re PR fortran/32373 (not vectorized: can't determine dependence (equivalence))

2012-02-05  Thomas König  <tkoenig@gcc.gnu.org>

	PR fortran/32373
	* gfortran.dg/vect/vect-8.f90:  New test case.

From-SVN: r183917
This commit is contained in:
Thomas Koenig 2012-02-05 21:49:46 +00:00
parent d20597cb75
commit 9ed480b123
2 changed files with 712 additions and 0 deletions

View File

@ -1,3 +1,8 @@
2012-02-05 Thomas König <tkoenig@gcc.gnu.org>
PR fortran/32373
* gfortran.dg/vect/vect-8.f90: New test case.
2012-02-05 Thomas König <tkoenig@gcc.gnu.org>
PR fortran/48847

View File

@ -0,0 +1,707 @@
! { dg-do compile }
! { dg-require-effective-target vect_float }
module lfk_prec
integer, parameter :: dp=kind(1.d0)
end module lfk_prec
!***********************************************
SUBROUTINE kernel(tk)
!***********************************************************************
! *
! KERNEL executes 24 samples of Fortran computation *
! TK(1) - total cpu time to execute only the 24 kernels. *
! TK(2) - total Flops executed by the 24 Kernels *
!***********************************************************************
! *
! L. L. N. L. F O R T R A N K E R N E L S: M F L O P S *
! *
! These kernels measure Fortran numerical computation rates for a *
! spectrum of CPU-limited computational structures. Mathematical *
! through-put is measured in units of millions of floating-point *
! operations executed per Second, called Mega-Flops/Sec. *
! *
! This program measures a realistic CPU performance range for the *
! Fortran programming system on a given day. The CPU performance *
! rates depend strongly on the maturity of the Fortran compiler's *
! ability to translate Fortran code into efficient machine code. *
! [ The CPU hardware capability apart from compiler maturity (or *
! availability), could be measured (or simulated) by programming the *
! kernels in assembly or machine code directly. These measurements *
! can also serve as a framework for tracking the maturation of the *
! Fortran compiler during system development.] *
! *
! Fonzi's Law: There is not now and there never will be a language *
! in which it is the least bit difficult to write *
! bad programs. *
! F.H.MCMAHON 1972 *
!***********************************************************************
! l1 := param-dimension governs the size of most 1-d arrays
! l2 := param-dimension governs the size of most 2-d arrays
! Loop := multiple pass control to execute kernel long enough to ti
! me.
! n := DO loop control for each kernel. Controls are set in subr.
! SIZES
! ******************************************************************
use lfk_prec
implicit double precision (a-h,o-z)
!IBM IMPLICIT REAL*8 (A-H,O-Z)
REAL(kind=dp), INTENT(inout) :: tk
INTEGER :: test !!,AND
COMMON/alpha/mk,ik,im,ml,il,mruns,nruns,jr,iovec,npfs(8,3,47)
COMMON/beta/tic,times(8,3,47),see(5,3,8,3),terrs(8,3,47),csums(8,3 &
,47),fopn(8,3,47),dos(8,3,47)
COMMON/spaces/ion,j5,k2,k3,loop1,laps,loop,m,kr,lp,n13h,ibuf,nx,l, &
npass,nfail,n,n1,n2,n13,n213,n813,n14,n16,n416,n21,nt1,nt2,last,idebug &
,mpy,loop2,mucho,mpylim,intbuf(16)
COMMON/spacer/a11,a12,a13,a21,a22,a23,a31,a32,a33,ar,br,c0,cr,di,dk &
,dm22,dm23,dm24,dm25,dm26,dm27,dm28,dn,e3,e6,expmax,flx,q,qa,r,ri &
,s,scale,sig,stb5,t,xnc,xnei,xnm
COMMON/space0/time(47),csum(47),ww(47),wt(47),ticks,fr(9),terr1(47 &
),sumw(7),start,skale(47),bias(47),ws(95),total(47),flopn(47),iq(7 &
),npf,npfs1(47)
COMMON/spacei/wtp(3),mul(3),ispan(47,3),ipass(47,3)
! ******************************************************************
INTEGER :: e,f,zone
COMMON/ispace/e(96),f(96),ix(1001),ir(1001),zone(300)
COMMON/space1/u(1001),v(1001),w(1001),x(1001),y(1001),z(1001),g(1001) &
,du1(101),du2(101),du3(101),grd(1001),dex(1001),xi(1001),ex(1001) &
,ex1(1001),dex1(1001),vx(1001),xx(1001),rx(1001),rh(2048),vsp(101) &
,vstp(101),vxne(101),vxnd(101),ve3(101),vlr(101),vlin(101),b5(101) &
,plan(300),d(300),sa(101),sb(101)
COMMON/space2/p(4,512),px(25,101),cx(25,101),vy(101,25),vh(101,7), &
vf(101,7),vg(101,7),vs(101,7),za(101,7),zp(101,7),zq(101,7),zr(101 &
,7),zm(101,7),zb(101,7),zu(101,7),zv(101,7),zz(101,7),b(64,64),c(64,64) &
,h(64,64),u1(5,101,2),u2(5,101,2),u3(5,101,2)
! ******************************************************************
dimension zx(1023),xz(447,3),tk(6),mtmp(1)
EQUIVALENCE(zx(1),z(1)),(xz(1,1),x(1))
double precision temp
logical ltmp
! ******************************************************************
! STANDARD PRODUCT COMPILER DIRECTIVES MAY BE USED FOR OPTIMIZATION
CALL trace('KERNEL ')
CALL SPACE
mpy= 1
mpysav= mpylim
loop2= 1
mpylim= loop2
l= 1
loop= 1
lp= loop
it0= test(0)
loop2= mpysav
mpylim= loop2
do
!***********************************************************************
!*** KERNEL 1 HYDRO FRAGMENT
!***********************************************************************
x(:n)= q+y(:n)*(r*zx(11:n+10)+t*zx(12:n+11))
IF(test(1) <= 0)THEN
EXIT
END IF
END DO
do
! we must execute DO k= 1,n repeatedly for accurat
! e timing
!***********************************************************************
!*** KERNEL 2 ICCG EXCERPT (INCOMPLETE CHOLESKY - CONJUGATE GRADIE
! NT)
!***********************************************************************
ii= n
ipntp= 0
do while(ii > 1)
ipnt= ipntp
ipntp= ipntp+ii
ii= ishft(ii,-1)
i= ipntp+1
!dir$ vector always
x(ipntp+2:ipntp+ii+1)=x(ipnt+2:ipntp:2)-v(ipnt+2:ipntp:2) &
&*x(ipnt+1:ipntp-1:2)-v(ipnt+3:ipntp+1:2)*x(ipnt+3:ipntp+1:2)
END DO
IF(test(2) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 3 INNER PRODUCT
!***********************************************************************
q= dot_product(z(:n),x(:n))
IF(test(3) <= 0)THEN
EXIT
END IF
END DO
m= (1001-7)/2
!***********************************************************************
!*** KERNEL 4 BANDED LINEAR EQUATIONS
!***********************************************************************
fw= 1.000D-25
do
!dir$ vector always
xz(6,:3)= y(5)*(xz(6,:3)+matmul(y(5:n:5), xz(:n/5,:3)))
IF(test(4) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 5 TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL (NO VECTORS
! )
!***********************************************************************
tmp= x(1)
DO i= 2,n
tmp= z(i)*(y(i)-tmp)
x(i)= tmp
END DO
IF(test(5) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 6 GENERAL LINEAR RECURRENCE EQUATIONS
!***********************************************************************
DO i= 2,n
w(i)= 0.0100D0+dot_product(b(i,:i-1),w(i-1:1:-1))
END DO
IF(test(6) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 7 EQUATION OF STATE FRAGMENT
!***********************************************************************
x(:n)= u(:n)+r*(z(:n)+r*y(:n))+t*(u(4:n+3)+r*(u(3:n+2)+r*u(2:n+1))+t*( &
u(7:n+6)+q*(u(6:n+5)+q*u(5:n+4))))
IF(test(7) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 8 A.D.I. INTEGRATION
!***********************************************************************
nl1= 1
nl2= 2
fw= 2.000D0
DO ky= 2,n
DO kx= 2,3
du1ky= u1(kx,ky+1,nl1)-u1(kx,ky-1,nl1)
du2ky= u2(kx,ky+1,nl1)-u2(kx,ky-1,nl1)
du3ky= u3(kx,ky+1,nl1)-u3(kx,ky-1,nl1)
u1(kx,ky,nl2)= u1(kx,ky,nl1)+a11*du1ky+a12*du2ky+a13 &
*du3ky+sig*(u1(kx+1,ky,nl1)-fw*u1(kx,ky,nl1)+u1(kx-1,ky,nl1))
u2(kx,ky,nl2)= u2(kx,ky,nl1)+a21*du1ky+a22*du2ky+a23 &
*du3ky+sig*(u2(kx+1,ky,nl1)-fw*u2(kx,ky,nl1)+u2(kx-1,ky,nl1))
u3(kx,ky,nl2)= u3(kx,ky,nl1)+a31*du1ky+a32*du2ky+a33 &
*du3ky+sig*(u3(kx+1,ky,nl1)-fw*u3(kx,ky,nl1)+u3(kx-1,ky,nl1))
END DO
END DO
IF(test(8) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 9 INTEGRATE PREDICTORS
!***********************************************************************
px(1,:n)= dm28*px(13,:n)+px(3,:n)+dm27*px(12,:n)+dm26*px(11,:n)+dm25*px(10 &
,:n)+dm24*px(9,:n)+dm23*px(8,:n)+dm22*px(7,:n)+c0*(px(5,:n)+px(6,:n))
IF(test(9) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 10 DIFFERENCE PREDICTORS
!***********************************************************************
!dir$ unroll(2)
do k= 1,n
br= cx(5,k)-px(5,k)
px(5,k)= cx(5,k)
cr= br-px(6,k)
px(6,k)= br
ar= cr-px(7,k)
px(7,k)= cr
br= ar-px(8,k)
px(8,k)= ar
cr= br-px(9,k)
px(9,k)= br
ar= cr-px(10,k)
px(10,k)= cr
br= ar-px(11,k)
px(11,k)= ar
cr= br-px(12,k)
px(12,k)= br
px(14,k)= cr-px(13,k)
px(13,k)= cr
enddo
IF(test(10) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 11 FIRST SUM. PARTIAL SUMS. (NO VECTORS)
!***********************************************************************
temp= 0
DO k= 1,n
temp= temp+y(k)
x(k)= temp
END DO
IF(test(11) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 12 FIRST DIFF.
!***********************************************************************
x(:n)= y(2:n+1)-y(:n)
IF(test(12) <= 0)THEN
EXIT
END IF
END DO
fw= 1.000D0
!***********************************************************************
!*** KERNEL 13 2-D PIC Particle In Cell
!***********************************************************************
do
! rounding modes for integerizing make no difference here
do k= 1,n
i1= 1+iand(int(p(1,k)),63)
j1= 1+iand(int(p(2,k)),63)
p(3,k)= p(3,k)+b(i1,j1)
p(1,k)= p(1,k)+p(3,k)
i2= iand(int(p(1,k)),63)
p(1,k)= p(1,k)+y(i2+32)
p(4,k)= p(4,k)+c(i1,j1)
p(2,k)= p(2,k)+p(4,k)
j2= iand(int(p(2,k)),63)
p(2,k)= p(2,k)+z(j2+32)
i2= i2+e(i2+32)
j2= j2+f(j2+32)
h(i2,j2)= h(i2,j2)+fw
enddo
IF(test(13) <= 0)THEN
EXIT
END IF
END DO
fw= 1.000D0
!***********************************************************************
!*** KERNEL 14 1-D PIC Particle In Cell
!***********************************************************************
do
ix(:n)= grd(:n)
!dir$ ivdep
vx(:n)= ex(ix(:n))-ix(:n)*dex(ix(:n))
ir(:n)= vx(:n)+flx
rx(:n)= vx(:n)+flx-ir(:n)
ir(:n)= iand(ir(:n),2047)+1
xx(:n)= rx(:n)+ir(:n)
DO k= 1,n
rh(ir(k))= rh(ir(k))+fw-rx(k)
rh(ir(k)+1)= rh(ir(k)+1)+rx(k)
END DO
IF(test(14) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 15 CASUAL FORTRAN. DEVELOPMENT VERSION.
!***********************************************************************
! CASUAL ORDERING OF SCALAR OPERATIONS IS TYPICAL PRACTICE.
! THIS EXAMPLE DEMONSTRATES THE NON-TRIVIAL TRANSFORMATION
! REQUIRED TO MAP INTO AN EFFICIENT MACHINE IMPLEMENTATION.
ng= 7
nz= n
ar= 0.05300D0
br= 0.07300D0
!$omp parallel do private(t,j,k,r,s,i,ltmp) if(nz>98)
do j= 2,ng-1
do k= 2,nz
i= merge(k-1,k,vf(k,j) < vf((k-1),j))
t= merge(br,ar,vh(k,(j+1)) <= vh(k,j))
r= MAX(vh(i,j),vh(i,j+1))
s= vf(i,j)
vy(k,j)= t/s*SQRT(vg(k,j)**2+r*r)
if(k < nz)then
ltmp=vf(k,j) >= vf(k,(j-1))
i= merge(j,j-1,ltmp)
t= merge(ar,br,ltmp)
r= MAX(vg(k,i),vg(k+1,i))
s= vf(k,i)
vs(k,j)= t/s*SQRT(vh(k,j)**2+r*r)
endif
END do
vs(nz,j)= 0.0D0
END do
vy(2:nz,ng)= 0.0D0
IF(test(15) <= 0)THEN
EXIT
END IF
END DO
ii= n/3
!***********************************************************************
!*** KERNEL 16 MONTE CARLO SEARCH LOOP
!***********************************************************************
lb= ii+ii
k2= 0
k3= 0
do
DO m= 1,zone(1)
j2= (n+n)*(m-1)+1
DO k= 1,n
k2= k2+1
j4= j2+k+k
j5= zone(j4)
IF(j5 >= n)THEN
IF(j5 == n)THEN
EXIT
END IF
k3= k3+1
IF(d(j5) < d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2+ (r-d(j5-4))**2)THEN
go to 200
END IF
IF(d(j5) == d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2+ (r-d(j5-4))**2)THEN
EXIT
END IF
ELSE
IF(j5-n+lb < 0)THEN
IF(plan(j5) < t)THEN
go to 200
END IF
IF(plan(j5) == t)THEN
EXIT
END IF
ELSE
IF(j5-n+ii < 0)THEN
IF(plan(j5) < s)THEN
go to 200
END IF
IF(plan(j5) == s)THEN
EXIT
END IF
ELSE
IF(plan(j5) < r)THEN
go to 200
END IF
IF(plan(j5) == r)THEN
EXIT
END IF
END IF
END IF
END IF
IF(zone(j4-1) <= 0)THEN
go to 200
END IF
END DO
EXIT
200 IF(zone(j4-1) == 0)THEN
EXIT
END IF
END DO
IF(test(16) <= 0)THEN
EXIT
END IF
END DO
dw= 5.0000D0/3.0000D0
!***********************************************************************
!*** KERNEL 17 IMPLICIT, CONDITIONAL COMPUTATION (NO VECTORS)
!***********************************************************************
! RECURSIVE-DOUBLING VECTOR TECHNIQUES CAN NOT BE USED
! BECAUSE CONDITIONAL OPERATIONS APPLY TO EACH ELEMENT.
fw= 1.0000D0/3.0000D0
tw= 1.0300D0/3.0700D0
do
scale= dw
rtmp= fw
e6= tw
DO k= n,2,-1
e3= rtmp*vlr(k)+vlin(k)
xnei= vxne(k)
vxnd(k)= e6
xnc= scale*e3
! SELECT MODEL
IF(max(rtmp,xnei) <= xnc)THEN
! LINEAR MODEL
ve3(k)= e3
rtmp= e3+e3-rtmp
vxne(k)= e3+e3-xnei
ELSE
rtmp= rtmp*vsp(k)+vstp(k)
! STEP MODEL
vxne(k)= rtmp
ve3(k)= rtmp
END IF
e6= rtmp
END DO
xnm= rtmp
IF(test(17) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 18 2-D EXPLICIT HYDRODYNAMICS FRAGMENT
!***********************************************************************
t= 0.003700D0
s= 0.004100D0
kn= 6
jn= n
zb(2:jn,2:kn)=(zr(2:jn,2:kn)+zr(2:jn,:kn-1))/(zm(2:jn,2:kn)+zm(:jn-1,2:kn)) &
*(zp(:jn-1,2:kn)-zp(2:jn,2:kn)+(zq(:jn-1,2:kn)-zq(2:jn,2:kn)))
za(2:jn,2:kn)=(zr(2:jn,2:kn)+zr(:jn-1,2:kn))/(zm(:jn-1,2:kn)+zm(:jn-1,3:kn+1)) &
*(zp(:jn-1,3:kn+1)-zp(:jn-1,2:kn)+(zq(:jn-1,3:kn+1)-zq(:jn-1,2:kn)))
zu(2:jn,2:kn)= zu(2:jn,2:kn)+ &
s*(za(2:jn,2:kn)*(zz(2:jn,2:kn)-zz(3:jn+1,2:kn)) &
-za(:jn-1,2:kn)*(zz(2:jn,2:kn)-zz(:jn-1,2:kn)) &
-zb(2:jn,2:kn)*(zz(2:jn,2:kn)-zz(2:jn,:kn-1))+ &
zb(2:jn,3:kn+1)*(zz(2:jn, 2:kn)-zz(2:jn,3:kn+1)))
zv(2:jn,2:kn)= zv(2:jn,2:kn)+ &
s*(za(2:jn,2:kn)*(zr(2:jn,2:kn)-zr(3:jn+1,2:kn)) &
-za(:jn-1,2:kn)*(zr(2:jn,2:kn)-zr(:jn-1,2:kn)) &
-zb(2:jn,2:kn)*(zr(2:jn,2:kn)-zr(2:jn,:kn-1))+ &
zb(2:jn,3:kn+1)*(zr(2:jn, 2:kn)-zr(2:jn,3:kn+1)))
zr(2:jn,2:kn)= zr(2:jn,2:kn)+t*zu(2:jn,2:kn)
zz(2:jn,2:kn)= zz(2:jn,2:kn)+t*zv(2:jn,2:kn)
IF(test(18) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 19 GENERAL LINEAR RECURRENCE EQUATIONS (NO VECTORS)
!***********************************************************************
kb5i= 0
DO k= 1,n
b5(k+kb5i)= sa(k)+stb5*sb(k)
stb5= b5(k+kb5i)-stb5
END DO
DO k= n,1,-1
b5(k+kb5i)= sa(k)+stb5*sb(k)
stb5= b5(k+kb5i)-stb5
END DO
IF(test(19) <= 0)THEN
EXIT
END IF
END DO
dw= 0.200D0
!***********************************************************************
!*** KERNEL 20 DISCRETE ORDINATES TRANSPORT: RECURRENCE (NO VECTORS
!***********************************************************************
do
rtmp= xx(1)
DO k= 1,n
di= y(k)*(rtmp+dk)-g(k)
dn=merge( max(s,min(z(k)*(rtmp+dk)/di,t)),dw,di /= 0.0)
x(k)= ((w(k)+v(k)*dn)*rtmp+u(k))/(vx(k)+v(k)*dn)
rtmp= ((w(k)-vx(k))*rtmp+u(k))*DN/(vx(k)+v(k)*dn)+ rtmp
xx(k+1)= rtmp
END DO
IF(test(20) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 21 MATRIX*MATRIX PRODUCT
!***********************************************************************
px(:25,:n)= px(:25,:n)+matmul(vy(:25,:25),cx(:25,:n))
IF(test(21) <= 0)THEN
EXIT
END IF
END DO
expmax= 20.0000D0
!***********************************************************************
!*** KERNEL 22 PLANCKIAN DISTRIBUTION
!***********************************************************************
! EXPMAX= 234.500d0
fw= 1.00000D0
u(n)= 0.99000D0*expmax*v(n)
do
y(:n)= u(:n)/v(:n)
w(:n)= x(:n)/(EXP(y(:n))-fw)
IF(test(22) <= 0)THEN
EXIT
END IF
END DO
fw= 0.17500D0
!***********************************************************************
!*** KERNEL 23 2-D IMPLICIT HYDRODYNAMICS FRAGMENT
!***********************************************************************
do
DO k= 2,n
do j=2,6
za(k,j)= za(k,j)+fw*(za(k,j+1)*zr(k,j)-za(k,j)+ &
& zv(k,j)*za(k-1,j)+(zz(k,j)+za(k+1,j)* &
& zu(k,j)+za(k,j-1)*zb(k,j)))
END DO
END DO
IF(test(23) <= 0)THEN
EXIT
END IF
END DO
x(n/2)= -1.000D+10
!***********************************************************************
!*** KERNEL 24 FIND LOCATION OF FIRST MINIMUM IN ARRAY
!***********************************************************************
! X( n/2)= -1.000d+50
do
m= minloc(x(:n),DIM=1)
IF(test(24) == 0)THEN
EXIT
END IF
END DO
sum= 0.00D0
som= 0.00D0
DO k= 1,mk
sum= sum+time(k)
times(jr,il,k)= time(k)
terrs(jr,il,k)= terr1(k)
npfs(jr,il,k)= npfs1(k)
csums(jr,il,k)= csum(k)
dos(jr,il,k)= total(k)
fopn(jr,il,k)= flopn(k)
som= som+flopn(k)*total(k)
END DO
tk(1)= tk(1)+sum
tk(2)= tk(2)+som
! Dumpout Checksums: file "chksum"
! WRITE ( 7,706) jr, il
! 706 FORMAT(1X,2I3)
! WRITE ( 7,707) ( CSUM(k), k= 1,mk)
! 707 FORMAT(5X,'&',1PE23.16,',',1PE23.16,',',1PE23.16,',')
CALL track('KERNEL ')
RETURN
END SUBROUTINE kernel
! { dg-final { scan-tree-dump-times "vectorized 19 loops" 1 "vect" } }
! { dg-final { cleanup-tree-dump "vect" } }