re PR fortran/45689 ([F03] Missing transformational intrinsic in the trans_func_f2003 list)

2018-01-02  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR fortran/45689
	PR fortran/83650
	* simplify.c (gfc_simplify_cshift): Re-implement to allow full
	range of arguments.

2018-01-02  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR fortran/45689
	PR fortran/83650
	* gfortran.dg/simplify_cshift_1.f90: Correct erroneous case.
	* gfortran.dg/simplify_cshift_4.f90: New test.

From-SVN: r256084
This commit is contained in:
Thomas Koenig 2018-01-02 17:51:26 +00:00
parent 7616c40b3f
commit a9ec0cfc36
5 changed files with 233 additions and 62 deletions

View File

@ -1,3 +1,10 @@
2018-01-02 Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/45689
PR fortran/83650
* simplify.c (gfc_simplify_cshift): Re-implement to allow full
range of arguments.
2018-01-01 Paul Thomas <pault@gcc.gnu.org>
PR fortran/83076

View File

@ -1950,92 +1950,212 @@ gfc_simplify_count (gfc_expr *mask, gfc_expr *dim, gfc_expr *kind)
simplify_transformation_to_array (result, mask, dim, mask, gfc_count, NULL);
}
/* Simplification routine for cshift. This works by copying the array
expressions into a one-dimensional array, shuffling the values into another
one-dimensional array and creating the new array expression from this. The
shuffling part is basically taken from the library routine. */
gfc_expr *
gfc_simplify_cshift (gfc_expr *array, gfc_expr *shift, gfc_expr *dim)
{
gfc_expr *a, *result;
int dm;
gfc_expr *result;
int which;
gfc_expr **arrayvec, **resultvec;
gfc_expr **rptr, **sptr;
mpz_t size;
size_t arraysize, shiftsize, i;
gfc_constructor *array_ctor, *shift_ctor;
ssize_t *shiftvec, *hptr;
ssize_t shift_val, len;
ssize_t count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
hs_ex[GFC_MAX_DIMENSIONS],
hstride[GFC_MAX_DIMENSIONS], sstride[GFC_MAX_DIMENSIONS],
a_extent[GFC_MAX_DIMENSIONS], a_stride[GFC_MAX_DIMENSIONS],
h_extent[GFC_MAX_DIMENSIONS],
ss_ex[GFC_MAX_DIMENSIONS];
ssize_t rsoffset;
int d, n;
bool continue_loop;
gfc_expr **src, **dest;
/* DIM is only useful for rank > 1, but deal with it here as one can
set DIM = 1 for rank = 1. */
if (!is_constant_array_expr (array))
return NULL;
if (shift->rank > 0)
gfc_simplify_expr (shift, 1);
if (!gfc_is_constant_expr (shift))
return NULL;
/* Make dim zero-based. */
if (dim)
{
if (!gfc_is_constant_expr (dim))
return NULL;
dm = mpz_get_si (dim->value.integer);
which = mpz_get_si (dim->value.integer) - 1;
}
else
dm = 1;
which = 0;
/* Copy array into 'a', simplify it, and then test for a constant array. */
a = gfc_copy_expr (array);
gfc_simplify_expr (a, 0);
if (!is_constant_array_expr (a))
gfc_array_size (array, &size);
arraysize = mpz_get_ui (size);
mpz_clear (size);
result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where);
result->shape = gfc_copy_shape (array->shape, array->rank);
result->rank = array->rank;
result->ts.u.derived = array->ts.u.derived;
if (arraysize == 0)
return result;
arrayvec = XCNEWVEC (gfc_expr *, arraysize);
array_ctor = gfc_constructor_first (array->value.constructor);
for (i = 0; i < arraysize; i++)
{
gfc_free_expr (a);
return NULL;
arrayvec[i] = array_ctor->expr;
array_ctor = gfc_constructor_next (array_ctor);
}
if (a->rank == 1)
resultvec = XCNEWVEC (gfc_expr *, arraysize);
extent[0] = 1;
count[0] = 0;
for (d=0; d < array->rank; d++)
{
gfc_constructor *ca, *cr;
mpz_t size;
int i, j, shft, sz;
a_extent[d] = mpz_get_si (array->shape[d]);
a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1];
}
if (!gfc_is_constant_expr (shift))
{
gfc_free_expr (a);
return NULL;
}
shft = mpz_get_si (shift->value.integer);
/* Case (i): If ARRAY has rank one, element i of the result is
ARRAY (1 + MODULO (i + SHIFT - 1, SIZE (ARRAY))). */
mpz_init (size);
gfc_array_size (a, &size);
sz = mpz_get_si (size);
if (shift->rank > 0)
{
gfc_array_size (shift, &size);
shiftsize = mpz_get_ui (size);
mpz_clear (size);
/* Adjust shft to deal with right or left shifts. */
shft = shft < 0 ? 1 - shft : shft;
/* Special case: Shift to the original order! */
if (sz == 0 || shft % sz == 0)
return a;
result = gfc_copy_expr (a);
cr = gfc_constructor_first (result->value.constructor);
for (i = 0; i < sz; i++, cr = gfc_constructor_next (cr))
shiftvec = XCNEWVEC (ssize_t, shiftsize);
shift_ctor = gfc_constructor_first (shift->value.constructor);
for (d = 0; d < shift->rank; d++)
{
j = (i + shft) % sz;
ca = gfc_constructor_first (a->value.constructor);
while (j-- > 0)
ca = gfc_constructor_next (ca);
cr->expr = gfc_copy_expr (ca->expr);
h_extent[d] = mpz_get_si (shift->shape[d]);
hstride[d] = d == 0 ? 1 : hstride[d-1] * h_extent[d-1];
}
}
else
shiftvec = NULL;
/* Shut up compiler */
len = 1;
rsoffset = 1;
gfc_free_expr (a);
return result;
n = 0;
for (d=0; d < array->rank; d++)
{
if (d == which)
{
rsoffset = a_stride[d];
len = a_extent[d];
}
else
{
count[n] = 0;
extent[n] = a_extent[d];
sstride[n] = a_stride[d];
ss_ex[n] = sstride[n] * extent[n];
if (shiftvec)
hs_ex[n] = hstride[n] * extent[n];
n++;
}
}
if (shiftvec)
{
for (i = 0; i < shiftsize; i++)
{
ssize_t val;
val = mpz_get_si (shift_ctor->expr->value.integer);
val = val % len;
if (val < 0)
val += len;
shiftvec[i] = val;
shift_ctor = gfc_constructor_next (shift_ctor);
}
shift_val = 0;
}
else
{
/* FIXME: Deal with rank > 1 arrays. For now, don't leak memory. */
/* GCC bootstrap is too stupid to realize that the above code for dm
is correct. First, dim can be specified for a rank 1 array. It is
not needed in this nor used here. Second, the code is simply waiting
for someone to implement rank > 1 simplification. For now, add a
pessimization to the code that has a zero valid reason to be here. */
if (dm > array->rank)
gcc_unreachable ();
gfc_free_expr (a);
shift_val = mpz_get_si (shift->value.integer);
shift_val = shift_val % len;
if (shift_val < 0)
shift_val += len;
}
return NULL;
continue_loop = true;
d = array->rank;
rptr = resultvec;
sptr = arrayvec;
hptr = shiftvec;
while (continue_loop)
{
ssize_t sh;
if (shiftvec)
sh = *hptr;
else
sh = shift_val;
src = &sptr[sh * rsoffset];
dest = rptr;
for (n = 0; n < len - sh; n++)
{
*dest = *src;
dest += rsoffset;
src += rsoffset;
}
src = sptr;
for ( n = 0; n < sh; n++)
{
*dest = *src;
dest += rsoffset;
src += rsoffset;
}
rptr += sstride[0];
sptr += sstride[0];
if (shiftvec)
hptr += hstride[0];
count[0]++;
n = 0;
while (count[n] == extent[n])
{
count[n] = 0;
rptr -= ss_ex[n];
sptr -= ss_ex[n];
if (shiftvec)
hptr -= hs_ex[n];
n++;
if (n >= d - 1)
{
continue_loop = false;
break;
}
else
{
count[n]++;
rptr += sstride[n];
sptr += sstride[n];
if (shiftvec)
hptr += hstride[n];
}
}
}
for (i = 0; i < arraysize; i++)
{
gfc_constructor_append_expr (&result->value.constructor,
gfc_copy_expr (resultvec[i]),
NULL);
}
return result;
}

View File

@ -1,3 +1,10 @@
2018-01-02 Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/45689
PR fortran/83650
* gfortran.dg/simplify_cshift_1.f90: Correct erroneous case.
* gfortran.dg/simplify_cshift_4.f90: New test.
2018-01-02 Marek Polacek <polacek@redhat.com>
PR c++/81860

View File

@ -23,12 +23,12 @@ program foo
v = cshift(c, 2)
if (any(b /= v)) call abort
! Special cases shift = 0, size(a), 1-size(a)
! Special cases shift = 0, size(a), -size(a)
b = cshift([1, 2, 3, 4, 5], 0)
if (any(b /= a)) call abort
b = cshift([1, 2, 3, 4, 5], size(a))
if (any(b /= a)) call abort
b = cshift([1, 2, 3, 4, 5], 1-size(a))
b = cshift([1, 2, 3, 4, 5], -size(a))
if (any(b /= a)) call abort
! simplification of array arg.

View File

@ -0,0 +1,37 @@
! { dg-do run }
program main
implicit none
integer :: i
integer, parameter, dimension(3,3) :: a = &
reshape([1,2,3,4,5,6,7,8,9], shape(a))
integer, dimension(3,3) :: b
integer, parameter, dimension(3,4,5) :: c = &
reshape([(i**2,i=1,3*4*5)],shape(c))
integer, dimension(3,4,5) :: d
integer, dimension(4,5), parameter :: sh1 =&
reshape([(i**3-12*i**2,i=1,4*5)],shape(sh1))
integer, dimension(3,5), parameter :: sh2 = &
reshape([(i**3-7*i**2,i=1,3*5)], shape(sh2))
integer, dimension(3,4), parameter :: sh3 = &
reshape([(i**3-3*i**2,i=1,3*4)], shape(sh3))
integer, parameter, dimension(3,4,5) :: c1 = cshift(c,shift=sh1,dim=1)
integer, parameter, dimension(3,4,5) :: c2 = cshift(c,shift=sh2,dim=2)
integer, parameter, dimension(3,4,5) :: c3 = cshift(c,shift=sh3,dim=3)
b = a
if (any(cshift(a,1) /= cshift(b,1))) call abort
if (any(cshift(a,2) /= cshift(b,2))) call abort
if (any(cshift(a,1,dim=2) /= cshift(b,1,dim=2))) call abort
d = c
if (any(cshift(c,1) /= cshift(d,1))) call abort
if (any(cshift(c,2) /= cshift(d,2))) call abort
if (any(cshift(c,3) /= cshift(d,3))) call abort
if (any(cshift(c,1,dim=2) /= cshift(d,1,dim=2))) call abort
if (any(cshift(c,2,dim=2) /= cshift(d,2,dim=2))) call abort
if (any(cshift(c,3,dim=3) /= cshift(d,3,dim=3))) call abort
if (any(cshift(d,shift=sh1,dim=1) /= c1)) call abort
if (any(cshift(d,shift=sh2,dim=2) /= c2)) call abort
if (any(cshift(d,shift=sh3,dim=3) /= c3)) call abort
end program main