tree-flow.h (number_of_iterations_cond): Declaration removed.

* tree-flow.h (number_of_iterations_cond): Declaration removed.
	* tree-ssa-loop-niter.c (number_of_iterations_cond): Made static.
	(number_of_iterations_special): New function.
	(number_of_iterations_exit): Use number_of_iterations_special.
	Use simplify_using_outer_evolutions only at -O3.
	(number_of_iterations_cond, tree_simplify_using_condition,
	simplify_using_initial_conditions, loop_niter_by_eval,
	compare_trees, can_count_iv_in_wider_type_bound,
	simplify_using_outer_evolutions): Use fold_build.

From-SVN: r97673
This commit is contained in:
Zdenek Dvorak 2005-04-06 01:52:41 +02:00 committed by Zdenek Dvorak
parent c33b7bf04a
commit c33e657d34
3 changed files with 281 additions and 136 deletions

View File

@ -1,3 +1,15 @@
2005-04-06 Zdenek Dvorak <dvorakz@suse.cz>
* tree-flow.h (number_of_iterations_cond): Declaration removed.
* tree-ssa-loop-niter.c (number_of_iterations_cond): Made static.
(number_of_iterations_special): New function.
(number_of_iterations_exit): Use number_of_iterations_special.
Use simplify_using_outer_evolutions only at -O3.
(number_of_iterations_cond, tree_simplify_using_condition,
simplify_using_initial_conditions, loop_niter_by_eval,
compare_trees, can_count_iv_in_wider_type_bound,
simplify_using_outer_evolutions): Use fold_build.
2005-04-05 Thomas Fitzsimmons <fitzsim@redhat.com>
* doc/install.texi (Configuration): Document --with-java-home.

View File

@ -673,8 +673,6 @@ void canonicalize_induction_variables (struct loops *);
void tree_unroll_loops_completely (struct loops *);
void tree_ssa_iv_optimize (struct loops *);
void number_of_iterations_cond (tree, tree, tree, enum tree_code, tree, tree,
struct tree_niter_desc *);
bool number_of_iterations_exit (struct loop *, edge,
struct tree_niter_desc *niter);
tree find_loop_niter (struct loop *, edge *);

View File

@ -137,7 +137,7 @@ inverse (tree x, tree mask)
In case we are unable to determine number of iterations, contents of
this structure is unchanged. */
void
static void
number_of_iterations_cond (tree type, tree base0, tree step0,
enum tree_code code, tree base1, tree step1,
struct tree_niter_desc *niter)
@ -221,24 +221,24 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
if (zero_p (step0))
{
if (mmax)
assumption = fold (build2 (EQ_EXPR, boolean_type_node, base0, mmax));
assumption = fold_build2 (EQ_EXPR, boolean_type_node, base0, mmax);
else
assumption = boolean_false_node;
if (nonzero_p (assumption))
goto zero_iter;
base0 = fold (build2 (PLUS_EXPR, type, base0,
build_int_cst_type (type, 1)));
base0 = fold_build2 (PLUS_EXPR, type, base0,
build_int_cst_type (type, 1));
}
else
{
if (mmin)
assumption = fold (build2 (EQ_EXPR, boolean_type_node, base1, mmin));
assumption = fold_build2 (EQ_EXPR, boolean_type_node, base1, mmin);
else
assumption = boolean_false_node;
if (nonzero_p (assumption))
goto zero_iter;
base1 = fold (build2 (MINUS_EXPR, type, base1,
build_int_cst_type (type, 1)));
base1 = fold_build2 (MINUS_EXPR, type, base1,
build_int_cst_type (type, 1));
}
noloop_assumptions = assumption;
code = LE_EXPR;
@ -274,7 +274,7 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
else
step = step0;
delta = build2 (MINUS_EXPR, type, base1, base0);
delta = fold (build2 (FLOOR_MOD_EXPR, type, delta, step));
delta = fold_build2 (FLOOR_MOD_EXPR, type, delta, step);
may_xform = boolean_false_node;
if (TREE_CODE (delta) == INTEGER_CST)
@ -305,8 +305,8 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
mmin, step);
bound = fold_binary_to_constant (MINUS_EXPR, type,
bound, delta);
may_xform = fold (build2 (LE_EXPR, boolean_type_node,
bound, base0));
may_xform = fold_build2 (LE_EXPR, boolean_type_node,
bound, base0);
}
}
else
@ -319,8 +319,8 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
mmax, step);
bound = fold_binary_to_constant (PLUS_EXPR, type,
bound, delta);
may_xform = fold (build2 (LE_EXPR, boolean_type_node,
base1, bound));
may_xform = fold_build2 (LE_EXPR, boolean_type_node,
base1, bound);
}
}
}
@ -335,18 +335,18 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
if (zero_p (step0))
{
base0 = fold (build2 (PLUS_EXPR, type, base0, delta));
base0 = fold (build2 (MINUS_EXPR, type, base0, step));
base0 = fold_build2 (PLUS_EXPR, type, base0, delta);
base0 = fold_build2 (MINUS_EXPR, type, base0, step);
}
else
{
base1 = fold (build2 (MINUS_EXPR, type, base1, delta));
base1 = fold (build2 (PLUS_EXPR, type, base1, step));
base1 = fold_build2 (MINUS_EXPR, type, base1, delta);
base1 = fold_build2 (PLUS_EXPR, type, base1, step);
}
assumption = fold (build2 (GT_EXPR, boolean_type_node, base0, base1));
noloop_assumptions = fold (build2 (TRUTH_OR_EXPR, boolean_type_node,
noloop_assumptions, assumption));
assumption = fold_build2 (GT_EXPR, boolean_type_node, base0, base1);
noloop_assumptions = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
noloop_assumptions, assumption);
code = NE_EXPR;
}
}
@ -361,7 +361,7 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
makes us able to do more involved computations of number of iterations
than in other cases. First transform the condition into shape
s * i <> c, with s positive. */
base1 = fold (build2 (MINUS_EXPR, type, base1, base0));
base1 = fold_build2 (MINUS_EXPR, type, base1, base0);
base0 = NULL_TREE;
if (!zero_p (step1))
step0 = fold_unary_to_constant (NEGATE_EXPR, type, step1);
@ -369,7 +369,7 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
if (!tree_expr_nonnegative_p (fold_convert (signed_niter_type, step0)))
{
step0 = fold_unary_to_constant (NEGATE_EXPR, type, step0);
base1 = fold (build1 (NEGATE_EXPR, type, base1));
base1 = fold_build1 (NEGATE_EXPR, type, base1);
}
base1 = fold_convert (niter_type, base1);
@ -387,16 +387,16 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
(TYPE_PRECISION (niter_type)
- tree_low_cst (bits, 1)));
assumption = fold (build2 (FLOOR_MOD_EXPR, niter_type, base1, d));
assumption = fold (build2 (EQ_EXPR, boolean_type_node,
assumption,
build_int_cst (niter_type, 0)));
assumptions = fold (build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption));
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, base1, d);
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
assumption,
build_int_cst (niter_type, 0));
assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption);
tmp = fold (build2 (EXACT_DIV_EXPR, niter_type, base1, d));
tmp = fold (build2 (MULT_EXPR, niter_type, tmp, inverse (s, bound)));
niter->niter = fold (build2 (BIT_AND_EXPR, niter_type, tmp, bound));
tmp = fold_build2 (EXACT_DIV_EXPR, niter_type, base1, d);
tmp = fold_build2 (MULT_EXPR, niter_type, tmp, inverse (s, bound));
niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
}
else
{
@ -411,17 +411,17 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
if (mmax)
{
bound = fold_binary_to_constant (MINUS_EXPR, type, mmax, step0);
assumption = fold (build2 (LE_EXPR, boolean_type_node,
base1, bound));
assumptions = fold (build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption));
assumption = fold_build2 (LE_EXPR, boolean_type_node,
base1, bound);
assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption);
}
step = step0;
tmp = fold (build2 (PLUS_EXPR, type, base1, step0));
assumption = fold (build2 (GT_EXPR, boolean_type_node, base0, tmp));
delta = fold (build2 (PLUS_EXPR, type, base1, step));
delta = fold (build2 (MINUS_EXPR, type, delta, base0));
tmp = fold_build2 (PLUS_EXPR, type, base1, step0);
assumption = fold_build2 (GT_EXPR, boolean_type_node, base0, tmp);
delta = fold_build2 (PLUS_EXPR, type, base1, step);
delta = fold_build2 (MINUS_EXPR, type, delta, base0);
delta = fold_convert (niter_type, delta);
}
else
@ -432,22 +432,22 @@ number_of_iterations_cond (tree type, tree base0, tree step0,
if (mmin)
{
bound = fold_binary_to_constant (MINUS_EXPR, type, mmin, step1);
assumption = fold (build2 (LE_EXPR, boolean_type_node,
bound, base0));
assumptions = fold (build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption));
assumption = fold_build2 (LE_EXPR, boolean_type_node,
bound, base0);
assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption);
}
step = fold (build1 (NEGATE_EXPR, type, step1));
tmp = fold (build2 (PLUS_EXPR, type, base0, step1));
assumption = fold (build2 (GT_EXPR, boolean_type_node, tmp, base1));
delta = fold (build2 (MINUS_EXPR, type, base0, step));
delta = fold (build2 (MINUS_EXPR, type, base1, delta));
step = fold_build1 (NEGATE_EXPR, type, step1);
tmp = fold_build2 (PLUS_EXPR, type, base0, step1);
assumption = fold_build2 (GT_EXPR, boolean_type_node, tmp, base1);
delta = fold_build2 (MINUS_EXPR, type, base0, step);
delta = fold_build2 (MINUS_EXPR, type, base1, delta);
delta = fold_convert (niter_type, delta);
}
noloop_assumptions = fold (build2 (TRUTH_OR_EXPR, boolean_type_node,
noloop_assumptions, assumption));
delta = fold (build2 (FLOOR_DIV_EXPR, niter_type, delta,
fold_convert (niter_type, step)));
noloop_assumptions = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
noloop_assumptions, assumption);
delta = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta,
fold_convert (niter_type, step));
niter->niter = delta;
}
@ -462,60 +462,131 @@ zero_iter:
return;
}
/* Tries to simplify EXPR using the evolutions of the loop invariants
in the superloops of LOOP. Returns the simplified expression
(or EXPR unchanged, if no simplification was possible). */
static tree
simplify_using_outer_evolutions (struct loop *loop, tree expr)
/* Similar to number_of_iterations_cond, but only handles the special
case of loops with step 1 or -1. The meaning of the arguments
is the same as in number_of_iterations_cond. The function
returns true if the special case was recognized, false otherwise. */
static bool
number_of_iterations_special (tree type, tree base0, tree step0,
enum tree_code code, tree base1, tree step1,
struct tree_niter_desc *niter)
{
enum tree_code code = TREE_CODE (expr);
bool changed;
tree e, e0, e1, e2;
tree niter_type = unsigned_type_for (type), mmax, mmin;
if (is_gimple_min_invariant (expr))
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
/* Make < comparison from > ones. */
if (code == GE_EXPR
|| code == GT_EXPR)
{
changed = false;
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = build3 (code, boolean_type_node, e0, e1, e2);
else
expr = build2 (code, boolean_type_node, e0, e1);
expr = fold (expr);
}
return expr;
SWAP (base0, base1);
SWAP (step0, step1);
code = swap_tree_comparison (code);
}
e = instantiate_parameters (loop, expr);
if (is_gimple_min_invariant (e))
return e;
switch (code)
{
case NE_EXPR:
if (zero_p (step0))
{
if (zero_p (step1))
return false;
SWAP (base0, base1);
SWAP (step0, step1);
}
else if (!zero_p (step1))
return false;
return expr;
if (integer_onep (step0))
{
/* for (i = base0; i != base1; i++) */
niter->assumptions = boolean_true_node;
niter->may_be_zero = boolean_false_node;
niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0);
niter->additional_info = boolean_true_node;
}
else if (integer_all_onesp (step0))
{
/* for (i = base0; i != base1; i--) */
niter->assumptions = boolean_true_node;
niter->may_be_zero = boolean_false_node;
niter->niter = fold_build2 (MINUS_EXPR, type, base0, base1);
}
else
return false;
break;
case LT_EXPR:
if ((step0 && integer_onep (step0) && zero_p (step1))
|| (step1 && integer_all_onesp (step1) && zero_p (step0)))
{
/* for (i = base0; i < base1; i++)
or
for (i = base1; i > base0; i--).
In both cases # of iterations is base1 - base0. */
niter->assumptions = boolean_true_node;
niter->may_be_zero = fold_build2 (GT_EXPR, boolean_type_node,
base0, base1);
niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0);
}
else
return false;
break;
case LE_EXPR:
if (POINTER_TYPE_P (type))
{
/* We assume pointer arithmetic never overflows. */
mmin = mmax = NULL_TREE;
}
else
{
mmin = TYPE_MIN_VALUE (type);
mmax = TYPE_MAX_VALUE (type);
}
if (step0 && integer_onep (step0) && zero_p (step1))
{
/* for (i = base0; i <= base1; i++) */
if (mmax)
niter->assumptions = fold_build2 (NE_EXPR, boolean_type_node,
base1, mmax);
else
niter->assumptions = boolean_true_node;
base1 = fold_build2 (PLUS_EXPR, type, base1,
build_int_cst_type (type, 1));
}
else if (step1 && integer_all_onesp (step1) && zero_p (step0))
{
/* for (i = base1; i >= base0; i--) */
if (mmin)
niter->assumptions = fold_build2 (NE_EXPR, boolean_type_node,
base0, mmin);
else
niter->assumptions = boolean_true_node;
base0 = fold_build2 (MINUS_EXPR, type, base0,
build_int_cst_type (type, 1));
}
else
return false;
niter->may_be_zero = fold_build2 (GT_EXPR, boolean_type_node,
base0, base1);
niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0);
break;
default:
gcc_unreachable ();
}
niter->niter = fold_convert (niter_type, niter->niter);
niter->additional_info = boolean_true_node;
return true;
}
/* Substitute NEW for OLD in EXPR and fold the result. */
@ -592,10 +663,9 @@ tree_simplify_using_condition (tree cond, tree expr)
if (changed)
{
if (code == COND_EXPR)
expr = build3 (code, boolean_type_node, e0, e1, e2);
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
else
expr = build2 (code, boolean_type_node, e0, e1);
expr = fold (expr);
expr = fold_build2 (code, boolean_type_node, e0, e1);
}
return expr;
@ -648,14 +718,14 @@ tree_simplify_using_condition (tree cond, tree expr)
/* Check whether COND ==> EXPR. */
notcond = invert_truthvalue (cond);
e = fold (build2 (TRUTH_OR_EXPR, boolean_type_node,
notcond, expr));
e = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
notcond, expr);
if (nonzero_p (e))
return e;
/* Check whether COND ==> not EXPR. */
e = fold (build2 (TRUTH_AND_EXPR, boolean_type_node,
cond, expr));
e = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
cond, expr);
if (zero_p (e))
return e;
@ -695,10 +765,10 @@ simplify_using_initial_conditions (struct loop *loop, tree expr,
exp = tree_simplify_using_condition (cond, expr);
if (exp != expr)
*conds_used = fold (build2 (TRUTH_AND_EXPR,
*conds_used = fold_build2 (TRUTH_AND_EXPR,
boolean_type_node,
*conds_used,
cond));
cond);
expr = exp;
}
@ -706,6 +776,61 @@ simplify_using_initial_conditions (struct loop *loop, tree expr,
return expr;
}
/* Tries to simplify EXPR using the evolutions of the loop invariants
in the superloops of LOOP. Returns the simplified expression
(or EXPR unchanged, if no simplification was possible). */
static tree
simplify_using_outer_evolutions (struct loop *loop, tree expr)
{
enum tree_code code = TREE_CODE (expr);
bool changed;
tree e, e0, e1, e2;
if (is_gimple_min_invariant (expr))
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
else
expr = fold_build2 (code, boolean_type_node, e0, e1);
}
return expr;
}
e = instantiate_parameters (loop, expr);
if (is_gimple_min_invariant (e))
return e;
return expr;
}
/* Stores description of number of iterations of LOOP derived from
EXIT (an exit edge of the LOOP) in NITER. Returns true if some
useful information could be derived (and fields of NITER has
@ -762,16 +887,28 @@ number_of_iterations_exit (struct loop *loop, edge exit,
return false;
niter->niter = NULL_TREE;
number_of_iterations_cond (type, base0, step0, code, base1, step1,
niter);
if (!niter->niter)
return false;
niter->assumptions = simplify_using_outer_evolutions (loop,
niter->assumptions);
niter->may_be_zero = simplify_using_outer_evolutions (loop,
niter->may_be_zero);
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
/* Handle common special cases first, so that we do not need to use
generic (and slow) analysis very often. */
if (!number_of_iterations_special (type, base0, step0, code, base1, step1,
niter))
{
number_of_iterations_cond (type, base0, step0, code, base1, step1,
niter);
if (!niter->niter)
return false;
}
if (optimize >= 3)
{
niter->assumptions = simplify_using_outer_evolutions (loop,
niter->assumptions);
niter->may_be_zero = simplify_using_outer_evolutions (loop,
niter->may_be_zero);
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
}
niter->additional_info = boolean_true_node;
niter->assumptions
@ -1046,7 +1183,7 @@ loop_niter_by_eval (struct loop *loop, edge exit)
for (j = 0; j < 2; j++)
aval[j] = get_val_for (op[j], val[j]);
acnd = fold (build2 (cmp, boolean_type_node, aval[0], aval[1]));
acnd = fold_build2 (cmp, boolean_type_node, aval[0], aval[1]);
if (zero_p (acnd))
{
if (dump_file && (dump_flags & TDF_DETAILS))
@ -1203,11 +1340,11 @@ compare_trees (tree a, tree b)
a = fold_convert (type, a);
b = fold_convert (type, b);
if (nonzero_p (fold (build2 (EQ_EXPR, boolean_type_node, a, b))))
if (nonzero_p (fold_build2 (EQ_EXPR, boolean_type_node, a, b)))
return 0;
if (nonzero_p (fold (build2 (LT_EXPR, boolean_type_node, a, b))))
if (nonzero_p (fold_build2 (LT_EXPR, boolean_type_node, a, b)))
return 1;
if (nonzero_p (fold (build2 (GT_EXPR, boolean_type_node, a, b))))
if (nonzero_p (fold_build2 (GT_EXPR, boolean_type_node, a, b)))
return -1;
return 2;
@ -1271,8 +1408,8 @@ can_count_iv_in_wider_type_bound (tree type, tree base, tree step,
b = fold_convert (type, base);
bplusstep = fold_convert (type,
fold (build2 (PLUS_EXPR, inner_type, base, step)));
new_step = fold (build2 (MINUS_EXPR, type, bplusstep, b));
fold_build2 (PLUS_EXPR, inner_type, base, step));
new_step = fold_build2 (MINUS_EXPR, type, bplusstep, b);
if (TREE_CODE (new_step) != INTEGER_CST)
return NULL_TREE;
@ -1280,14 +1417,14 @@ can_count_iv_in_wider_type_bound (tree type, tree base, tree step,
{
case -1:
extreme = upper_bound_in_type (type, inner_type);
delta = fold (build2 (MINUS_EXPR, type, extreme, b));
delta = fold_build2 (MINUS_EXPR, type, extreme, b);
new_step_abs = new_step;
break;
case 1:
extreme = lower_bound_in_type (type, inner_type);
new_step_abs = fold (build1 (NEGATE_EXPR, type, new_step));
delta = fold (build2 (MINUS_EXPR, type, b, extreme));
new_step_abs = fold_build1 (NEGATE_EXPR, type, new_step);
delta = fold_build2 (MINUS_EXPR, type, b, extreme);
break;
case 0:
@ -1300,8 +1437,8 @@ can_count_iv_in_wider_type_bound (tree type, tree base, tree step,
unsigned_type = unsigned_type_for (type);
delta = fold_convert (unsigned_type, delta);
new_step_abs = fold_convert (unsigned_type, new_step_abs);
valid_niter = fold (build2 (FLOOR_DIV_EXPR, unsigned_type,
delta, new_step_abs));
valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type,
delta, new_step_abs);
bound_type = TREE_TYPE (bound);
if (TYPE_PRECISION (type) > TYPE_PRECISION (bound_type))
@ -1313,24 +1450,22 @@ can_count_iv_in_wider_type_bound (tree type, tree base, tree step,
{
/* After the statement OF we know that anything is executed at most
BOUND times. */
cond = build2 (GE_EXPR, boolean_type_node, valid_niter, bound);
cond = fold_build2 (GE_EXPR, boolean_type_node, valid_niter, bound);
}
else
{
/* Before the statement OF we know that anything is executed at most
BOUND + 1 times. */
cond = build2 (GT_EXPR, boolean_type_node, valid_niter, bound);
cond = fold_build2 (GT_EXPR, boolean_type_node, valid_niter, bound);
}
cond = fold (cond);
if (nonzero_p (cond))
return new_step;
/* Try taking additional conditions into account. */
cond = build2 (TRUTH_OR_EXPR, boolean_type_node,
invert_truthvalue (additional),
cond);
cond = fold (cond);
cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
invert_truthvalue (additional),
cond);
if (nonzero_p (cond))
return new_step;