libstdc++: Fix pretty printing of std::unique_ptr [PR103086]

Since std::tuple started using [[no_unique_address]] the tuple<T*, D>
member of std::unique_ptr<T, D> has two _M_head_impl subobjects, in
different base classes. That means this printer code is ambiguous:

    tuple_head_type = tuple_impl_type.fields()[1].type   # _Head_base
    head_field = tuple_head_type.fields()[0]
    if head_field.name == '_M_head_impl':
        self.pointer = tuple_member['_M_head_impl']

In older versions of GDB it happened to work by chance, because GDB
returned the last _M_head_impl member and std::tuple's base classes are
stored in reverse order, so the last one was the T* element of the
tuple. Since GDB 11 it returns the first _M_head_impl, which is the
deleter element.

The fix is for the printer to stop using an ambiguous field name and
cast the tuple to the correct base class before accessing the
_M_head_impl member.

Instead of fixing this in both UniquePointerPrinter and StdPathPrinter a
new unique_ptr_get function is defined to do it correctly. That is
defined in terms of new tuple_get and _tuple_impl_get functions.

It would be possible to reuse _tuple_impl_get to access each element in
StdTuplePrinter._iterator.__next__, but that already does the correct
casting, and wouldn't be much simpler anyway.

libstdc++-v3/ChangeLog:

	PR libstdc++/103086
	* python/libstdcxx/v6/printers.py (_tuple_impl_get): New helper
	for accessing the tuple element stored in a _Tuple_impl node.
	(tuple_get): New function for accessing a tuple element.
	(unique_ptr_get): New function for accessing a unique_ptr.
	(UniquePointerPrinter, StdPathPrinter): Use unique_ptr_get.
	* python/libstdcxx/v6/xmethods.py (UniquePtrGetWorker): Cast
	tuple to its base class before accessing _M_head_impl.
This commit is contained in:
Jonathan Wakely 2021-11-04 22:50:02 +00:00
parent f4130a3eb5
commit a634928f5c
2 changed files with 52 additions and 21 deletions

View File

@ -240,32 +240,63 @@ class SharedPointerPrinter:
state = 'use count %d, weak count %d' % (usecount, weakcount - 1)
return '%s<%s> (%s)' % (self.typename, str(self.val.type.template_argument(0)), state)
def _tuple_impl_get(val):
"Return the tuple element stored in a _Tuple_impl<N, T> base class."
bases = val.type.fields()
if not bases[-1].is_base_class:
raise ValueError("Unsupported implementation for std::tuple: %s" % str(val.type))
# Get the _Head_base<N, T> base class:
head_base = val.cast(bases[-1].type)
fields = head_base.type.fields()
if len(fields) == 0:
raise ValueError("Unsupported implementation for std::tuple: %s" % str(val.type))
if fields[0].name == '_M_head_impl':
# The tuple element is the _Head_base::_M_head_impl data member.
return head_base['_M_head_impl']
elif fields[0].is_base_class:
# The tuple element is an empty base class of _Head_base.
# Cast to that empty base class.
return head_base.cast(fields[0].type)
else:
raise ValueError("Unsupported implementation for std::tuple: %s" % str(val.type))
def tuple_get(n, val):
"Return the result of std::get<n>(val) on a std::tuple"
tuple_size = len(get_template_arg_list(val.type))
if n > tuple_size:
raise ValueError("Out of range index for std::get<N> on std::tuple")
# Get the first _Tuple_impl<0, T...> base class:
node = val.cast(val.type.fields()[0].type)
while n > 0:
# Descend through the base classes until the Nth one.
node = node.cast(node.type.fields()[0].type)
n -= 1
return _tuple_impl_get(node)
def unique_ptr_get(val):
"Return the result of val.get() on a std::unique_ptr"
# std::unique_ptr<T, D> contains a std::tuple<D::pointer, D>,
# either as a direct data member _M_t (the old implementation)
# or within a data member of type __uniq_ptr_data.
impl_type = val.type.fields()[0].type.strip_typedefs()
# Check for new implementations first:
if is_specialization_of(impl_type, '__uniq_ptr_data') \
or is_specialization_of(impl_type, '__uniq_ptr_impl'):
tuple_member = val['_M_t']['_M_t']
elif is_specialization_of(impl_type, 'tuple'):
tuple_member = val['_M_t']
else:
raise ValueError("Unsupported implementation for unique_ptr: %s" % str(impl_type))
return tuple_get(0, tuple_member)
class UniquePointerPrinter:
"Print a unique_ptr"
def __init__ (self, typename, val):
self.val = val
impl_type = val.type.fields()[0].type.strip_typedefs()
# Check for new implementations first:
if is_specialization_of(impl_type, '__uniq_ptr_data') \
or is_specialization_of(impl_type, '__uniq_ptr_impl'):
tuple_member = val['_M_t']['_M_t']
elif is_specialization_of(impl_type, 'tuple'):
tuple_member = val['_M_t']
else:
raise ValueError("Unsupported implementation for unique_ptr: %s" % str(impl_type))
tuple_impl_type = tuple_member.type.fields()[0].type # _Tuple_impl
tuple_head_type = tuple_impl_type.fields()[1].type # _Head_base
head_field = tuple_head_type.fields()[0]
if head_field.name == '_M_head_impl':
self.pointer = tuple_member['_M_head_impl']
elif head_field.is_base_class:
self.pointer = tuple_member.cast(head_field.type)
else:
raise ValueError("Unsupported implementation for tuple in unique_ptr: %s" % str(impl_type))
def children (self):
return SmartPtrIterator(self.pointer)
return SmartPtrIterator(unique_ptr_get(self.val))
def to_string (self):
return ('std::unique_ptr<%s>' % (str(self.val.type.template_argument(0))))
@ -1370,7 +1401,7 @@ class StdPathPrinter:
def __init__ (self, typename, val):
self.val = val
self.typename = typename
impl = self.val['_M_cmpts']['_M_impl']['_M_t']['_M_t']['_M_head_impl']
impl = unique_ptr_get(self.val['_M_cmpts']['_M_impl'])
self.type = impl.cast(gdb.lookup_type('uintptr_t')) & 3
if self.type == 0:
self.impl = impl

View File

@ -597,7 +597,7 @@ class UniquePtrGetWorker(gdb.xmethod.XMethodWorker):
tuple_head_type = tuple_impl_type.fields()[1].type # _Head_base
head_field = tuple_head_type.fields()[0]
if head_field.name == '_M_head_impl':
return tuple_member['_M_head_impl']
return tuple_member.cast(tuple_head_type)['_M_head_impl']
elif head_field.is_base_class:
return tuple_member.cast(head_field.type)
else: