
Since we process the insns in execution order, we can build tables
to keep track of what registers are fixed (and not aliased), what registers
are varying in known ways, and what registers are varying in unknown
ways.
If both memory references are volatile, then there must always be a
dependence between the two references, since their order can not be
changed. A volatile and non-volatile reference can be interchanged
though.
A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
allow QImode aliasing because the ANSI C standard allows character
pointers to alias anything. We are assuming that characters are
always QImode here. We also must allow AND addresses, because they may
generate accesses outside the object being referenced. This is used to
generate aligned addresses from unaligned addresses, for instance, the
alpha storeqi_unaligned pattern. */
/* Read dependence: X is read after read in MEM takes place. There can
only be a dependence here if both reads are volatile. */
int
read_dependence (mem, x)
rtx mem;
rtx x;
{
return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
}
/* True dependence: X is read after store in MEM takes place. */
int
true_dependence (mem, x)
rtx mem;
rtx x;
{
/* If X is an unchanging read, then it can't possibly conflict with any
non-unchanging store. It may conflict with an unchanging write though,
because there may be a single store to this address to initialize it.
Just fall through to the code below to resolve the case where we have
both an unchanging read and an unchanging write. This won't handle all
cases optimally, but the possible performance loss should be
negligible. */
x = canon_rtx (x);
mem = canon_rtx (mem);
if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
return 0;
return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|| (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
SIZE_FOR_MODE (x), XEXP (x, 0), 0)
&& ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
&& GET_MODE (mem) != QImode
&& GET_CODE (XEXP (mem, 0)) != AND
&& ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
&& ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
&& GET_MODE (x) != QImode
&& GET_CODE (XEXP (x, 0)) != AND
&& ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}
/* Anti dependence: X is written after read in MEM takes place. */
int
anti_dependence (mem, x)
rtx mem;
rtx x;
{
/* If MEM is an unchanging read, then it can't possibly conflict with
the store to X, because there is at most one store to MEM, and it must
have occurred somewhere before MEM. */
x = canon_rtx (x);
mem = canon_rtx (mem);
if (RTX_UNCHANGING_P (mem))
return 0;
return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|| (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
SIZE_FOR_MODE (x), XEXP (x, 0), 0)
&& ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
&& GET_MODE (mem) != QImode
&& GET_CODE (XEXP (mem, 0)) != AND
&& ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
&& ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
&& GET_MODE (x) != QImode
&& GET_CODE (XEXP (x, 0)) != AND
&& ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}
/* Output dependence: X is written after store in MEM takes place. */
int
output_dependence (mem, x)
rtx mem;
rtx x;
{
x = canon_rtx (x);
mem = canon_rtx (mem);
return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
|| (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
SIZE_FOR_MODE (x), XEXP (x, 0), 0)
&& ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
&& GET_MODE (mem) != QImode
&& GET_CODE (XEXP (mem, 0)) != AND
&& ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
&& ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
&& GET_MODE (x) != QImode
&& GET_CODE (XEXP (x, 0)) != AND
&& ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
}
/* Helper functions for instruction scheduling. */
/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
@ -1948,7 +1386,8 @@ sched_analyze_2 (x, insn)
{
/* If a dependency already exists, don't create a new one. */
if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
if (true_dependence (XEXP (pending_mem, 0), x))
if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
x, rtx_varies_p))
add_dependence (insn, XEXP (pending, 0), 0);
pending = XEXP (pending, 1);
@ -2047,7 +1486,7 @@ sched_analyze_insn (x, insn, loop_notes)
{
register RTX_CODE code = GET_CODE (x);
rtx link;
int maxreg = max_reg_num ();
int maxreg = reg_last_uses_size;
int i;
if (code == SET || code == CLOBBER)
@ -2084,7 +1523,7 @@ sched_analyze_insn (x, insn, loop_notes)
if (loop_notes)
{
int max_reg = max_reg_num ();
int max_reg = reg_last_uses_size;
rtx link;
for (i = 0; i < max_reg; i++)
@ -2222,8 +1661,7 @@ sched_analyze (head, tail)
if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
&& NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
{
int max_reg = max_reg_num ();
for (i = 0; i < max_reg; i++)
for (i = 0; i < reg_last_uses_size; i++)
{
for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
@ -3198,7 +2636,7 @@ schedule_block (b, file)
fprintf (file, ";;\t -- basic block number %d from %d to %d --\n",
b, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
i = max_reg_num ();
reg_last_uses_size = i = max_reg_num ();
reg_last_uses = (rtx *) alloca (i * sizeof (rtx));
bzero ((char *) reg_last_uses, i * sizeof (rtx));
reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
@ -4819,7 +4257,6 @@ schedule_insns (dump_file)
bb_live_regs = ALLOCA_REG_SET ();
bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
init_alias_analysis ();
}
else
{
@ -4827,9 +4264,8 @@ schedule_insns (dump_file)
sched_reg_live_length = 0;
bb_dead_regs = 0;
bb_live_regs = 0;
if (! flag_schedule_insns)
init_alias_analysis ();
}
init_alias_analysis ();
if (write_symbols != NO_DEBUG)
{

View File

@ -616,6 +616,17 @@ int flag_check_memory_usage = 0;
-fcheck-memory-usage. */
int flag_prefix_function_name = 0;
/* 1 if alias checking is on (by default, when -O). */
int flag_alias_check = 0;
/* 0 if pointer arguments may alias each other. True in C.
1 if pointer arguments may not alias each other but may alias
global variables.
2 if pointer arguments may not alias each other and may not
alias global variables. True in Fortran.
This defaults to 0 for C. */
int flag_argument_noalias = 0;
/* Table of language-independent -f options.
STRING is the option name. VARIABLE is the address of the variable.
ON_VALUE is the value to store in VARIABLE
@ -672,6 +683,10 @@ struct { char *string; int *variable; int on_value;} f_options[] =
{"pack-struct", &flag_pack_struct, 1},
{"stack-check", &flag_stack_check, 1},
{"bytecode", &output_bytecode, 1},
{"alias-check", &flag_alias_check, 1},
{"argument-alias", &flag_argument_noalias, 0},
{"argument-noalias", &flag_argument_noalias, 1},
{"argument-noalias-global", &flag_argument_noalias, 2},
{"check-memory-usage", &flag_check_memory_usage, 1},
{"prefix-function-name", &flag_prefix_function_name, 1}
};
@ -3672,6 +3687,7 @@ main (argc, argv, envp)
#ifdef CAN_DEBUG_WITHOUT_FP
flag_omit_frame_pointer = 1;
#endif
flag_alias_check = 1;
}
if (optimize >= 2)

View File

@ -1046,8 +1046,11 @@ unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
if (local_regno[j])
map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
{
map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
record_base_value (REGNO (map->reg_map[j]),
regno_reg_rtx[j]);
}
/* The last copy needs the compare/branch insns at the end,
so reset copy_end here if the loop ends with a conditional
branch. */
@ -1191,7 +1194,11 @@ unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
if (local_regno[j])
map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
{
map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
record_base_value (REGNO (map->reg_map[j]),
regno_reg_rtx[j]);
}
/* If loop starts with a branch to the test, then fix it so that
it points to the test of the first unrolled copy of the loop. */
@ -1691,7 +1698,7 @@ copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
/* Check for shared address givs, and avoid
incrementing the shared pseudo reg more than
once. */
if (! tv->same_insn)
if (! tv->same_insn && ! tv->shared)
{
/* tv->dest_reg may actually be a (PLUS (REG)
(CONST)) here, so we must call plus_constant
@ -1817,6 +1824,7 @@ copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
tem = gen_reg_rtx (GET_MODE (giv_src_reg));
giv_dest_reg = tem;
map->reg_map[regno] = tem;
record_base_value (REGNO (tem), giv_src_reg);
}
else
map->reg_map[regno] = giv_src_reg;
@ -2505,7 +2513,8 @@ find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
|| ! invariant_p (bl->initial_value)))
{
rtx tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val);
emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
loop_start);
@ -2562,6 +2571,8 @@ find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
this insn will always be executed, no matter how the loop
exits. */
rtx tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val);
emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
loop_start);
emit_insn_before (gen_move_insn (bl->biv->src_reg,
@ -2737,6 +2748,7 @@ find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
{
rtx tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val);
emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
loop_start);
biv_initial_value = tem;
@ -2778,6 +2790,7 @@ find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
|| GET_CODE (XEXP (value, 1)) != CONST_INT))
{
rtx tem = gen_reg_rtx (v->mode);
record_base_value (REGNO (tem), v->add_val);
emit_iv_add_mult (bl->initial_value, v->mult_val,
v->add_val, tem, loop_start);
value = tem;
@ -2796,16 +2809,9 @@ find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
what we want for split addr regs. We always create a new
register for the split addr giv, just to be safe. */
/* ??? If there are multiple address givs which have been
combined with the same dest_reg giv, then we may only need
one new register for them. Pulling out constants below will
catch some of the common cases of this. Currently, I leave
the work of simplifying multiple address givs to the
following cse pass. */
/* As a special case, if we have multiple identical address givs
within a single instruction, then we do use a single pseudo
reg for both. This is necessary in case one is a match_dup
/* If we have multiple identical address givs within a
single instruction, then use a single pseudo reg for
both. This is necessary in case one is a match_dup
of the other. */
v->const_adjust = 0;
@ -2818,12 +2824,26 @@ find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
"Sharing address givs in insn %d\n",
INSN_UID (v->insn));
}
/* If multiple address GIVs have been combined with the
same dest_reg GIV, do not create a new register for
each. */
else if (unroll_type != UNROLL_COMPLETELY
&& v->giv_type == DEST_ADDR
&& v->same && v->same->giv_type == DEST_ADDR
&& v->same->unrolled)
{
v->dest_reg = v->same->dest_reg;
v->shared = 1;
}
else if (unroll_type != UNROLL_COMPLETELY)
{
/* If not completely unrolling the loop, then create a new
register to hold the split value of the DEST_ADDR giv.
Emit insn to initialize its value before loop start. */
tem = gen_reg_rtx (v->mode);
rtx tem = gen_reg_rtx (v->mode);
record_base_value (REGNO (tem), v->add_val);
v->unrolled = 1;
/* If the address giv has a constant in its new_reg value,
then this constant can be pulled out and put in value,
@ -2834,7 +2854,7 @@ find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
{
v->dest_reg
= plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
/* Only succeed if this will give valid addresses.
Try to validate both the first and the last
address resulting from loop unrolling, if
@ -3130,6 +3150,7 @@ final_biv_value (bl, loop_start, loop_end)
case it is needed later. */
tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val);
/* Make sure loop_end is not the last insn. */
if (NEXT_INSN (loop_end) == 0)
emit_note_after (NOTE_INSN_DELETED, loop_end);
@ -3228,6 +3249,7 @@ final_giv_value (v, loop_start, loop_end)
/* Put the final biv value in tem. */
tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val);
emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
bl->initial_value, tem, insert_before);