std_complex.h (complex<_Tp>): Properly indent to follow C++STYLE.

* include/std/std_complex.h (complex<_Tp>): Properly indent
	to follow C++STYLE.
	(complex<>::__rep): New.
	(__complex_abs): New.  Dispatch to built-ins.
	(abs): Use them.
	(__complex_arg): New. Dispatch to built-ins.
	(arg): Use it.
	(__complex_cos): New. Dispatch to built-ins.
	(cos): Use it.
	(__complex_cosh): New. Dispatch to built-ins.
	(cosh): Use it.
	(__complex_exp): New. Dispatch to built-ins.
	(exp): Use it.
	(__complex_log): New. Dispatch to built-ins.
	(log): Use it.
	(__complex_sin): New. Dispatch to built-ins.
	(sin): Use it.
	(__complex_sinh): New. Dispatch to built-ins.
	(sinh): Use it.
	(__complex_sqrt): New. Dispatch to built-ins.
	(sqrt): Use it.
	(__complex_tan): New. Dispatch to built-ins.
	(tan): Use it.
	(__complex_tanh): New. Dispatch to built-ins.
	(tanh): Use it.
	(__complex_pow): New. Dispatch to built-ins.
	(pow): Use it.

From-SVN: r82453
This commit is contained in:
Gabriel Dos Reis 2004-05-30 14:41:39 +00:00 committed by Gabriel Dos Reis
parent 7b5b57b7dc
commit a4ddde0dee
2 changed files with 375 additions and 156 deletions

View File

@ -1,3 +1,33 @@
2004-05-30 Gabriel Dos Reis <gdr@integrable-solutions.net>
* include/std/std_complex.h (complex<_Tp>): Properly indent
to follow C++STYLE.
(complex<>::__rep): New.
(__complex_abs): New. Dispatch to built-ins.
(abs): Use them.
(__complex_arg): New. Dispatch to built-ins.
(arg): Use it.
(__complex_cos): New. Dispatch to built-ins.
(cos): Use it.
(__complex_cosh): New. Dispatch to built-ins.
(cosh): Use it.
(__complex_exp): New. Dispatch to built-ins.
(exp): Use it.
(__complex_log): New. Dispatch to built-ins.
(log): Use it.
(__complex_sin): New. Dispatch to built-ins.
(sin): Use it.
(__complex_sinh): New. Dispatch to built-ins.
(sinh): Use it.
(__complex_sqrt): New. Dispatch to built-ins.
(sqrt): Use it.
(__complex_tan): New. Dispatch to built-ins.
(tan): Use it.
(__complex_tanh): New. Dispatch to built-ins.
(tanh): Use it.
(__complex_pow): New. Dispatch to built-ins.
(pow): Use it.
2004-05-29 Richard B. Kreckel <Richard.Kreckel@Framatome-ANP.com>
Benjamin Kosnik <bkoz@redhat.com>

View File

@ -87,7 +87,7 @@ namespace std
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
/// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
const complex<_Tp>&);
const complex<_Tp>&);
/// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
/// Return complex sine of @a z.
@ -113,9 +113,8 @@ namespace std
* @param Tp Type of real and imaginary values.
*/
template<typename _Tp>
class complex
struct complex
{
public:
/// Value typedef.
typedef _Tp value_type;
@ -168,6 +167,8 @@ namespace std
template<typename _Up>
complex<_Tp>& operator/=(const complex<_Up>&);
const complex& __rep() const;
private:
_Tp _M_real;
_Tp _M_imag;
@ -305,6 +306,10 @@ namespace std
_M_real = __r / __n;
return *this;
}
template<typename _Tp>
inline const complex<_Tp>&
complex<_Tp>::__rep() const { return *this; }
// Operators:
//@{
@ -542,9 +547,10 @@ namespace std
imag(const complex<_Tp>& __z)
{ return __z.imag(); }
// 26.2.7/3 abs(__z): Returns the magnitude of __z.
template<typename _Tp>
inline _Tp
abs(const complex<_Tp>& __z)
__complex_abs(const complex<_Tp>& __z)
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
@ -553,13 +559,47 @@ namespace std
return __s;
__x /= __s;
__y /= __s;
return __s * sqrt(__x * __x + __y * __y);
return __s * sqrt(__x * __x + __y * __y);
}
inline float
__complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); }
inline double
__complex_abs(__complex__ double __z) { return __builtin_cabs(__z); }
inline long double
__complex_abs(const __complex__ long double& __z)
{
return __builtin_cabsl(__z);
}
template<typename _Tp>
inline _Tp
abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }
// 26.2.7/4: arg(__z): Returns the phase angle of __z.
template<typename _Tp>
inline _Tp
__complex_arg(const complex<_Tp>& __z)
{
return atan2(__z.imag(), __z.real());
}
inline float
__complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }
inline double
__complex_arg(__complex__ double __z) { return __builtin_carg(__z); }
inline long double
__complex_arg(const __complex__ long double& __z)
{ return __builtin_cargl(__z); }
template<typename _Tp>
inline _Tp
arg(const complex<_Tp>& __z)
{ return atan2(__z.imag(), __z.real()); }
arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }
// 26.2.7/5: norm(__z) returns the squared magintude of __z.
// As defined, norm() is -not- a norm is the common mathematical
@ -607,60 +647,155 @@ namespace std
{ return complex<_Tp>(__z.real(), -__z.imag()); }
// Transcendentals
// 26.2.8/1 cos(__z): Returns the cosine of __z.
template<typename _Tp>
inline complex<_Tp>
cos(const complex<_Tp>& __z)
__complex_cos(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
}
inline __complex__ float
__complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }
inline __complex__ double
__complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }
inline __complex__ long double
__complex_cos(const __complex__ long double& __z)
{ return __builtin_ccosl(__z); }
template<typename _Tp>
inline complex<_Tp>
cosh(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
}
cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }
// 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
template<typename _Tp>
inline complex<_Tp>
__complex_cosh(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
}
inline __complex__ float
__complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }
inline __complex__ double
__complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }
inline __complex__ long double
__complex_cosh(const __complex__ long double& __z)
{ return __builtin_ccoshl(__z); }
template<typename _Tp>
inline complex<_Tp>
exp(const complex<_Tp>& __z)
cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }
// 26.2.8/3 exp(__z): Returns the complex base e exponential of x
template<typename _Tp>
inline complex<_Tp>
__complex_exp(const complex<_Tp>& __z)
{ return std::polar(exp(__z.real()), __z.imag()); }
inline __complex__ float
__complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }
inline __complex__ double
__complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }
inline __complex__ long double
__complex_exp(const __complex__ long double& __z)
{ return __builtin_cexpl(__z); }
template<typename _Tp>
inline complex<_Tp>
log(const complex<_Tp>& __z)
exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }
// 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z.
// The branch cut is along the negative axis.
template<typename _Tp>
inline complex<_Tp>
__complex_log(const complex<_Tp>& __z)
{ return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }
/*
inline __complex__ float
__complex_log(__complex__ float __z) { return __builtin_clogf(__z); }
inline __complex__ double
__complex_log(__complex__ double __z) { return __builtin_clog(__z); }
inline __complex__ long double
__complex_log(const __complex__ long double& __z)
{ return __builtin_clog(__z); } */
template<typename _Tp>
inline complex<_Tp>
log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }
template<typename _Tp>
inline complex<_Tp>
log10(const complex<_Tp>& __z)
{ return std::log(__z) / log(_Tp(10.0)); }
// 26.2.8/10 sin(__z): Returns the sine of __z.
template<typename _Tp>
inline complex<_Tp>
sin(const complex<_Tp>& __z)
__complex_sin(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
}
inline __complex__ float
__complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }
inline __complex__ double
__complex_sin(__complex__ double __z) { return __builtin_csin(__z); }
inline __complex__ long double
__complex_sin(const __complex__ long double& __z)
{ return __builtin_csinl(__z); }
template<typename _Tp>
inline complex<_Tp>
sinh(const complex<_Tp>& __z)
sin(const complex<_Tp>& __z) { __complex_sin(__z.__rep()); }
// 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
template<typename _Tp>
inline complex<_Tp>
__complex_sinh(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
}
inline __complex__ float
__complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }
inline __complex__ double
__complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }
inline __complex__ long double
__complex_sinh(const __complex__ long double& __z)
{ return __builtin_csinhl(__z); }
template<typename _Tp>
inline complex<_Tp>
sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }
// 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
// The branch cut is on the negative axis.
template<typename _Tp>
complex<_Tp>
sqrt(const complex<_Tp>& __z)
__complex_sqrt(const complex<_Tp>& __z)
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
@ -680,20 +815,65 @@ namespace std
}
}
template<typename _Tp>
inline complex<_Tp>
tan(const complex<_Tp>& __z)
{
return std::sin(__z) / std::cos(__z);
}
inline __complex__ float
__complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }
inline __complex__ double
__complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }
inline __complex__ long double
__complex_sqrt(const __complex__ long double& __z)
{ return __builtin_csqrtl(__z); }
template<typename _Tp>
inline complex<_Tp>
tanh(const complex<_Tp>& __z)
{
return std::sinh(__z) / std::cosh(__z);
}
sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }
// 26.2.8/14 tan(__z): Return the complex tangent of __z.
template<typename _Tp>
inline complex<_Tp>
__complex_tan(const complex<_Tp>& __z)
{ return std::sin(__z) / std::cos(__z); }
inline __complex__ float
__complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }
inline __complex__ double
__complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }
inline __complex__ long double
__complex_tan(const __complex__ long double& __z)
{ return __builtin_ctanl(__z); }
template<typename _Tp>
inline complex<_Tp>
tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }
// 26.2.8/15 tanh(__z): Returns the hyperbolic tangent of __z.
template<typename _Tp>
inline complex<_Tp>
__complex_tanh(const complex<_Tp>& __z)
{ return std::sinh(__z) / std::cosh(__z); }
inline __complex__ float
__complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }
inline __complex__ double
__complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }
inline __complex__ long double
__complex_tanh(const __complex__ long double& __z)
{ return __builtin_ctanhl(__z); }
template<typename _Tp>
inline complex<_Tp>
tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }
// 26.2.8/9 pow(__x, __y): Returns the complex power base of __x
// raised to the __y-th power. The branch
// cut is on the negative axis.
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __z, int __n)
@ -712,12 +892,27 @@ namespace std
return std::polar(exp(__y * __t.real()), __y * __t.imag());
}
template<typename _Tp>
inline complex<_Tp>
__complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }
inline __complex__ float
__complex_pow(__complex__ float __x, __complex__ float __y)
{ return __builtin_cpowf(__x, __y); }
inline __complex__ double
__complex_pow(__complex__ double __x, __complex__ double __y)
{ return __builtin_cpow(__x, __y); }
inline __complex__ long double
__complex_pow(__complex__ long double& __x, __complex__ long double& __y)
{ return __builtin_cpowl(__x, __y); }
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));
}
{ return __complex_pow(__x, __y); }
template<typename _Tp>
inline complex<_Tp>
@ -730,52 +925,51 @@ namespace std
// 26.2.3 complex specializations
// complex<float> specialization
template<> class complex<float>
{
public:
typedef float value_type;
complex(float = 0.0f, float = 0.0f);
template<>
struct complex<float>
{
typedef float value_type;
typedef __complex__ float _ComplexT;
complex(_ComplexT __z) : _M_value(__z) { }
complex(float = 0.0f, float = 0.0f);
#ifdef _GLIBCXX_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);
float& real();
const float& real() const;
float& imag();
const float& imag() const;
float& real();
const float& real() const;
float& imag();
const float& imag() const;
complex<float>& operator=(float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);
// Let's the compiler synthetize the copy and assignment
// operator. It always does a pretty good job.
// complex& operator= (const complex&);
template<typename _Tp>
complex<float>&operator=(const complex<_Tp>&);
template<typename _Tp>
complex<float>& operator+=(const complex<_Tp>&);
template<class _Tp>
complex<float>& operator-=(const complex<_Tp>&);
template<class _Tp>
complex<float>& operator*=(const complex<_Tp>&);
template<class _Tp>
complex<float>&operator/=(const complex<_Tp>&);
complex<float>& operator=(float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);
private:
typedef __complex__ float _ComplexT;
_ComplexT _M_value;
// Let's the compiler synthetize the copy and assignment
// operator. It always does a pretty good job.
// complex& operator= (const complex&);
template<typename _Tp>
complex<float>&operator=(const complex<_Tp>&);
template<typename _Tp>
complex<float>& operator+=(const complex<_Tp>&);
template<class _Tp>
complex<float>& operator-=(const complex<_Tp>&);
template<class _Tp>
complex<float>& operator*=(const complex<_Tp>&);
template<class _Tp>
complex<float>&operator/=(const complex<_Tp>&);
complex(_ComplexT __z) : _M_value(__z) { }
friend class complex<double>;
friend class complex<long double>;
};
const _ComplexT& __rep() const { return _M_value; }
private:
_ComplexT _M_value;
};
inline float&
complex<float>::real()
@ -887,51 +1081,50 @@ namespace std
// 26.2.3 complex specializations
// complex<double> specialization
template<> class complex<double>
{
public:
typedef double value_type;
template<>
struct complex<double>
{
typedef double value_type;
typedef __complex__ double _ComplexT;
complex(double =0.0, double =0.0);
complex(_ComplexT __z) : _M_value(__z) { }
complex(double = 0.0, double = 0.0);
#ifdef _GLIBCXX_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
complex(const complex<float>&);
explicit complex(const complex<long double>&);
complex(const complex<float>&);
explicit complex(const complex<long double>&);
double& real();
const double& real() const;
double& imag();
const double& imag() const;
complex<double>& operator=(double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);
double& real();
const double& real() const;
double& imag();
const double& imag() const;
// The compiler will synthetize this, efficiently.
// complex& operator= (const complex&);
template<typename _Tp>
complex<double>& operator=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator+=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator-=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator*=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator/=(const complex<_Tp>&);
complex<double>& operator=(double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);
private:
typedef __complex__ double _ComplexT;
_ComplexT _M_value;
// The compiler will synthetize this, efficiently.
// complex& operator= (const complex&);
template<typename _Tp>
complex<double>& operator=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator+=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator-=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator*=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator/=(const complex<_Tp>&);
complex(_ComplexT __z) : _M_value(__z) { }
friend class complex<float>;
friend class complex<long double>;
};
const _ComplexT& __rep() const { return _M_value; }
private:
_ComplexT _M_value;
};
inline double&
complex<double>::real()
@ -1043,51 +1236,50 @@ namespace std
// 26.2.3 complex specializations
// complex<long double> specialization
template<> class complex<long double>
{
public:
typedef long double value_type;
template<>
struct complex<long double>
{
typedef long double value_type;
typedef __complex__ long double _ComplexT;
complex(long double = 0.0L, long double = 0.0L);
complex(_ComplexT __z) : _M_value(__z) { }
complex(long double = 0.0L, long double = 0.0L);
#ifdef _GLIBCXX_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
complex(const complex<float>&);
complex(const complex<double>&);
complex(const complex<float>&);
complex(const complex<double>&);
long double& real();
const long double& real() const;
long double& imag();
const long double& imag() const;
long double& real();
const long double& real() const;
long double& imag();
const long double& imag() const;
complex<long double>& operator= (long double);
complex<long double>& operator+= (long double);
complex<long double>& operator-= (long double);
complex<long double>& operator*= (long double);
complex<long double>& operator/= (long double);
complex<long double>& operator= (long double);
complex<long double>& operator+= (long double);
complex<long double>& operator-= (long double);
complex<long double>& operator*= (long double);
complex<long double>& operator/= (long double);
// The compiler knows how to do this efficiently
// complex& operator= (const complex&);
template<typename _Tp>
complex<long double>& operator=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator+=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator-=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator*=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator/=(const complex<_Tp>&);
// The compiler knows how to do this efficiently
// complex& operator= (const complex&);
template<typename _Tp>
complex<long double>& operator=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator+=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator-=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator*=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator/=(const complex<_Tp>&);
private:
typedef __complex__ long double _ComplexT;
_ComplexT _M_value;
const _ComplexT& __rep() const { return _M_value; }
complex(_ComplexT __z) : _M_value(__z) { }
friend class complex<float>;
friend class complex<double>;
};
private:
_ComplexT _M_value;
};
inline
complex<long double>::complex(long double __r, long double __i)
@ -1203,30 +1395,27 @@ namespace std
// inlining. It suffices that class specializations be defined.
inline
complex<float>::complex(const complex<double>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
: _M_value(__z.__rep()) { }
inline
complex<float>::complex(const complex<long double>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
: _M_value(__z.__rep()) { }
inline
complex<double>::complex(const complex<float>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
: _M_value(__z.__rep()) { }
inline
complex<double>::complex(const complex<long double>& __z)
{
__real__ _M_value = __z.real();
__imag__ _M_value = __z.imag();
}
: _M_value(__z.__rep()) { }
inline
complex<long double>::complex(const complex<float>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
: _M_value(__z.__rep()) { }
inline
complex<long double>::complex(const complex<double>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
: _M_value(__z.__rep()) { }
} // namespace std
#endif /* _GLIBCXX_COMPLEX */