Makefile.in (lower-subreg.o, [...]): Depend on lower-subreg.h.

gcc/
2012-03-31  Kenneth Zadeck  <zadeck@naturalbridge.com>
	    Richard Sandiford  <r.sandiford@uk.ibm.com>

	* Makefile.in (lower-subreg.o, target-globals.o): Depend on
	lower-subreg.h.
	* lower-subreg.h: New file.
	* target-globals.h (this_target_lower_subreg): Declare.
	(target_globals): Add lower_subreg;
	(restore_target_globals): Restore this_target_lower_subreg.
	* target-globals.c: Include it.
	(default_target_globals): Add default_target_lower_subreg.
	(save_target_globals): Initialize target_lower_subreg.
	* rtl.h (init_lower_subreg): Added declaration.
	* toplev.c (backend_init_target): Call initializer for lower-subreg
	pass.
	* lower-subreg.c (LOG_COSTS, FORCE_LOWERING): New macros.
	(default_target_lower_subreg): New variable.
	(this_target_lower_subreg): Likewise.
	(twice_word_mode, choices): New macros.
	(shift_cost, compute_splitting_shift, compute_costs)
	(init_lower_subreg): New functions.
	(resolve_simple_move): Add speed_p argument.  Check choices.
	(find_pseudo_copy): Don't check the mode size here.
	(resolve_simple_move): Assert the mode size.
	(find_decomposable_shift_zext): Add speed_p argument and return
	a bool.  Check choices.
	(resolve_shift_zext): Add comment.
	(dump_shift_choices, dump_choices): New functions.
	(decompose_multiword_subregs): Dump list of profitable
	transformations.  Add code to skip non profitable transformations.
	Update calls to simple_move and find_decomposable_shift_zext.

Co-Authored-By: Richard Sandiford <r.sandiford@uk.ibm.com>

From-SVN: r187015
This commit is contained in:
Kenneth Zadeck 2012-05-01 14:45:24 +00:00 committed by Richard Sandiford
parent 90911ab64f
commit af4ba42308
8 changed files with 449 additions and 51 deletions

View File

@ -1,3 +1,35 @@
2012-05-01 Kenneth Zadeck <zadeck@naturalbridge.com>
Richard Sandiford <r.sandiford@uk.ibm.com>
* Makefile.in (lower-subreg.o, target-globals.o): Depend on
lower-subreg.h.
* lower-subreg.h: New file.
* target-globals.h (this_target_lower_subreg): Declare.
(target_globals): Add lower_subreg;
(restore_target_globals): Restore this_target_lower_subreg.
* target-globals.c: Include it.
(default_target_globals): Add default_target_lower_subreg.
(save_target_globals): Initialize target_lower_subreg.
* rtl.h (init_lower_subreg): Added declaration.
* toplev.c (backend_init_target): Call initializer for lower-subreg
pass.
* lower-subreg.c (LOG_COSTS, FORCE_LOWERING): New macros.
(default_target_lower_subreg): New variable.
(this_target_lower_subreg): Likewise.
(twice_word_mode, choices): New macros.
(shift_cost, compute_splitting_shift, compute_costs)
(init_lower_subreg): New functions.
(resolve_simple_move): Add speed_p argument. Check choices.
(find_pseudo_copy): Don't check the mode size here.
(resolve_simple_move): Assert the mode size.
(find_decomposable_shift_zext): Add speed_p argument and return
a bool. Check choices.
(resolve_shift_zext): Add comment.
(dump_shift_choices, dump_choices): New functions.
(decompose_multiword_subregs): Dump list of profitable
transformations. Add code to skip non profitable transformations.
Update calls to simple_move and find_decomposable_shift_zext.
2012-05-01 Ian Bolton <ian.bolton@arm.com>
Sameera Deshpande <sameera.deshpande@arm.com>
Greta Yorsh <greta.yorsh@arm.com>

View File

@ -3428,11 +3428,13 @@ dbgcnt.o: dbgcnt.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(DIAGNOSTIC_CORE_H) $(DB
lower-subreg.o : lower-subreg.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
$(MACHMODE_H) $(TM_H) $(RTL_H) $(TM_P_H) $(TIMEVAR_H) $(FLAGS_H) \
insn-config.h $(BASIC_BLOCK_H) $(RECOG_H) $(OBSTACK_H) $(BITMAP_H) \
$(EXPR_H) $(EXCEPT_H) $(REGS_H) $(TREE_PASS_H) $(DF_H) dce.h
$(EXPR_H) $(EXCEPT_H) $(REGS_H) $(TREE_PASS_H) $(DF_H) dce.h \
lower-subreg.h
target-globals.o : target-globals.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
$(TM_H) insn-config.h $(MACHMODE_H) $(GGC_H) toplev.h target-globals.h \
$(FLAGS_H) $(REGS_H) $(RTL_H) reload.h expmed.h $(EXPR_H) $(OPTABS_H) \
$(LIBFUNCS_H) $(CFGLOOP_H) $(IRA_INT_H) builtins.h gcse.h bb-reorder.h
$(LIBFUNCS_H) $(CFGLOOP_H) $(IRA_INT_H) builtins.h gcse.h bb-reorder.h \
lower-subreg.h
hw-doloop.o : hw-doloop.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
$(RTL_H) $(FLAGS_H) $(EXPR_H) hard-reg-set.h $(BASIC_BLOCK_H) $(TM_P_H) \
$(DF_H) $(CFGLAYOUT_H) $(CFGLOOP_H) output.h $(RECOG_H) $(TARGET_H) \

View File

@ -40,6 +40,7 @@ along with GCC; see the file COPYING3. If not see
#include "regs.h"
#include "tree-pass.h"
#include "df.h"
#include "lower-subreg.h"
#ifdef STACK_GROWS_DOWNWARD
# undef STACK_GROWS_DOWNWARD
@ -52,10 +53,35 @@ DEF_VEC_P (bitmap);
DEF_VEC_ALLOC_P (bitmap,heap);
/* Decompose multi-word pseudo-registers into individual
pseudo-registers when possible. This is possible when all the uses
of a multi-word register are via SUBREG, or are copies of the
register to another location. Breaking apart the register permits
more CSE and permits better register allocation. */
pseudo-registers when possible and profitable. This is possible
when all the uses of a multi-word register are via SUBREG, or are
copies of the register to another location. Breaking apart the
register permits more CSE and permits better register allocation.
This is profitable if the machine does not have move instructions
to do this.
This pass only splits moves with modes that are wider than
word_mode and ASHIFTs, LSHIFTRTs and ZERO_EXTENDs with integer
modes that are twice the width of word_mode. The latter could be
generalized if there was a need to do this, but the trend in
architectures is to not need this.
There are two useful preprocessor defines for use by maintainers:
#define LOG_COSTS 1
if you wish to see the actual cost estimates that are being used
for each mode wider than word mode and the cost estimates for zero
extension and the shifts. This can be useful when port maintainers
are tuning insn rtx costs.
#define FORCE_LOWERING 1
if you wish to test the pass with all the transformation forced on.
This can be useful for finding bugs in the transformations. */
#define LOG_COSTS 0
#define FORCE_LOWERING 0
/* Bit N in this bitmap is set if regno N is used in a context in
which we can decompose it. */
@ -75,8 +101,190 @@ static bitmap subreg_context;
copy from reg M to reg N. */
static VEC(bitmap,heap) *reg_copy_graph;
/* Return whether X is a simple object which we can take a word_mode
subreg of. */
struct target_lower_subreg default_target_lower_subreg;
#if SWITCHABLE_TARGET
struct target_lower_subreg *this_target_lower_subreg
= &default_target_lower_subreg;
#endif
#define twice_word_mode \
this_target_lower_subreg->x_twice_word_mode
#define choices \
this_target_lower_subreg->x_choices
/* RTXes used while computing costs. */
struct cost_rtxes {
/* Source and target registers. */
rtx source;
rtx target;
/* A twice_word_mode ZERO_EXTEND of SOURCE. */
rtx zext;
/* A shift of SOURCE. */
rtx shift;
/* A SET of TARGET. */
rtx set;
};
/* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
rtxes in RTXES. SPEED_P selects between the speed and size cost. */
static int
shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
enum machine_mode mode, int op1)
{
PUT_MODE (rtxes->target, mode);
PUT_CODE (rtxes->shift, code);
PUT_MODE (rtxes->shift, mode);
PUT_MODE (rtxes->source, mode);
XEXP (rtxes->shift, 1) = GEN_INT (op1);
SET_SRC (rtxes->set) = rtxes->shift;
return insn_rtx_cost (rtxes->set, speed_p);
}
/* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
to true if it is profitable to split a double-word CODE shift
of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
for speed or size profitability.
Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
the cost of moving zero into a word-mode register. WORD_MOVE_COST
is the cost of moving between word registers. */
static void
compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
bool *splitting, enum rtx_code code,
int word_move_zero_cost, int word_move_cost)
{
int wide_cost, narrow_cost, i;
for (i = 0; i < BITS_PER_WORD; i++)
{
wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
i + BITS_PER_WORD);
if (i == 0)
narrow_cost = word_move_cost;
else
narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
if (LOG_COSTS)
fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
i + BITS_PER_WORD, wide_cost, narrow_cost,
word_move_zero_cost);
if (FORCE_LOWERING || wide_cost >= narrow_cost + word_move_zero_cost)
splitting[i] = true;
}
}
/* Compute what we should do when optimizing for speed or size; SPEED_P
selects which. Use RTXES for computing costs. */
static void
compute_costs (bool speed_p, struct cost_rtxes *rtxes)
{
unsigned int i;
int word_move_zero_cost, word_move_cost;
SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
word_move_zero_cost = insn_rtx_cost (rtxes->set, speed_p);
SET_SRC (rtxes->set) = rtxes->source;
word_move_cost = insn_rtx_cost (rtxes->set, speed_p);
if (LOG_COSTS)
fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
for (i = 0; i < MAX_MACHINE_MODE; i++)
{
enum machine_mode mode = (enum machine_mode) i;
int factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
if (factor > 1)
{
int mode_move_cost;
PUT_MODE (rtxes->target, mode);
PUT_MODE (rtxes->source, mode);
mode_move_cost = insn_rtx_cost (rtxes->set, speed_p);
if (LOG_COSTS)
fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
GET_MODE_NAME (mode), mode_move_cost,
word_move_cost, factor);
if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
{
choices[speed_p].move_modes_to_split[i] = true;
choices[speed_p].something_to_do = true;
}
}
}
/* For the moves and shifts, the only case that is checked is one
where the mode of the target is an integer mode twice the width
of the word_mode.
If it is not profitable to split a double word move then do not
even consider the shifts or the zero extension. */
if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
{
int zext_cost;
/* The only case here to check to see if moving the upper part with a
zero is cheaper than doing the zext itself. */
PUT_MODE (rtxes->target, twice_word_mode);
PUT_MODE (rtxes->source, word_mode);
SET_SRC (rtxes->set) = rtxes->zext;
zext_cost = insn_rtx_cost (rtxes->set, speed_p);
if (LOG_COSTS)
fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
zext_cost, word_move_cost, word_move_zero_cost);
if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
choices[speed_p].splitting_zext = true;
compute_splitting_shift (speed_p, rtxes,
choices[speed_p].splitting_ashift, ASHIFT,
word_move_zero_cost, word_move_cost);
compute_splitting_shift (speed_p, rtxes,
choices[speed_p].splitting_lshiftrt, LSHIFTRT,
word_move_zero_cost, word_move_cost);
}
}
/* Do one-per-target initialisation. This involves determining
which operations on the machine are profitable. If none are found,
then the pass just returns when called. */
void
init_lower_subreg (void)
{
struct cost_rtxes rtxes;
memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode);
rtxes.target = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER);
rtxes.source = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER + 1);
rtxes.set = gen_rtx_SET (VOIDmode, rtxes.target, rtxes.source);
rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
if (LOG_COSTS)
fprintf (stderr, "\nSize costs\n==========\n\n");
compute_costs (false, &rtxes);
if (LOG_COSTS)
fprintf (stderr, "\nSpeed costs\n===========\n\n");
compute_costs (true, &rtxes);
}
static bool
simple_move_operand (rtx x)
@ -101,12 +309,15 @@ simple_move_operand (rtx x)
return true;
}
/* If INSN is a single set between two objects, return the single set.
Such an insn can always be decomposed. INSN should have been
passed to recog and extract_insn before this is called. */
/* If INSN is a single set between two objects that we want to split,
return the single set. SPEED_P says whether we are optimizing
INSN for speed or size.
INSN should have been passed to recog and extract_insn before this
is called. */
static rtx
simple_move (rtx insn)
simple_move (rtx insn, bool speed_p)
{
rtx x;
rtx set;
@ -150,6 +361,9 @@ simple_move (rtx insn)
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
return NULL_RTX;
if (!choices[speed_p].move_modes_to_split[(int) mode])
return NULL_RTX;
return set;
}
@ -173,9 +387,6 @@ find_pseudo_copy (rtx set)
if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
return false;
if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
return false;
b = VEC_index (bitmap, reg_copy_graph, rs);
if (b == NULL)
{
@ -668,8 +879,7 @@ resolve_simple_move (rtx set, rtx insn)
orig_mode = GET_MODE (dest);
words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (words <= 1)
return insn;
gcc_assert (words > 1);
start_sequence ();
@ -931,12 +1141,13 @@ resolve_debug (rtx insn)
resolve_reg_notes (insn);
}
/* Checks if INSN is a decomposable multiword-shift or zero-extend and
sets the decomposable_context bitmap accordingly. A non-zero value
is returned if a decomposable insn has been found. */
/* Check if INSN is a decomposable multiword-shift or zero-extend and
set the decomposable_context bitmap accordingly. SPEED_P is true
if we are optimizing INSN for speed rather than size. Return true
if INSN is decomposable. */
static int
find_decomposable_shift_zext (rtx insn)
static bool
find_decomposable_shift_zext (rtx insn, bool speed_p)
{
rtx set;
rtx op;
@ -944,41 +1155,44 @@ find_decomposable_shift_zext (rtx insn)
set = single_set (insn);
if (!set)
return 0;
return false;
op = SET_SRC (set);
if (GET_CODE (op) != ASHIFT
&& GET_CODE (op) != LSHIFTRT
&& GET_CODE (op) != ZERO_EXTEND)
return 0;
return false;
op_operand = XEXP (op, 0);
if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
|| HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
|| HARD_REGISTER_NUM_P (REGNO (op_operand))
|| !SCALAR_INT_MODE_P (GET_MODE (op)))
return 0;
|| GET_MODE (op) != twice_word_mode)
return false;
if (GET_CODE (op) == ZERO_EXTEND)
{
if (GET_MODE (op_operand) != word_mode
|| GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
return 0;
|| !choices[speed_p].splitting_zext)
return false;
}
else /* left or right shift */
{
bool *splitting = (GET_CODE (op) == ASHIFT
? choices[speed_p].splitting_ashift
: choices[speed_p].splitting_lshiftrt);
if (!CONST_INT_P (XEXP (op, 1))
|| INTVAL (XEXP (op, 1)) < BITS_PER_WORD
|| GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
return 0;
|| !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
2 * BITS_PER_WORD - 1)
|| !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
return false;
bitmap_set_bit (decomposable_context, REGNO (op_operand));
}
bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
if (GET_CODE (op) != ZERO_EXTEND)
bitmap_set_bit (decomposable_context, REGNO (op_operand));
return 1;
return true;
}
/* Decompose a more than word wide shift (in INSN) of a multiword
@ -1008,6 +1222,8 @@ resolve_shift_zext (rtx insn)
op_operand = XEXP (op, 0);
/* We can tear this operation apart only if the regs were already
torn apart. */
if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
return NULL_RTX;
@ -1073,6 +1289,56 @@ resolve_shift_zext (rtx insn)
return insns;
}
/* Print to dump_file a description of what we're doing with shift code CODE.
SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
static void
dump_shift_choices (enum rtx_code code, bool *splitting)
{
int i;
const char *sep;
fprintf (dump_file,
" Splitting mode %s for %s lowering with shift amounts = ",
GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
sep = "";
for (i = 0; i < BITS_PER_WORD; i++)
if (splitting[i])
{
fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
sep = ",";
}
fprintf (dump_file, "\n");
}
/* Print to dump_file a description of what we're doing when optimizing
for speed or size; SPEED_P says which. DESCRIPTION is a description
of the SPEED_P choice. */
static void
dump_choices (bool speed_p, const char *description)
{
unsigned int i;
fprintf (dump_file, "Choices when optimizing for %s:\n", description);
for (i = 0; i < MAX_MACHINE_MODE; i++)
if (GET_MODE_SIZE (i) > UNITS_PER_WORD)
fprintf (dump_file, " %s mode %s for copy lowering.\n",
choices[speed_p].move_modes_to_split[i]
? "Splitting"
: "Skipping",
GET_MODE_NAME ((enum machine_mode) i));
fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
GET_MODE_NAME (twice_word_mode));
dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_ashift);
fprintf (dump_file, "\n");
}
/* Look for registers which are always accessed via word-sized SUBREGs
or via copies. Decompose these registers into several word-sized
pseudo-registers. */
@ -1082,9 +1348,21 @@ decompose_multiword_subregs (void)
{
unsigned int max;
basic_block bb;
bool speed_p;
if (df)
df_set_flags (DF_DEFER_INSN_RESCAN);
if (dump_file)
{
dump_choices (false, "size");
dump_choices (true, "speed");
}
/* Check if this target even has any modes to consider lowering. */
if (!choices[false].something_to_do && !choices[true].something_to_do)
{
if (dump_file)
fprintf (dump_file, "Nothing to do!\n");
return;
}
max = max_reg_num ();
@ -1094,24 +1372,38 @@ decompose_multiword_subregs (void)
all the insns. */
{
unsigned int i;
bool useful_modes_seen = false;
for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
if (regno_reg_rtx[i] != NULL)
{
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
if (choices[false].move_modes_to_split[(int) mode]
|| choices[true].move_modes_to_split[(int) mode])
{
useful_modes_seen = true;
break;
}
}
if (!useful_modes_seen)
{
if (regno_reg_rtx[i] != NULL
&& GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
break;
if (dump_file)
fprintf (dump_file, "Nothing to lower in this function.\n");
return;
}
if (i == max)
return;
}
if (df)
run_word_dce ();
{
df_set_flags (DF_DEFER_INSN_RESCAN);
run_word_dce ();
}
/* FIXME: When the dataflow branch is merged, we can change this
code to look for each multi-word pseudo-register and to find each
insn which sets or uses that register. That should be faster
than scanning all the insns. */
/* FIXME: It may be possible to change this code to look for each
multi-word pseudo-register and to find each insn which sets or
uses that register. That should be faster than scanning all the
insns. */
decomposable_context = BITMAP_ALLOC (NULL);
non_decomposable_context = BITMAP_ALLOC (NULL);
@ -1121,6 +1413,7 @@ decompose_multiword_subregs (void)
VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
speed_p = optimize_function_for_speed_p (cfun);
FOR_EACH_BB (bb)
{
rtx insn;
@ -1138,12 +1431,12 @@ decompose_multiword_subregs (void)
recog_memoized (insn);
if (find_decomposable_shift_zext (insn))
if (find_decomposable_shift_zext (insn, speed_p))
continue;
extract_insn (insn);
set = simple_move (insn);
set = simple_move (insn, speed_p);
if (!set)
cmi = NOT_SIMPLE_MOVE;
@ -1197,7 +1490,9 @@ decompose_multiword_subregs (void)
FOR_EACH_BB (bb)
{
rtx insn;
bool speed_p;
speed_p = optimize_bb_for_speed_p (bb);
FOR_BB_INSNS (bb, insn)
{
rtx pat;
@ -1220,7 +1515,7 @@ decompose_multiword_subregs (void)
recog_memoized (insn);
extract_insn (insn);
set = simple_move (insn);
set = simple_move (insn, speed_p);
if (set)
{
rtx orig_insn = insn;

59
gcc/lower-subreg.h Normal file
View File

@ -0,0 +1,59 @@
/* Target-dependent costs for lower-subreg.c.
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option; any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef LOWER_SUBREG_H
#define LOWER_SUBREG_H 1
/* Information about whether, and where, lower-subreg should be applied. */
struct lower_subreg_choices {
/* A boolean vector for move splitting that is indexed by mode and is
true for each mode that is to have its copies split. */
bool move_modes_to_split[MAX_MACHINE_MODE];
/* True if zero-extensions from word_mode to twice_word_mode should
be split. */
bool splitting_zext;
/* Index X is true if twice_word_mode shifts by X + BITS_PER_WORD
should be split. */
bool splitting_ashift[MAX_BITS_PER_WORD];
bool splitting_lshiftrt[MAX_BITS_PER_WORD];
/* True if there is at least one mode that is worth splitting. */
bool something_to_do;
};
/* Target-specific information for the subreg lowering pass. */
struct target_lower_subreg {
/* An integer mode that is twice as wide as word_mode. */
enum machine_mode x_twice_word_mode;
/* What we have decided to do when optimizing for size (index 0)
and speed (index 1). */
struct lower_subreg_choices x_choices[2];
};
extern struct target_lower_subreg default_target_lower_subreg;
#if SWITCHABLE_TARGET
extern struct target_lower_subreg *this_target_lower_subreg;
#else
#define this_target_lower_subreg (&default_target_lower_subreg)
#endif
#endif

View File

@ -2526,6 +2526,9 @@ extern void init_expmed (void);
extern void expand_inc (rtx, rtx);
extern void expand_dec (rtx, rtx);
/* In lower-subreg.c */
extern void init_lower_subreg (void);
/* In gcse.c */
extern bool can_copy_p (enum machine_mode);
extern bool can_assign_to_reg_without_clobbers_p (rtx);

View File

@ -40,6 +40,7 @@ along with GCC; see the file COPYING3. If not see
#include "builtins.h"
#include "gcse.h"
#include "bb-reorder.h"
#include "lower-subreg.h"
#if SWITCHABLE_TARGET
struct target_globals default_target_globals = {
@ -56,7 +57,8 @@ struct target_globals default_target_globals = {
&default_target_ira_int,
&default_target_builtins,
&default_target_gcse,
&default_target_bb_reorder
&default_target_bb_reorder,
&default_target_lower_subreg
};
struct target_globals *
@ -79,6 +81,7 @@ save_target_globals (void)
g->builtins = XCNEW (struct target_builtins);
g->gcse = XCNEW (struct target_gcse);
g->bb_reorder = XCNEW (struct target_bb_reorder);
g->lower_subreg = XCNEW (struct target_lower_subreg);
restore_target_globals (g);
init_reg_sets ();
target_reinit ();

View File

@ -35,6 +35,7 @@ extern struct target_ira_int *this_target_ira_int;
extern struct target_builtins *this_target_builtins;
extern struct target_gcse *this_target_gcse;
extern struct target_bb_reorder *this_target_bb_reorder;
extern struct target_lower_subreg *this_target_lower_subreg;
struct GTY(()) target_globals {
struct target_flag_state *GTY((skip)) flag_state;
@ -51,6 +52,7 @@ struct GTY(()) target_globals {
struct target_builtins *GTY((skip)) builtins;
struct target_gcse *GTY((skip)) gcse;
struct target_bb_reorder *GTY((skip)) bb_reorder;
struct target_lower_subreg *GTY((skip)) lower_subreg;
};
extern struct target_globals default_target_globals;
@ -74,6 +76,7 @@ restore_target_globals (struct target_globals *g)
this_target_builtins = g->builtins;
this_target_gcse = g->gcse;
this_target_bb_reorder = g->bb_reorder;
this_target_lower_subreg = g->lower_subreg;
}
#endif

View File

@ -1601,6 +1601,7 @@ backend_init_target (void)
/* rtx_cost is mode-dependent, so cached values need to be recomputed
on a mode change. */
init_expmed ();
init_lower_subreg ();
/* We may need to recompute regno_save_code[] and regno_restore_code[]
after a mode change as well. */