FlatteningPathIterator.java: Entirely re-written.

2003-11-19  Sascha Brawer  <brawer@dandelis.ch>

	* java/awt/geom/FlatteningPathIterator.java: Entirely re-written.
	* java/awt/geom/doc-files/FlatteningPathIterator-1.html:
	Describe how the implementation works.

From-SVN: r73734
This commit is contained in:
Sascha Brawer 2003-11-19 13:02:11 +01:00 committed by Michael Koch
parent 1f33554abb
commit b6b8f69047
3 changed files with 992 additions and 31 deletions

View File

@ -1,3 +1,9 @@
2003-11-19 Sascha Brawer <brawer@dandelis.ch>
* java/awt/geom/FlatteningPathIterator.java: Entirely re-written.
* java/awt/geom/doc-files/FlatteningPathIterator-1.html:
Describe how the implementation works.
2003-11-19 Michael Koch <konqueror@gmx.de> 2003-11-19 Michael Koch <konqueror@gmx.de>
* java/net/Socket.java * java/net/Socket.java

View File

@ -1,5 +1,5 @@
/* FlatteningPathIterator.java -- performs interpolation of curved paths /* FlatteningPathIterator.java -- Approximates curves by straight lines
Copyright (C) 2002 Free Software Foundation Copyright (C) 2003 Free Software Foundation
This file is part of GNU Classpath. This file is part of GNU Classpath.
@ -38,68 +38,542 @@ exception statement from your version. */
package java.awt.geom; package java.awt.geom;
/** import java.util.NoSuchElementException;
* This class can be used to perform the flattening required by the Shape
* interface. It interpolates a curved path segment into a sequence of flat
* ones within a certain flatness, up to a recursion limit.
*
* @author Eric Blake <ebb9@email.byu.edu>
* @see Shape
* @see RectangularShape#getPathIterator(AffineTransform, double)
* @since 1.2
* @status STUBS ONLY
*/
public class FlatteningPathIterator implements PathIterator
{
// The iterator we are applied to.
private PathIterator subIterator;
private double flatness;
private int limit;
/**
* A PathIterator for approximating curved path segments by sequences
* of straight lines. Instances of this class will only return
* segments of type {@link PathIterator#SEG_MOVETO}, {@link
* PathIterator#SEG_LINETO}, and {@link PathIterator#SEG_CLOSE}.
*
* <p>The accuracy of the approximation is determined by two
* parameters:
*
* <ul><li>The <i>flatness</i> is a threshold value for deciding when
* a curved segment is consided flat enough for being approximated by
* a single straight line. Flatness is defined as the maximal distance
* of a curve control point to the straight line that connects the
* curve start and end. A lower flatness threshold means a closer
* approximation. See {@link QuadCurve2D#getFlatness()} and {@link
* CubicCurve2D#getFlatness()} for drawings which illustrate the
* meaning of flatness.</li>
*
* <li>The <i>recursion limit</i> imposes an upper bound for how often
* a curved segment gets subdivided. A limit of <i>n</i> means that
* for each individual quadratic and cubic B&#xe9;zier spline
* segment, at most 2<sup><small><i>n</i></small></sup> {@link
* PathIterator#SEG_LINETO} segments will be created.</li></ul>
*
* <p><b>Memory Efficiency:</b> The memory consumption grows linearly
* with the recursion limit. Neither the <i>flatness</i> parameter nor
* the number of segments in the flattened path will affect the memory
* consumption.
*
* <p><b>Thread Safety:</b> Multiple threads can safely work on
* separate instances of this class. However, multiple threads should
* not concurrently access the same instance, as no synchronization is
* performed.
*
* @see <a href="doc-files/FlatteningPathIterator-1.html"
* >Implementation Note</a>
*
* @author Sascha Brawer (brawer@dandelis.ch)
*
* @since 1.2
*/
public class FlatteningPathIterator
implements PathIterator
{
/**
* The PathIterator whose curved segments are being approximated.
*/
private final PathIterator srcIter;
/**
* The square of the flatness threshold value, which determines when
* a curve segment is considered flat enough that no further
* subdivision is needed.
*
* <p>Calculating flatness actually produces the squared flatness
* value. To avoid the relatively expensive calculation of a square
* root for each curve segment, we perform all flatness comparisons
* on squared values.
*
* @see QuadCurve2D#getFlatnessSq()
* @see CubicCurve2D#getFlatnessSq()
*/
private final double flatnessSq;
/**
* The maximal number of subdivions that are performed to
* approximate a quadratic or cubic curve segment.
*/
private final int recursionLimit;
/**
* A stack for holding the coordinates of subdivided segments.
*
* @see <a href="doc-files/FlatteningPathIterator-1.html"
* >Implementation Note</a>
*/
private double[] stack;
/**
* The current stack size.
*
* @see <a href="doc-files/FlatteningPathIterator-1.html"
* >Implementation Note</a>
*/
private int stackSize;
/**
* The number of recursions that were performed to arrive at
* a segment on the stack.
*
* @see <a href="doc-files/FlatteningPathIterator-1.html"
* >Implementation Note</a>
*/
private int[] recLevel;
private final double[] scratch = new double[6];
/**
* The segment type of the last segment that was returned by
* the source iterator.
*/
private int srcSegType;
/**
* The current <i>x</i> position of the source iterator.
*/
private double srcPosX;
/**
* The current <i>y</i> position of the source iterator.
*/
private double srcPosY;
/**
* A flag that indicates when this path iterator has finished its
* iteration over path segments.
*/
private boolean done;
/**
* Constructs a new PathIterator for approximating an input
* PathIterator with straight lines. The approximation works by
* recursive subdivisons, until the specified flatness threshold is
* not exceeded.
*
* <p>There will not be more than 10 nested recursion steps, which
* means that a single <code>SEG_QUADTO</code> or
* <code>SEG_CUBICTO</code> segment is approximated by at most
* 2<sup><small>10</small></sup> = 1024 straight lines.
*/
public FlatteningPathIterator(PathIterator src, double flatness) public FlatteningPathIterator(PathIterator src, double flatness)
{ {
this(src, flatness, 10); this(src, flatness, 10);
} }
public FlatteningPathIterator(PathIterator src, double flatness, int limit)
/**
* Constructs a new PathIterator for approximating an input
* PathIterator with straight lines. The approximation works by
* recursive subdivisons, until the specified flatness threshold is
* not exceeded. Additionally, the number of recursions is also
* bound by the specified recursion limit.
*/
public FlatteningPathIterator(PathIterator src, double flatness,
int limit)
{ {
subIterator = src;
this.flatness = flatness;
this.limit = limit;
if (flatness < 0 || limit < 0) if (flatness < 0 || limit < 0)
throw new IllegalArgumentException(); throw new IllegalArgumentException();
srcIter = src;
flatnessSq = flatness * flatness;
recursionLimit = limit;
fetchSegment();
} }
/**
* Returns the maximally acceptable flatness.
*
* @see QuadCurve2D#getFlatness()
* @see CubicCurve2D#getFlatness()
*/
public double getFlatness() public double getFlatness()
{ {
return flatness; return Math.sqrt(flatnessSq);
} }
/**
* Returns the maximum number of recursive curve subdivisions.
*/
public int getRecursionLimit() public int getRecursionLimit()
{ {
return limit; return recursionLimit;
} }
// Documentation will be copied from PathIterator.
public int getWindingRule() public int getWindingRule()
{ {
return subIterator.getWindingRule(); return srcIter.getWindingRule();
} }
// Documentation will be copied from PathIterator.
public boolean isDone() public boolean isDone()
{ {
return subIterator.isDone(); return done;
} }
// Documentation will be copied from PathIterator.
public void next() public void next()
{ {
throw new Error("not implemented"); if (stackSize > 0)
{
--stackSize;
if (stackSize > 0)
{
switch (srcSegType)
{
case PathIterator.SEG_QUADTO:
subdivideQuadratic();
return;
case PathIterator.SEG_CUBICTO:
subdivideCubic();
return;
default:
throw new IllegalStateException();
}
}
}
srcIter.next();
fetchSegment();
} }
// Documentation will be copied from PathIterator.
public int currentSegment(double[] coords) public int currentSegment(double[] coords)
{ {
throw new Error("not implemented"); if (done)
throw new NoSuchElementException();
switch (srcSegType)
{
case PathIterator.SEG_CLOSE:
return srcSegType;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
coords[0] = srcPosX;
coords[1] = srcPosY;
return srcSegType;
case PathIterator.SEG_QUADTO:
if (stackSize == 0)
{
coords[0] = srcPosX;
coords[1] = srcPosY;
}
else
{
int sp = stack.length - 4 * stackSize;
coords[0] = stack[sp + 2];
coords[1] = stack[sp + 3];
}
return PathIterator.SEG_LINETO;
case PathIterator.SEG_CUBICTO:
if (stackSize == 0)
{
coords[0] = srcPosX;
coords[1] = srcPosY;
}
else
{
int sp = stack.length - 6 * stackSize;
coords[0] = stack[sp + 4];
coords[1] = stack[sp + 5];
}
return PathIterator.SEG_LINETO;
}
throw new IllegalStateException();
} }
// Documentation will be copied from PathIterator.
public int currentSegment(float[] coords) public int currentSegment(float[] coords)
{ {
throw new Error("not implemented"); if (done)
throw new NoSuchElementException();
switch (srcSegType)
{
case PathIterator.SEG_CLOSE:
return srcSegType;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
coords[0] = (float) srcPosX;
coords[1] = (float) srcPosY;
return srcSegType;
case PathIterator.SEG_QUADTO:
if (stackSize == 0)
{
coords[0] = (float) srcPosX;
coords[1] = (float) srcPosY;
}
else
{
int sp = stack.length - 4 * stackSize;
coords[0] = (float) stack[sp + 2];
coords[1] = (float) stack[sp + 3];
}
return PathIterator.SEG_LINETO;
case PathIterator.SEG_CUBICTO:
if (stackSize == 0)
{
coords[0] = (float) srcPosX;
coords[1] = (float) srcPosY;
}
else
{
int sp = stack.length - 6 * stackSize;
coords[0] = (float) stack[sp + 4];
coords[1] = (float) stack[sp + 5];
}
return PathIterator.SEG_LINETO;
}
throw new IllegalStateException();
} }
} // class FlatteningPathIterator
/**
* Fetches the next segment from the source iterator.
*/
private void fetchSegment()
{
int sp;
if (srcIter.isDone())
{
done = true;
return;
}
srcSegType = srcIter.currentSegment(scratch);
switch (srcSegType)
{
case PathIterator.SEG_CLOSE:
return;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
srcPosX = scratch[0];
srcPosY = scratch[1];
return;
case PathIterator.SEG_QUADTO:
if (recursionLimit == 0)
{
srcPosX = scratch[2];
srcPosY = scratch[3];
stackSize = 0;
return;
}
sp = 4 * recursionLimit;
stackSize = 1;
if (stack == null)
{
stack = new double[sp + /* 4 + 2 */ 6];
recLevel = new int[recursionLimit + 1];
}
recLevel[0] = 0;
stack[sp] = srcPosX; // P1.x
stack[sp + 1] = srcPosY; // P1.y
stack[sp + 2] = scratch[0]; // C.x
stack[sp + 3] = scratch[1]; // C.y
srcPosX = stack[sp + 4] = scratch[2]; // P2.x
srcPosY = stack[sp + 5] = scratch[3]; // P2.y
subdivideQuadratic();
break;
case PathIterator.SEG_CUBICTO:
if (recursionLimit == 0)
{
srcPosX = scratch[4];
srcPosY = scratch[5];
stackSize = 0;
return;
}
sp = 6 * recursionLimit;
stackSize = 1;
if ((stack == null) || (stack.length < sp + 8))
{
stack = new double[sp + /* 6 + 2 */ 8];
recLevel = new int[recursionLimit + 1];
}
recLevel[0] = 0;
stack[sp] = srcPosX; // P1.x
stack[sp + 1] = srcPosY; // P1.y
stack[sp + 2] = scratch[0]; // C1.x
stack[sp + 3] = scratch[1]; // C1.y
stack[sp + 4] = scratch[2]; // C2.x
stack[sp + 5] = scratch[3]; // C2.y
srcPosX = stack[sp + 6] = scratch[4]; // P2.x
srcPosY = stack[sp + 7] = scratch[5]; // P2.y
subdivideCubic();
return;
}
}
/**
* Repeatedly subdivides the quadratic curve segment that is on top
* of the stack. The iteration terminates when the recursion limit
* has been reached, or when the resulting segment is flat enough.
*/
private void subdivideQuadratic()
{
int sp;
int level;
sp = stack.length - 4 * stackSize - 2;
level = recLevel[stackSize - 1];
while ((level < recursionLimit)
&& (QuadCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
{
recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
QuadCurve2D.subdivide(stack, sp, stack, sp - 4, stack, sp);
++stackSize;
sp -= 4;
}
}
/**
* Repeatedly subdivides the cubic curve segment that is on top
* of the stack. The iteration terminates when the recursion limit
* has been reached, or when the resulting segment is flat enough.
*/
private void subdivideCubic()
{
int sp;
int level;
sp = stack.length - 6 * stackSize - 2;
level = recLevel[stackSize - 1];
while ((level < recursionLimit)
&& (CubicCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
{
recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
CubicCurve2D.subdivide(stack, sp, stack, sp - 6, stack, sp);
++stackSize;
sp -= 6;
}
}
/* These routines were useful for debugging. Since they would
* just bloat the implementation, they are commented out.
*
*
private static String segToString(int segType, double[] d, int offset)
{
String s;
switch (segType)
{
case PathIterator.SEG_CLOSE:
return "SEG_CLOSE";
case PathIterator.SEG_MOVETO:
return "SEG_MOVETO (" + d[offset] + ", " + d[offset + 1] + ")";
case PathIterator.SEG_LINETO:
return "SEG_LINETO (" + d[offset] + ", " + d[offset + 1] + ")";
case PathIterator.SEG_QUADTO:
return "SEG_QUADTO (" + d[offset] + ", " + d[offset + 1]
+ ") (" + d[offset + 2] + ", " + d[offset + 3] + ")";
case PathIterator.SEG_CUBICTO:
return "SEG_CUBICTO (" + d[offset] + ", " + d[offset + 1]
+ ") (" + d[offset + 2] + ", " + d[offset + 3]
+ ") (" + d[offset + 4] + ", " + d[offset + 5] + ")";
}
throw new IllegalStateException();
}
private void dumpQuadraticStack(String msg)
{
int sp = stack.length - 4 * stackSize - 2;
int i = 0;
System.err.print(" " + msg + ":");
while (sp < stack.length)
{
System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
if (i < recLevel.length)
System.out.print("/" + recLevel[i++]);
if (sp + 3 < stack.length)
System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
sp += 4;
}
System.err.println();
}
private void dumpCubicStack(String msg)
{
int sp = stack.length - 6 * stackSize - 2;
int i = 0;
System.err.print(" " + msg + ":");
while (sp < stack.length)
{
System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
if (i < recLevel.length)
System.out.print("/" + recLevel[i++]);
if (sp + 3 < stack.length)
{
System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
System.err.print(" [" + stack[sp+4] + ", " + stack[sp+5] + "]");
}
sp += 6;
}
System.err.println();
}
*
*
*/
}

View File

@ -0,0 +1,481 @@
<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>The GNU Implementation of java.awt.geom.FlatteningPathIterator</title>
<meta name="author" content="Sascha Brawer" />
<style type="text/css"><!--
td { white-space: nowrap; }
li { margin: 2mm 0; }
--></style>
</head>
<body>
<h1>The GNU Implementation of FlatteningPathIterator</h1>
<p><i><a href="http://www.dandelis.ch/people/brawer/">Sascha
Brawer</a>, November 2003</i></p>
<p>This document describes the GNU implementation of the class
<code>java.awt.geom.FlatteningPathIterator</code>. It does
<em>not</em> describe how a programmer should use this class; please
refer to the generated API documentation for this purpose. Instead, it
is intended for maintenance programmers who want to understand the
implementation, for example because they want to extend the class or
fix a bug.</p>
<h2>Data Structures</h2>
<p>The algorithm uses a stack. Its allocation is delayed to the time
when the source path iterator actually returns the first curved
segment (either <code>SEG_QUADTO</code> or <code>SEG_CUBICTO</code>).
If the input path does not contain any curved segments, the value of
the <code>stack</code> variable stays <code>null</code>. In this quite
common case, the memory consumption is minimal.</p>
<dl><dt><code>stack</code></dt><dd>The variable <code>stack</code> is
a <code>double</code> array that holds the start, control and end
points of individual sub-segments.</dd>
<dt><code>recLevel</code></dt><dd>The variable <code>recLevel</code>
holds how many recursive sub-divisions were needed to calculate a
segment. The original curve has recursion level 0. For each
sub-division, the corresponding recursion level is increased by
one.</dd>
<dt><code>stackSize</code></dt><dd>Finally, the variable
<code>stackSize</code> indicates how many sub-segments are stored on
the stack.</dd></dl>
<h2>Algorithm</h2>
<p>The implementation separately processes each segment that the
base iterator returns.</p>
<p>In the case of <code>SEG_CLOSE</code>,
<code>SEG_MOVETO</code> and <code>SEG_LINETO</code> segments, the
implementation simply hands the segment to the consumer, without actually
doing anything.</p>
<p>Any <code>SEG_QUADTO</code> and <code>SEG_CUBICTO</code> segments
need to be flattened. Flattening is performed with a fixed-sized
stack, holding the coordinates of subdivided segments. When the base
iterator returns a <code>SEG_QUADTO</code> and
<code>SEG_CUBICTO</code> segments, it is recursively flattened as
follows:</p>
<ol><li>Intialization: Allocate memory for the stack (unless a
sufficiently large stack has been allocated previously). Push the
original quadratic or cubic curve onto the stack. Mark that segment as
having a <code>recLevel</code> of zero.</li>
<li>If the stack is empty, flattening the segment is complete,
and the next segment is fetched from the base iterator.</li>
<li>If the stack is not empty, pop a curve segment from the
stack.
<ul><li>If its <code>recLevel</code> exceeds the recursion limit,
hand the current segment to the consumer.</li>
<li>Calculate the squared flatness of the segment. If it smaller
than <code>flatnessSq</code>, hand the current segment to the
consumer.</li>
<li>Otherwise, split the segment in two halves. Push the right
half onto the stack. Then, push the left half onto the stack.
Continue with step two.</li></ul></li>
</ol>
<p>The implementation is slightly complicated by the fact that
consumers <em>pull</em> the flattened segments from the
<code>FlatteningPathIterator</code>. This means that we actually
cannot &#x201c;hand the curent segment over to the consumer.&#x201d;
But the algorithm is easier to understand if one assumes a
<em>push</em> paradigm.</p>
<h2>Example</h2>
<p>The following example shows how a
<code>FlatteningPathIterator</code> processes a
<code>SEG_QUADTO</code> segment. It is (arbitrarily) assumed that the
recursion limit was set to 2.</p>
<blockquote>
<table border="1" cellspacing="0" cellpadding="8">
<tr align="center" valign="baseline">
<th></th><th>A</th><th>B</th><th>C</th>
<th>D</th><th>E</th><th>F</th><th>G</th><th>H</th>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[0]</code></th>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td><i>S<sub>ll</sub>.x</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[1]</code></th>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td><i>S<sub>ll</sub>.y</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[2]</code></th>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td><i>C<sub>ll</sub>.x</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[3]</code></th>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td><i>C<sub>ll</sub>.y</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[4]</code></th>
<td>&#x2014;</td>
<td><i>S<sub>l</sub>.x</i></td>
<td><i>E<sub>ll</sub>.x</i>
= <i>S<sub>lr</sub>.x</i></td>
<td><i>S<sub>lr</sub>.x</i></td>
<td>&#x2014;</td>
<td><i>S<sub>rl</sub>.x</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[5]</code></th>
<td>&#x2014;</td>
<td><i>S<sub>l</sub>.y</i></td>
<td><i>E<sub>ll</sub>.x</i>
= <i>S<sub>lr</sub>.y</i></td>
<td><i>S<sub>lr</sub>.y</i></td>
<td>&#x2014;</td>
<td><i>S<sub>rl</sub>.y</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[6]</code></th>
<td>&#x2014;</td>
<td><i>C<sub>l</sub>.x</i></td>
<td><i>C<sub>lr</sub>.x</i></td>
<td><i>C<sub>lr</sub>.x</i></td>
<td>&#x2014;</td>
<td><i>C<sub>rl</sub>.x</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[7]</code></th>
<td>&#x2014;</td>
<td><i>C<sub>l</sub>.y</i></td>
<td><i>C<sub>lr</sub>.y</i></td>
<td><i>C<sub>lr</sub>.y</i></td>
<td>&#x2014;</td>
<td><i>C<sub>rl</sub>.y</i></td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[8]</code></th>
<td><i>S.x</i></td>
<td><i>E<sub>l</sub>.x</i>
= <i>S<sub>r</sub>.x</i></td>
<td><i>E<sub>lr</sub>.x</i>
= <i>S<sub>r</sub>.x</i></td>
<td><i>E<sub>lr</sub>.x</i>
= <i>S<sub>r</sub>.x</i></td>
<td><i>S<sub>r</sub>.x</i></td>
<td><i>E<sub>rl</sub>.x</i>
= <i>S<sub>rr</sub>.x</i></td>
<td><i>S<sub>rr</sub>.x</i></td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[9]</code></th>
<td><i>S.y</i></td>
<td><i>E<sub>l</sub>.y</i>
= <i>S<sub>r</sub>.y</i></td>
<td><i>E<sub>lr</sub>.y</i>
= <i>S<sub>r</sub>.y</i></td>
<td><i>E<sub>lr</sub>.y</i>
= <i>S<sub>r</sub>.y</i></td>
<td><i>S<sub>r</sub>.y</i></td>
<td><i>E<sub>rl</sub>.y</i>
= <i>S<sub>rr</sub>.y</i></td>
<td><i>S<sub>rr</sub>.y</i></td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[10]</code></th>
<td><i>C.x</i></td>
<td><i>C<sub>r</sub>.x</i></td>
<td><i>C<sub>r</sub>.x</i></td>
<td><i>C<sub>r</sub>.x</i></td>
<td><i>C<sub>r</sub>.x</i></td>
<td><i>C<sub>rr</sub>.x</i></td>
<td><i>C<sub>rr</sub>.x</i></td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[11]</code></th>
<td><i>C.y</i></td>
<td><i>C<sub>r</sub>.y</i></td>
<td><i>C<sub>r</sub>.y</i></td>
<td><i>C<sub>r</sub>.y</i></td>
<td><i>C<sub>r</sub>.y</i></td>
<td><i>C<sub>rr</sub>.y</i></td>
<td><i>C<sub>rr</sub>.y</i></td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[12]</code></th>
<td><i>E.x</i></td>
<td><i>E<sub>r</sub>.x</i></td>
<td><i>E<sub>r</sub>.x</i></td>
<td><i>E<sub>r</sub>.x</i></td>
<td><i>E<sub>r</sub>.x</i></td>
<td><i>E<sub>rr</sub>.x</i></td>
<td><i>E<sub>rr</sub>.x</i></td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stack[13]</code></th>
<td><i>E.y</i></td>
<td><i>E<sub>r</sub>.y</i></td>
<td><i>E<sub>r</sub>.y</i></td>
<td><i>E<sub>r</sub>.y</i></td>
<td><i>E<sub>r</sub>.y</i></td>
<td><i>E<sub>rr</sub>.y</i></td>
<td><i>E<sub>rr</sub>.x</i></td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>stackSize</code></th>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr align="center" valign="baseline">
<th><code>recLevel[2]</code></th>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>2</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>recLevel[1]</code></th>
<td>&#x2014;</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>&#x2014;</td>
<td>2</td>
<td>&#x2014;</td>
<td>&#x2014;</td>
</tr>
<tr align="center" valign="baseline">
<th><code>recLevel[0]</code></th>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>&#x2014;</td>
</tr>
</table>
</blockquote>
<ol>
<li>The data structures are initialized as follows.
<ul><li>The segment&#x2019;s end point <i>E</i>, control point
<i>C</i>, and start point <i>S</i> are pushed onto the stack.</li>
<li>Currently, the curve in the stack would be approximated by one
single straight line segment (<i>S</i> &#x2013; <i>E</i>).
Therefore, <code>stackSize</code> is set to 1.</li>
<li>This single straight line segment is approximating the original
curve, which can be seen as the result of zero recursive
splits. Therefore, <code>recLevel[0]</code> is set to
zero.</li></ul>
Column A shows the state after the initialization step.</li>
<li>The algorithm proceeds by taking the topmost curve segment
(<i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i>) from the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[0]</code>) is zero, which is smaller than
the limit 2.</li>
<li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
is called to calculate the squared flatness.</li>
<li>For the sake of argument, we assume that the squared flatness is
exceeding the threshold stored in <code>flatnessSq</code>. Thus, the
curve segment <i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i> gets
subdivided into a left and a right half, namely
<i>S<sub>l</sub></i> &#x2013; <i>C<sub>l</sub></i> &#x2013;
<i>E<sub>l</sub></i> and <i>S<sub>r</sub></i> &#x2013;
<i>C<sub>r</sub></i> &#x2013; <i>E<sub>r</sub></i>. Both halves are
pushed onto the stack, so the left half is now on top.
<br />&nbsp;<br />The left half starts at the same point
as the original curve, so <i>S<sub>l</sub></i> has the same
coordinates as <i>S</i>. Similarly, the end point of the right
half and of the original curve are identical
(<i>E<sub>r</sub></i> = <i>E</i>). More interestingly, the left
half ends where the right half starts. Because
<i>E<sub>l</sub></i> = <i>S<sub>r</sub></i>, their coordinates need
to be stored only once, which amounts to saving 16 bytes (two
<code>double</code> values) for each iteration.</li></ul>
Column B shows the state after the first iteration.</li>
<li>Again, the topmost curve segment (<i>S<sub>l</sub></i>
&#x2013; <i>C<sub>l</sub></i> &#x2013; <i>E<sub>l</sub></i>) is
taken from the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[1]</code>) is 1, which is smaller than
the limit 2.</li>
<li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
is called to calculate the squared flatness.</li>
<li>Assuming that the segment is still not considered
flat enough, it gets subdivided into a left
(<i>S<sub>ll</sub></i> &#x2013; <i>C<sub>ll</sub></i> &#x2013;
<i>E<sub>ll</sub></i>) and a right (<i>S<sub>lr</sub></i>
&#x2013; <i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>)
half.</li></ul>
Column C shows the state after the second iteration.</li>
<li>The topmost curve segment (<i>S<sub>ll</sub></i> &#x2013;
<i>C<sub>ll</sub></i> &#x2013; <i>E<sub>ll</sub></i>) is popped from
the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
the limit 2. Therefore, a <code>SEG_LINETO</code> (from
<i>S<sub>ll</sub></i> to <i>E<sub>ll</sub></i>) is passed to the
consumer.</li></ul>
The new state is shown in column D.</li>
<li>The topmost curve segment (<i>S<sub>lr</sub></i> &#x2013;
<i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>) is popped from
the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[1]</code>) is 2, which is <em>not</em> smaller than
the limit 2. Therefore, a <code>SEG_LINETO</code> (from
<i>S<sub>lr</sub></i> to <i>E<sub>lr</sub></i>) is passed to the
consumer.</li></ul>
The new state is shown in column E.</li>
<li>The algorithm proceeds by taking the topmost curve segment
(<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
<i>E<sub>r</sub></i>) from the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[0]</code>) is 1, which is smaller than
the limit 2.</li>
<li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
is called to calculate the squared flatness.</li>
<li>For the sake of argument, we again assume that the squared
flatness is exceeding the threshold stored in
<code>flatnessSq</code>. Thus, the curve segment
(<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
<i>E<sub>r</sub></i>) is subdivided into a left and a right half,
namely
<i>S<sub>rl</sub></i> &#x2013; <i>C<sub>rl</sub></i> &#x2013;
<i>E<sub>rl</sub></i> and <i>S<sub>rr</sub></i> &#x2013;
<i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>. Both halves
are pushed onto the stack.</li></ul>
The new state is shown in column F.</li>
<li>The topmost curve segment (<i>S<sub>rl</sub></i> &#x2013;
<i>C<sub>rl</sub></i> &#x2013; <i>E<sub>rl</sub></i>) is popped from
the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
the limit 2. Therefore, a <code>SEG_LINETO</code> (from
<i>S<sub>rl</sub></i> to <i>E<sub>rl</sub></i>) is passed to the
consumer.</li></ul>
The new state is shown in column G.</li>
<li>The topmost curve segment (<i>S<sub>rr</sub></i> &#x2013;
<i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>) is popped from
the stack.
<ul><li>The recursion level of this segment (stored in
<code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
the limit 2. Therefore, a <code>SEG_LINETO</code> (from
<i>S<sub>rr</sub></i> to <i>E<sub>rr</sub></i>) is passed to the
consumer.</li></ul>
The new state is shown in column H.</li>
<li>The stack is now empty. The FlatteningPathIterator will fetch the
next segment from the base iterator, and process it.</li>
</ol>
<p>In order to split the most recently pushed segment, the
<code>subdivideQuadratic()</code> method passes <code>stack</code>
directly to
<code>QuadCurve2D.subdivide(double[],int,double[],int,double[],int)</code>.
Because the stack grows towards the beginning of the array, no data
needs to be copied around: <code>subdivide</code> will directly store
the result into the stack, which will have the contents shown to the
right.</p>
</body>
</html>