Add runtime profiling infrastructure, not yet working.

From-SVN: r171579
This commit is contained in:
Ian Lance Taylor 2011-03-27 19:14:55 +00:00
parent d253656a7b
commit c29301d6b1
8 changed files with 598 additions and 43 deletions

View File

@ -423,6 +423,7 @@ runtime_files = \
runtime/go-unsafe-newarray.c \
runtime/go-unsafe-pointer.c \
runtime/go-unwind.c \
runtime/cpuprof.c \
runtime/mcache.c \
runtime/mcentral.c \
$(runtime_mem_file) \

View File

@ -207,7 +207,7 @@ am__libgo_la_SOURCES_DIST = runtime/go-append.c runtime/go-assert.c \
runtime/go-typestring.c runtime/go-unreflect.c \
runtime/go-unsafe-new.c runtime/go-unsafe-newarray.c \
runtime/go-unsafe-pointer.c runtime/go-unwind.c \
runtime/mcache.c runtime/mcentral.c \
runtime/cpuprof.c runtime/mcache.c runtime/mcentral.c \
runtime/mem_posix_memalign.c runtime/mem.c runtime/mfinal.c \
runtime/mfixalloc.c runtime/mgc0.c runtime/mheap.c \
runtime/msize.c runtime/proc.c runtime/thread.c \
@ -240,10 +240,11 @@ am__objects_3 = go-append.lo go-assert.lo go-assert-interface.lo \
go-type-error.lo go-type-identity.lo go-type-interface.lo \
go-type-string.lo go-typedesc-equal.lo go-typestring.lo \
go-unreflect.lo go-unsafe-new.lo go-unsafe-newarray.lo \
go-unsafe-pointer.lo go-unwind.lo mcache.lo mcentral.lo \
$(am__objects_1) mfinal.lo mfixalloc.lo mgc0.lo mheap.lo \
msize.lo proc.lo thread.lo $(am__objects_2) chan.lo iface.lo \
malloc.lo map.lo mprof.lo reflect.lo sigqueue.lo string.lo
go-unsafe-pointer.lo go-unwind.lo cpuprof.lo mcache.lo \
mcentral.lo $(am__objects_1) mfinal.lo mfixalloc.lo mgc0.lo \
mheap.lo msize.lo proc.lo thread.lo $(am__objects_2) chan.lo \
iface.lo malloc.lo map.lo mprof.lo reflect.lo sigqueue.lo \
string.lo
am_libgo_la_OBJECTS = $(am__objects_3)
libgo_la_OBJECTS = $(am_libgo_la_OBJECTS)
DEFAULT_INCLUDES = -I.@am__isrc@
@ -836,6 +837,7 @@ runtime_files = \
runtime/go-unsafe-newarray.c \
runtime/go-unsafe-pointer.c \
runtime/go-unwind.c \
runtime/cpuprof.c \
runtime/mcache.c \
runtime/mcentral.c \
$(runtime_mem_file) \
@ -2164,6 +2166,7 @@ distclean-compile:
-rm -f *.tab.c
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chan.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cpuprof.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/go-append.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/go-assert-interface.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/go-assert.Plo@am__quote@
@ -2836,6 +2839,13 @@ go-unwind.lo: runtime/go-unwind.c
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o go-unwind.lo `test -f 'runtime/go-unwind.c' || echo '$(srcdir)/'`runtime/go-unwind.c
cpuprof.lo: runtime/cpuprof.c
@am__fastdepCC_TRUE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT cpuprof.lo -MD -MP -MF $(DEPDIR)/cpuprof.Tpo -c -o cpuprof.lo `test -f 'runtime/cpuprof.c' || echo '$(srcdir)/'`runtime/cpuprof.c
@am__fastdepCC_TRUE@ $(am__mv) $(DEPDIR)/cpuprof.Tpo $(DEPDIR)/cpuprof.Plo
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='runtime/cpuprof.c' object='cpuprof.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o cpuprof.lo `test -f 'runtime/cpuprof.c' || echo '$(srcdir)/'`runtime/cpuprof.c
mcache.lo: runtime/mcache.c
@am__fastdepCC_TRUE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT mcache.lo -MD -MP -MF $(DEPDIR)/mcache.Tpo -c -o mcache.lo `test -f 'runtime/mcache.c' || echo '$(srcdir)/'`runtime/mcache.c
@am__fastdepCC_TRUE@ $(am__mv) $(DEPDIR)/mcache.Tpo $(DEPDIR)/mcache.Plo

432
libgo/runtime/cpuprof.c Normal file
View File

@ -0,0 +1,432 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// CPU profiling.
// Based on algorithms and data structures used in
// http://code.google.com/p/google-perftools/.
//
// The main difference between this code and the google-perftools
// code is that this code is written to allow copying the profile data
// to an arbitrary io.Writer, while the google-perftools code always
// writes to an operating system file.
//
// The signal handler for the profiling clock tick adds a new stack trace
// to a hash table tracking counts for recent traces. Most clock ticks
// hit in the cache. In the event of a cache miss, an entry must be
// evicted from the hash table, copied to a log that will eventually be
// written as profile data. The google-perftools code flushed the
// log itself during the signal handler. This code cannot do that, because
// the io.Writer might block or need system calls or locks that are not
// safe to use from within the signal handler. Instead, we split the log
// into two halves and let the signal handler fill one half while a goroutine
// is writing out the other half. When the signal handler fills its half, it
// offers to swap with the goroutine. If the writer is not done with its half,
// we lose the stack trace for this clock tick (and record that loss).
// The goroutine interacts with the signal handler by calling getprofile() to
// get the next log piece to write, implicitly handing back the last log
// piece it obtained.
//
// The state of this dance between the signal handler and the goroutine
// is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
// is not using either log half and is waiting (or will soon be waiting) for
// a new piece by calling notesleep(&p->wait). If the signal handler
// changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
// to wake the goroutine. The value indicates the number of entries in the
// log half being handed off. The goroutine leaves the non-zero value in
// place until it has finished processing the log half and then flips the number
// back to zero. Setting the high bit in handoff means that the profiling is over,
// and the goroutine is now in charge of flushing the data left in the hash table
// to the log and returning that data.
//
// The handoff field is manipulated using atomic operations.
// For the most part, the manipulation of handoff is orderly: if handoff == 0
// then the signal handler owns it and can change it to non-zero.
// If handoff != 0 then the goroutine owns it and can change it to zero.
// If that were the end of the story then we would not need to manipulate
// handoff using atomic operations. The operations are needed, however,
// in order to let the log closer set the high bit to indicate "EOF" safely
// in the situation when normally the goroutine "owns" handoff.
#include "runtime.h"
#include "malloc.h"
#include "array.h"
typedef struct __go_open_array Slice;
#define array __values
#define len __count
#define cap __capacity
enum
{
HashSize = 1<<10,
LogSize = 1<<17,
Assoc = 4,
MaxStack = 64,
};
typedef struct Profile Profile;
typedef struct Bucket Bucket;
typedef struct Entry Entry;
struct Entry {
uintptr count;
uintptr depth;
uintptr stack[MaxStack];
};
struct Bucket {
Entry entry[Assoc];
};
struct Profile {
bool on; // profiling is on
Note wait; // goroutine waits here
uintptr count; // tick count
uintptr evicts; // eviction count
uintptr lost; // lost ticks that need to be logged
uintptr totallost; // total lost ticks
// Active recent stack traces.
Bucket hash[HashSize];
// Log of traces evicted from hash.
// Signal handler has filled log[toggle][:nlog].
// Goroutine is writing log[1-toggle][:handoff].
uintptr log[2][LogSize/2];
uintptr nlog;
int32 toggle;
uint32 handoff;
// Writer state.
// Writer maintains its own toggle to avoid races
// looking at signal handler's toggle.
uint32 wtoggle;
bool wholding; // holding & need to release a log half
bool flushing; // flushing hash table - profile is over
};
static Lock lk;
static Profile *prof;
static void tick(uintptr*, int32);
static void add(Profile*, uintptr*, int32);
static bool evict(Profile*, Entry*);
static bool flushlog(Profile*);
// LostProfileData is a no-op function used in profiles
// to mark the number of profiling stack traces that were
// discarded due to slow data writers.
static void LostProfileData(void) {
}
extern void runtime_SetCPUProfileRate(int32)
__asm__("libgo_runtime.runtime.SetCPUProfileRate");
// SetCPUProfileRate sets the CPU profiling rate.
// The user documentation is in debug.go.
void
runtime_SetCPUProfileRate(int32 hz)
{
uintptr *p;
uintptr n;
// Clamp hz to something reasonable.
if(hz < 0)
hz = 0;
if(hz > 1000000)
hz = 1000000;
runtime_lock(&lk);
if(hz > 0) {
if(prof == nil) {
prof = runtime_SysAlloc(sizeof *prof);
if(prof == nil) {
runtime_printf("runtime: cpu profiling cannot allocate memory\n");
runtime_unlock(&lk);
return;
}
}
if(prof->on || prof->handoff != 0) {
runtime_printf("runtime: cannot set cpu profile rate until previous profile has finished.\n");
runtime_unlock(&lk);
return;
}
prof->on = true;
p = prof->log[0];
// pprof binary header format.
// http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
*p++ = 0; // count for header
*p++ = 3; // depth for header
*p++ = 0; // version number
*p++ = 1000000 / hz; // period (microseconds)
*p++ = 0;
prof->nlog = p - prof->log[0];
prof->toggle = 0;
prof->wholding = false;
prof->wtoggle = 0;
prof->flushing = false;
runtime_noteclear(&prof->wait);
runtime_setcpuprofilerate(tick, hz);
} else if(prof->on) {
runtime_setcpuprofilerate(nil, 0);
prof->on = false;
// Now add is not running anymore, and getprofile owns the entire log.
// Set the high bit in prof->handoff to tell getprofile.
for(;;) {
n = prof->handoff;
if(n&0x80000000)
runtime_printf("runtime: setcpuprofile(off) twice");
if(runtime_cas(&prof->handoff, n, n|0x80000000))
break;
}
if(n == 0) {
// we did the transition from 0 -> nonzero so we wake getprofile
runtime_notewakeup(&prof->wait);
}
}
runtime_unlock(&lk);
}
static void
tick(uintptr *pc, int32 n)
{
add(prof, pc, n);
}
// add adds the stack trace to the profile.
// It is called from signal handlers and other limited environments
// and cannot allocate memory or acquire locks that might be
// held at the time of the signal, nor can it use substantial amounts
// of stack. It is allowed to call evict.
static void
add(Profile *p, uintptr *pc, int32 n)
{
int32 i, j;
uintptr h, x;
Bucket *b;
Entry *e;
if(n > MaxStack)
n = MaxStack;
// Compute hash.
h = 0;
for(i=0; i<n; i++) {
h = h<<8 | (h>>(8*(sizeof(h)-1)));
x = pc[i];
h += x*31 + x*7 + x*3;
}
p->count++;
// Add to entry count if already present in table.
b = &p->hash[h%HashSize];
for(i=0; i<Assoc; i++) {
e = &b->entry[i];
if(e->depth != (uintptr)n)
continue;
for(j=0; j<n; j++)
if(e->stack[j] != pc[j])
goto ContinueAssoc;
e->count++;
return;
ContinueAssoc:;
}
// Evict entry with smallest count.
e = &b->entry[0];
for(i=1; i<Assoc; i++)
if(b->entry[i].count < e->count)
e = &b->entry[i];
if(e->count > 0) {
if(!evict(p, e)) {
// Could not evict entry. Record lost stack.
p->lost++;
p->totallost++;
return;
}
p->evicts++;
}
// Reuse the newly evicted entry.
e->depth = n;
e->count = 1;
for(i=0; i<n; i++)
e->stack[i] = pc[i];
}
// evict copies the given entry's data into the log, so that
// the entry can be reused. evict is called from add, which
// is called from the profiling signal handler, so it must not
// allocate memory or block. It is safe to call flushLog.
// evict returns true if the entry was copied to the log,
// false if there was no room available.
static bool
evict(Profile *p, Entry *e)
{
int32 i, d, nslot;
uintptr *log, *q;
d = e->depth;
nslot = d+2;
log = p->log[p->toggle];
if(p->nlog+nslot > nelem(p->log[0])) {
if(!flushlog(p))
return false;
log = p->log[p->toggle];
}
q = log+p->nlog;
*q++ = e->count;
*q++ = d;
for(i=0; i<d; i++)
*q++ = e->stack[i];
p->nlog = q - log;
e->count = 0;
return true;
}
// flushlog tries to flush the current log and switch to the other one.
// flushlog is called from evict, called from add, called from the signal handler,
// so it cannot allocate memory or block. It can try to swap logs with
// the writing goroutine, as explained in the comment at the top of this file.
static bool
flushlog(Profile *p)
{
uintptr *log, *q;
if(!runtime_cas(&p->handoff, 0, p->nlog))
return false;
runtime_notewakeup(&p->wait);
p->toggle = 1 - p->toggle;
log = p->log[p->toggle];
q = log;
if(p->lost > 0) {
*q++ = p->lost;
*q++ = 1;
*q++ = (uintptr)LostProfileData;
}
p->nlog = q - log;
return true;
}
// getprofile blocks until the next block of profiling data is available
// and returns it as a []byte. It is called from the writing goroutine.
Slice
getprofile(Profile *p)
{
uint32 i, j, n;
Slice ret;
Bucket *b;
Entry *e;
ret.array = nil;
ret.len = 0;
ret.cap = 0;
if(p == nil)
return ret;
if(p->wholding) {
// Release previous log to signal handling side.
// Loop because we are racing against setprofile(off).
for(;;) {
n = p->handoff;
if(n == 0) {
runtime_printf("runtime: phase error during cpu profile handoff\n");
return ret;
}
if(n & 0x80000000) {
p->wtoggle = 1 - p->wtoggle;
p->wholding = false;
p->flushing = true;
goto flush;
}
if(runtime_cas(&p->handoff, n, 0))
break;
}
p->wtoggle = 1 - p->wtoggle;
p->wholding = false;
}
if(p->flushing)
goto flush;
if(!p->on && p->handoff == 0)
return ret;
// Wait for new log.
// runtime·entersyscall();
runtime_notesleep(&p->wait);
// runtime·exitsyscall();
runtime_noteclear(&p->wait);
n = p->handoff;
if(n == 0) {
runtime_printf("runtime: phase error during cpu profile wait\n");
return ret;
}
if(n == 0x80000000) {
p->flushing = true;
goto flush;
}
n &= ~0x80000000;
// Return new log to caller.
p->wholding = true;
ret.array = (byte*)p->log[p->wtoggle];
ret.len = n*sizeof(uintptr);
ret.cap = ret.len;
return ret;
flush:
// In flush mode.
// Add is no longer being called. We own the log.
// Also, p->handoff is non-zero, so flushlog will return false.
// Evict the hash table into the log and return it.
for(i=0; i<HashSize; i++) {
b = &p->hash[i];
for(j=0; j<Assoc; j++) {
e = &b->entry[j];
if(e->count > 0 && !evict(p, e)) {
// Filled the log. Stop the loop and return what we've got.
goto breakflush;
}
}
}
breakflush:
// Return pending log data.
if(p->nlog > 0) {
// Note that we're using toggle now, not wtoggle,
// because we're working on the log directly.
ret.array = (byte*)p->log[p->toggle];
ret.len = p->nlog*sizeof(uintptr);
ret.cap = ret.len;
p->nlog = 0;
return ret;
}
// Made it through the table without finding anything to log.
// Finally done. Clean up and return nil.
p->flushing = false;
if(!runtime_cas(&p->handoff, p->handoff, 0))
runtime_printf("runtime: profile flush racing with something\n");
return ret; // set to nil at top of function
}
extern Slice runtime_CPUProfile(void)
__asm__("libgo_runtime.runtime.CPUProfile");
// CPUProfile returns the next cpu profile block as a []byte.
// The user documentation is in debug.go.
Slice
runtime_CPUProfile(void)
{
return getprofile(prof);
}

View File

@ -21,7 +21,7 @@ static pthread_cond_t note_cond = PTHREAD_COND_INITIALIZER;
notewakeup. */
void
noteclear (Note* n)
runtime_noteclear (Note* n)
{
int32 i;
@ -37,7 +37,7 @@ noteclear (Note* n)
/* Wait until notewakeup is called. */
void
notesleep (Note* n)
runtime_notesleep (Note* n)
{
int32 i;
@ -57,7 +57,7 @@ notesleep (Note* n)
/* Wake up every thread sleeping on the note. */
void
notewakeup (Note *n)
runtime_notewakeup (Note *n)
{
int32 i;

View File

@ -6,6 +6,7 @@
#include <signal.h>
#include <stdlib.h>
#include <sys/time.h>
#include "go-assert.h"
#include "go-panic.h"
@ -13,10 +14,8 @@
#include "runtime.h"
#undef int
#ifndef SA_ONSTACK
#define SA_ONSTACK 0
#ifndef SA_RESTART
#define SA_RESTART 0
#endif
/* What to do for a signal. */
@ -27,68 +26,70 @@ struct sigtab
int sig;
/* Nonzero if the signal should be ignored. */
_Bool ignore;
/* Nonzero if we should restart system calls. */
_Bool restart;
};
/* What to do for signals. */
static struct sigtab signals[] =
{
{ SIGHUP, 0 },
{ SIGINT, 0 },
{ SIGALRM, 1 },
{ SIGTERM, 0 },
{ SIGHUP, 0, 1 },
{ SIGINT, 0, 1 },
{ SIGALRM, 1, 1 },
{ SIGTERM, 0, 1 },
#ifdef SIGBUS
{ SIGBUS, 0 },
{ SIGBUS, 0, 0 },
#endif
#ifdef SIGFPE
{ SIGFPE, 0 },
{ SIGFPE, 0, 0 },
#endif
#ifdef SIGUSR1
{ SIGUSR1, 1 },
{ SIGUSR1, 1, 1 },
#endif
#ifdef SIGSEGV
{ SIGSEGV, 0 },
{ SIGSEGV, 0, 0 },
#endif
#ifdef SIGUSR2
{ SIGUSR2, 1 },
{ SIGUSR2, 1, 1 },
#endif
#ifdef SIGPIPE
{ SIGPIPE, 1 },
{ SIGPIPE, 1, 0 },
#endif
#ifdef SIGCHLD
{ SIGCHLD, 1 },
{ SIGCHLD, 1, 1 },
#endif
#ifdef SIGTSTP
{ SIGTSTP, 1 },
{ SIGTSTP, 1, 1 },
#endif
#ifdef SIGTTIN
{ SIGTTIN, 1 },
{ SIGTTIN, 1, 1 },
#endif
#ifdef SIGTTOU
{ SIGTTOU, 1 },
{ SIGTTOU, 1, 1 },
#endif
#ifdef SIGURG
{ SIGURG, 1 },
{ SIGURG, 1, 1 },
#endif
#ifdef SIGXCPU
{ SIGXCPU, 1 },
{ SIGXCPU, 1, 1 },
#endif
#ifdef SIGXFSZ
{ SIGXFSZ, 1 },
{ SIGXFSZ, 1, 1 },
#endif
#ifdef SIGVTARLM
{ SIGVTALRM, 1 },
{ SIGVTALRM, 1, 1 },
#endif
#ifdef SIGWINCH
{ SIGWINCH, 1 },
{ SIGWINCH, 1, 1 },
#endif
#ifdef SIGIO
{ SIGIO, 1 },
{ SIGIO, 1, 1 },
#endif
#ifdef SIGPWR
{ SIGPWR, 1 },
{ SIGPWR, 1, 1 },
#endif
{ -1, 0 }
{ -1, 0, 0 }
};
/* The Go signal handler. */
@ -99,6 +100,13 @@ sighandler (int sig)
const char *msg;
int i;
if (sig == SIGPROF)
{
/* FIXME. */
runtime_sigprof (0, 0, nil);
return;
}
/* FIXME: Should check siginfo for more information when
available. */
msg = NULL;
@ -192,6 +200,48 @@ __initsig ()
__go_assert (i == 0);
for (i = 0; signals[i].sig != -1; ++i)
if (sigaction (signals[i].sig, &sa, NULL) != 0)
__go_assert (0);
{
sa.sa_flags = signals[i].restart ? SA_RESTART : 0;
if (sigaction (signals[i].sig, &sa, NULL) != 0)
__go_assert (0);
}
}
void
runtime_resetcpuprofiler(int32 hz)
{
struct itimerval it;
struct sigaction sa;
int i;
memset (&it, 0, sizeof it);
memset (&sa, 0, sizeof sa);
i = sigfillset (&sa.sa_mask);
__go_assert (i == 0);
if (hz == 0)
{
i = setitimer (ITIMER_PROF, &it, NULL);
__go_assert (i == 0);
sa.sa_handler = SIG_IGN;
i = sigaction (SIGPROF, &sa, NULL);
__go_assert (i == 0);
}
else
{
sa.sa_handler = sighandler;
sa.sa_flags = SA_RESTART;
i = sigaction (SIGPROF, &sa, NULL);
__go_assert (i == 0);
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000 / hz;
it.it_value = it.it_interval;
i = setitimer (ITIMER_PROF, &it, NULL);
__go_assert (i == 0);
}
m->profilehz = hz;
}

View File

@ -14,3 +14,60 @@ M m0;
#endif
__thread M *m = &m0;
static struct {
Lock;
void (*fn)(uintptr*, int32);
int32 hz;
uintptr pcbuf[100];
} prof;
void
runtime_sigprof(uint8 *pc __attribute__ ((unused)),
uint8 *sp __attribute__ ((unused)),
uint8 *lr __attribute__ ((unused)))
{
int32 n;
if(prof.fn == nil || prof.hz == 0)
return;
runtime_lock(&prof);
if(prof.fn == nil) {
runtime_unlock(&prof);
return;
}
n = 0;
// n = runtime·gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf));
if(n > 0)
prof.fn(prof.pcbuf, n);
runtime_unlock(&prof);
}
void
runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
{
// Force sane arguments.
if(hz < 0)
hz = 0;
if(hz == 0)
fn = nil;
if(fn == nil)
hz = 0;
// Stop profiler on this cpu so that it is safe to lock prof.
// if a profiling signal came in while we had prof locked,
// it would deadlock.
runtime_resetcpuprofiler(0);
runtime_lock(&prof);
prof.fn = fn;
prof.hz = hz;
runtime_unlock(&prof);
// runtime_lock(&runtime_sched);
// runtime_sched.profilehz = hz;
// runtime_unlock(&runtime_sched);
if(hz != 0)
runtime_resetcpuprofiler(hz);
}

View File

@ -102,6 +102,7 @@ struct M
int32 gcing_for_prof;
int32 holds_finlock;
int32 gcing_for_finlock;
int32 profilehz;
MCache *mcache;
/* For the list of all threads. */
@ -163,9 +164,9 @@ void semrelease (uint32 *) asm ("libgo_runtime.runtime.Semrelease");
* once notewakeup has been called, all the notesleeps
* will return. future notesleeps will return immediately.
*/
void noteclear(Note*);
void notesleep(Note*);
void notewakeup(Note*);
void runtime_noteclear(Note*);
void runtime_notesleep(Note*);
void runtime_notewakeup(Note*);
/* Functions. */
#define runtime_printf printf
@ -187,6 +188,10 @@ void runtime_walkfintab(void (*fn)(void*), void (*scan)(byte *, int64));
#define runtime_cas(pval, old, new) __sync_bool_compare_and_swap (pval, old, new)
#define runtime_casp(pval, old, new) __sync_bool_compare_and_swap (pval, old, new)
void runtime_sigprof(uint8 *pc, uint8 *sp, uint8 *lr);
void runtime_resetcpuprofiler(int32);
void runtime_setcpuprofilerate(void(*)(uintptr*, int32), int32);
struct __go_func_type;
void reflect_call(const struct __go_func_type *, const void *, _Bool, void **,
void **)

View File

@ -51,7 +51,7 @@ static struct {
void
siginit(void)
{
noteclear(&sig);
runtime_noteclear(&sig);
}
// Called from sighandler to send a signal back out of the signal handling thread.
@ -71,7 +71,7 @@ __go_sigsend(int32 s)
// Added to queue.
// Only send a wakeup for the first signal in each round.
if(mask == 0)
notewakeup(&sig);
runtime_notewakeup(&sig);
break;
}
}
@ -81,9 +81,9 @@ __go_sigsend(int32 s)
// Called to receive a bitmask of queued signals.
func Sigrecv() (m uint32) {
// runtime·entersyscall();
notesleep(&sig);
runtime_notesleep(&sig);
// runtime·exitsyscall();
noteclear(&sig);
runtime_noteclear(&sig);
for(;;) {
m = sig.mask;
if(runtime_cas(&sig.mask, m, 0))