[Patch 2/2 ARM/AArch64] Add a new Cortex-A53 scheduling model

* config/arm/aarch-common-protos.h
	(aarch_accumulator_forwarding): New.
	(aarch_forward_to_shift_is_not_shifted_reg): Likewise.
	* config/arm/aarch-common.c (aarch_accumulator_forwarding): New.
	(aarch_forward_to_shift_is_not_shifted_reg): Liekwise.
	* config/arm/cortex-a53.md: Rewrite.

From-SVN: r228324
This commit is contained in:
James Greenhalgh 2015-10-01 09:33:40 +00:00 committed by James Greenhalgh
parent 34050b6bee
commit cdc1afa3c0
4 changed files with 695 additions and 223 deletions

View File

@ -1,3 +1,12 @@
2015-10-01 James Greenhalgh <james.greenhalgh@arm.com>
* config/arm/aarch-common-protos.h
(aarch_accumulator_forwarding): New.
(aarch_forward_to_shift_is_not_shifted_reg): Likewise.
* config/arm/aarch-common.c (aarch_accumulator_forwarding): New.
(aarch_forward_to_shift_is_not_shifted_reg): Liekwise.
* config/arm/cortex-a53.md: Rewrite.
2015-10-01 Richard Biener <rguenther@suse.de>
* gimple-match.h (mprts_hook): Declare.

View File

@ -23,7 +23,9 @@
#ifndef GCC_AARCH_COMMON_PROTOS_H
#define GCC_AARCH_COMMON_PROTOS_H
extern int aarch_accumulator_forwarding (rtx_insn *, rtx_insn *);
extern int aarch_crypto_can_dual_issue (rtx_insn *, rtx_insn *);
extern int aarch_forward_to_shift_is_not_shifted_reg (rtx_insn *, rtx_insn *);
extern bool aarch_rev16_p (rtx);
extern bool aarch_rev16_shleft_mask_imm_p (rtx, machine_mode);
extern bool aarch_rev16_shright_mask_imm_p (rtx, machine_mode);

View File

@ -394,6 +394,112 @@ arm_mac_accumulator_is_result (rtx producer, rtx consumer)
&& !reg_overlap_mentioned_p (result, op1));
}
/* Return non-zero if the destination of PRODUCER feeds the accumulator
operand of an MLA-like operation. */
int
aarch_accumulator_forwarding (rtx_insn *producer, rtx_insn *consumer)
{
rtx producer_set = single_set (producer);
rtx consumer_set = single_set (consumer);
/* We are looking for a SET feeding a SET. */
if (!producer_set || !consumer_set)
return 0;
rtx dest = SET_DEST (producer_set);
rtx mla = SET_SRC (consumer_set);
/* We're looking for a register SET. */
if (!REG_P (dest))
return 0;
rtx accumulator;
/* Strip a zero_extend. */
if (GET_CODE (mla) == ZERO_EXTEND)
mla = XEXP (mla, 0);
switch (GET_CODE (mla))
{
case PLUS:
/* Possibly an MADD. */
if (GET_CODE (XEXP (mla, 0)) == MULT)
accumulator = XEXP (mla, 1);
else
return 0;
break;
case MINUS:
/* Possibly an MSUB. */
if (GET_CODE (XEXP (mla, 1)) == MULT)
accumulator = XEXP (mla, 0);
else
return 0;
break;
case FMA:
{
/* Possibly an FMADD/FMSUB/FNMADD/FNMSUB. */
if (REG_P (XEXP (mla, 1))
&& REG_P (XEXP (mla, 2))
&& (REG_P (XEXP (mla, 0))
|| GET_CODE (XEXP (mla, 0)) == NEG))
{
/* FMADD/FMSUB. */
accumulator = XEXP (mla, 2);
}
else if (REG_P (XEXP (mla, 1))
&& GET_CODE (XEXP (mla, 2)) == NEG
&& (REG_P (XEXP (mla, 0))
|| GET_CODE (XEXP (mla, 0)) == NEG))
{
/* FNMADD/FNMSUB. */
accumulator = XEXP (XEXP (mla, 2), 0);
}
else
return 0;
break;
}
default:
/* Not an MLA-like operation. */
return 0;
}
return (REGNO (dest) == REGNO (accumulator));
}
/* Return nonzero if the CONSUMER instruction is some sort of
arithmetic or logic + shift operation, and the register we are
writing in PRODUCER is not used in a register shift by register
operation. */
int
aarch_forward_to_shift_is_not_shifted_reg (rtx_insn *producer,
rtx_insn *consumer)
{
rtx value, op;
rtx early_op;
if (!arm_get_set_operands (producer, consumer, &value, &op))
return 0;
if ((early_op = arm_find_shift_sub_rtx (op)))
{
if (REG_P (early_op))
early_op = op;
/* Any other canonicalisation of a shift is a shift-by-constant
so we don't care. */
if (GET_CODE (early_op) == ASHIFT)
return (!REG_P (XEXP (early_op, 0))
|| !REG_P (XEXP (early_op, 1)));
else
return 1;
}
return 0;
}
/* Return non-zero if the consumer (a multiply-accumulate instruction)
has an accumulator dependency on the result of the producer (a
multiplication instruction) and no other dependency on that result. */

View File

@ -22,345 +22,700 @@
(define_automaton "cortex_a53")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Functional units.
;; General-purpose functional units.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; There are two main integer execution pipelines, described as
;; slot 0 and issue slot 1.
;; We use slot0 and slot1 to model constraints on which instructions may
;; dual-issue.
(define_cpu_unit "cortex_a53_slot0" "cortex_a53")
(define_cpu_unit "cortex_a53_slot1" "cortex_a53")
(define_reservation "cortex_a53_slot_any" "cortex_a53_slot0|cortex_a53_slot1")
(define_reservation "cortex_a53_single_issue" "cortex_a53_slot0+cortex_a53_slot1")
(define_reservation "cortex_a53_slot_any"
"cortex_a53_slot0\
|cortex_a53_slot1")
;; The load/store pipeline. Load/store instructions can dual-issue from
;; either pipeline, but two load/stores cannot simultaneously issue.
(define_reservation "cortex_a53_single_issue"
"cortex_a53_slot0\
+cortex_a53_slot1")
(define_cpu_unit "cortex_a53_ls" "cortex_a53")
;; The store pipeline. Shared between both execution pipelines.
;; Used to model load and store pipelines. Load/store instructions
;; can dual-issue with other instructions, but two load/stores cannot
;; simultaneously issue.
(define_cpu_unit "cortex_a53_store" "cortex_a53")
(define_cpu_unit "cortex_a53_load" "cortex_a53")
(define_cpu_unit "cortex_a53_ls_agen" "cortex_a53")
;; The branch pipeline. Branches can dual-issue with other instructions
;; (except when those instructions take multiple cycles to issue).
;; Used to model a branch pipeline. Branches can dual-issue with other
;; instructions (except when those instructions take multiple cycles
;; to issue).
(define_cpu_unit "cortex_a53_branch" "cortex_a53")
;; The integer divider.
;; Used to model an integer divide pipeline.
(define_cpu_unit "cortex_a53_idiv" "cortex_a53")
;; The floating-point add pipeline used to model the usage
;; of the add pipeline by fmac instructions.
;; Used to model an integer multiply/multiply-accumulate pipeline.
(define_cpu_unit "cortex_a53_fpadd_pipe" "cortex_a53")
(define_cpu_unit "cortex_a53_imul" "cortex_a53")
;; Floating-point div/sqrt (long latency, out-of-order completion).
;; Model general structural hazards, for wherever we need them.
(define_cpu_unit "cortex_a53_fp_div_sqrt" "cortex_a53")
;; The Advanced SIMD pipelines.
(define_cpu_unit "cortex_a53_simd0" "cortex_a53")
(define_cpu_unit "cortex_a53_simd1" "cortex_a53")
(define_cpu_unit "cortex_a53_hazard" "cortex_a53")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_alu" 2
(define_insn_reservation "cortex_a53_shift" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
alu_sreg,alus_sreg,logic_reg,logics_reg,\
adc_imm,adcs_imm,adc_reg,adcs_reg,\
adr,bfm,csel,clz,rbit,rev,alu_dsp_reg,\
rotate_imm,shift_imm,shift_reg,\
mov_imm,mov_reg,mvn_imm,mvn_reg,\
mrs,multiple,no_insn"))
(eq_attr "type" "adr,shift_imm,shift_reg,mov_imm,mvn_imm"))
"cortex_a53_slot_any")
(define_insn_reservation "cortex_a53_alu_shift" 2
(define_insn_reservation "cortex_a53_alu_rotate_imm" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "alu_shift_imm,alus_shift_imm,\
crc,logic_shift_imm,logics_shift_imm,\
alu_ext,alus_ext,alu_shift_reg,alus_shift_reg,\
logic_shift_reg,logics_shift_reg,\
extend,mov_shift,mov_shift_reg,\
mvn_shift,mvn_shift_reg"))
(eq_attr "type" "rotate_imm"))
"(cortex_a53_slot1)
| (cortex_a53_single_issue)")
(define_insn_reservation "cortex_a53_alu" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,
alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
bfm,csel,clz,rbit,rev,alu_dsp_reg,
mov_reg,mvn_reg,
mrs,multiple,no_insn"))
"cortex_a53_slot_any")
;; Forwarding path for unshifted operands.
(define_insn_reservation "cortex_a53_alu_shift" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "alu_shift_imm,alus_shift_imm,
crc,logic_shift_imm,logics_shift_imm,
alu_ext,alus_ext,
extend,mov_shift,mvn_shift"))
"cortex_a53_slot_any")
(define_bypass 1 "cortex_a53_alu,cortex_a53_alu_shift"
"cortex_a53_alu")
(define_bypass 1 "cortex_a53_alu,cortex_a53_alu_shift"
"cortex_a53_alu_shift"
"arm_no_early_alu_shift_dep")
;; The multiplier pipeline can forward results so there's no need to specify
;; bypasses. Multiplies can only single-issue currently.
(define_insn_reservation "cortex_a53_alu_shift_reg" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift_reg,mvn_shift_reg"))
"cortex_a53_slot_any+cortex_a53_hazard")
(define_insn_reservation "cortex_a53_mul" 3
(and (eq_attr "tune" "cortexa53")
(ior (eq_attr "mul32" "yes")
(eq_attr "mul64" "yes")))
"cortex_a53_single_issue")
(eq_attr "mul64" "yes")))
"cortex_a53_slot_any+cortex_a53_imul")
;; A multiply with a single-register result or an MLA, followed by an
;; MLA with an accumulator dependency, has its result forwarded so two
;; such instructions can issue back-to-back.
;; From the perspective of the GCC scheduling state machine, if we wish to
;; model an instruction as serialising other instructions, we are best to do
;; so by modelling it as taking very few cycles. Scheduling many other
;; instructions underneath it at the cost of freedom to pick from the
;; ready list is likely to hurt us more than it helps. However, we do
;; want to model some resource and latency cost for divide instructions in
;; order to avoid divides ending up too lumpy.
(define_bypass 1 "cortex_a53_mul"
"cortex_a53_mul"
"arm_mac_accumulator_is_mul_result")
;; Punt with a high enough latency for divides.
(define_insn_reservation "cortex_a53_udiv" 8
(define_insn_reservation "cortex_a53_div" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "udiv"))
"(cortex_a53_slot0+cortex_a53_idiv),cortex_a53_idiv*7")
(define_insn_reservation "cortex_a53_sdiv" 9
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "sdiv"))
"(cortex_a53_slot0+cortex_a53_idiv),cortex_a53_idiv*8")
(define_bypass 2 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv"
"cortex_a53_alu")
(define_bypass 2 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv"
"cortex_a53_alu_shift"
"arm_no_early_alu_shift_dep")
(eq_attr "type" "udiv,sdiv"))
"cortex_a53_slot0,cortex_a53_idiv*2")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/store instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Address-generation happens in the issue stage.
;; TODO: load<n> is not prescriptive about how much data is to be loaded.
;; This is most obvious for LDRD from AArch32 and LDP (X register) from
;; AArch64, both are tagged load2 but LDP will load 128-bits compared to
;; LDRD which is 64-bits.
;;
;; For the below, we assume AArch64 X-registers for load2, and AArch32
;; registers for load3/load4.
(define_insn_reservation "cortex_a53_load1" 3
(define_insn_reservation "cortex_a53_load1" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "load_byte,load1,load_acq"))
"cortex_a53_slot_any+cortex_a53_ls")
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_load")
(define_insn_reservation "cortex_a53_store1" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "store1,store_rel"))
"cortex_a53_slot_any+cortex_a53_ls+cortex_a53_store")
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_store")
(define_insn_reservation "cortex_a53_load2" 3
;; Model AArch64-sized LDP Xm, Xn, [Xa]
(define_insn_reservation "cortex_a53_load2" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "load2"))
"cortex_a53_single_issue+cortex_a53_ls")
"cortex_a53_single_issue+cortex_a53_ls_agen,
cortex_a53_load+cortex_a53_slot0,
cortex_a53_load")
(define_insn_reservation "cortex_a53_store2" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "store2"))
"cortex_a53_single_issue+cortex_a53_ls+cortex_a53_store")
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_store")
(define_insn_reservation "cortex_a53_load3plus" 4
;; Model AArch32-sized LDM Ra, {Rm, Rn, Ro}
(define_insn_reservation "cortex_a53_load3plus" 6
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "load3,load4"))
"(cortex_a53_single_issue+cortex_a53_ls)*2")
"cortex_a53_single_issue+cortex_a53_ls_agen,
cortex_a53_load+cortex_a53_slot0,
cortex_a53_load")
(define_insn_reservation "cortex_a53_store3plus" 3
(define_insn_reservation "cortex_a53_store3plus" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "store3,store4"))
"(cortex_a53_single_issue+cortex_a53_ls+cortex_a53_store)*2")
;; Load/store addresses are required early in Issue.
(define_bypass 3 "cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus,cortex_a53_alu,cortex_a53_alu_shift"
"cortex_a53_load*"
"arm_early_load_addr_dep")
(define_bypass 3 "cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus,cortex_a53_alu,cortex_a53_alu_shift"
"cortex_a53_store*"
"arm_early_store_addr_dep")
;; Load data can forward in the ALU pipeline
(define_bypass 2 "cortex_a53_load1,cortex_a53_load2"
"cortex_a53_alu")
(define_bypass 2 "cortex_a53_load1,cortex_a53_load2"
"cortex_a53_alu_shift"
"arm_no_early_alu_shift_dep")
;; ALU ops can forward to stores.
(define_bypass 0 "cortex_a53_alu,cortex_a53_alu_shift"
"cortex_a53_store1,cortex_a53_store2,cortex_a53_store3plus"
"arm_no_early_store_addr_dep")
(define_bypass 1 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv,cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus"
"cortex_a53_store1,cortex_a53_store2,cortex_a53_store3plus"
"arm_no_early_store_addr_dep")
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_store+cortex_a53_slot0,
cortex_a53_store")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branches.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Currently models all branches as dual-issuable from either execution
;; slot, which isn't true for all cases. We still need to model indirect
;; branches.
;; Model all branches as dual-issuable from either execution, which
;; is not strictly true for all cases (indirect branches).
(define_insn_reservation "cortex_a53_branch" 0
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "branch,call"))
"cortex_a53_slot_any+cortex_a53_branch")
"cortex_a53_slot_any,cortex_a53_branch")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; General-purpose register bypasses
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Model bypasses for unshifted operands to ALU instructions.
(define_bypass 1 "cortex_a53_shift"
"cortex_a53_shift")
(define_bypass 1 "cortex_a53_alu,
cortex_a53_alu_shift*,
cortex_a53_alu_rotate_imm,
cortex_a53_shift"
"cortex_a53_alu")
(define_bypass 2 "cortex_a53_alu,
cortex_a53_alu_shift*"
"cortex_a53_alu_shift*"
"aarch_forward_to_shift_is_not_shifted_reg")
;; In our model, we allow any general-purpose register operation to
;; bypass to the accumulator operand of an integer MADD-like operation.
(define_bypass 1 "cortex_a53_alu*,
cortex_a53_load*,
cortex_a53_mul"
"cortex_a53_mul"
"aarch_accumulator_forwarding")
;; Model a bypass from MLA/MUL to many ALU instructions.
(define_bypass 2 "cortex_a53_mul"
"cortex_a53_alu,
cortex_a53_alu_shift*")
;; We get neater schedules by allowing an MLA/MUL to feed an
;; early load address dependency to a load.
(define_bypass 2 "cortex_a53_mul"
"cortex_a53_load*"
"arm_early_load_addr_dep")
;; Model bypasses for loads which are to be consumed by the ALU.
(define_bypass 2 "cortex_a53_load1"
"cortex_a53_alu")
(define_bypass 3 "cortex_a53_load1"
"cortex_a53_alu_shift*")
;; Model a bypass for ALU instructions feeding stores.
(define_bypass 1 "cortex_a53_alu*"
"cortex_a53_store1,
cortex_a53_store2,
cortex_a53_store3plus"
"arm_no_early_store_addr_dep")
;; Model a bypass for load and multiply instructions feeding stores.
(define_bypass 2 "cortex_a53_mul,
cortex_a53_load1,
cortex_a53_load2,
cortex_a53_load3plus"
"cortex_a53_store1,
cortex_a53_store2,
cortex_a53_store3plus"
"arm_no_early_store_addr_dep")
;; Model a GP->FP register move as similar to stores.
(define_bypass 1 "cortex_a53_alu*"
"cortex_a53_r2f")
(define_bypass 2 "cortex_a53_mul,
cortex_a53_load1,
cortex_a53_load2,
cortex_a53_load3plus"
"cortex_a53_r2f")
;; Shifts feeding Load/Store addresses may not be ready in time.
(define_bypass 3 "cortex_a53_shift"
"cortex_a53_load*"
"arm_early_load_addr_dep")
(define_bypass 3 "cortex_a53_shift"
"cortex_a53_store*"
"arm_early_store_addr_dep")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point/Advanced SIMD.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_automaton "cortex_a53_advsimd")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Broad Advanced SIMD type categorisation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_attr "cortex_a53_advsimd_type"
"advsimd_alu, advsimd_alu_q,
advsimd_mul, advsimd_mul_q,
advsimd_div_s, advsimd_div_s_q,
advsimd_div_d, advsimd_div_d_q,
advsimd_load_64, advsimd_store_64,
advsimd_load_128, advsimd_store_128,
advsimd_load_lots, advsimd_store_lots,
unknown"
(cond [
(eq_attr "type" "neon_add, neon_qadd, neon_add_halve, neon_sub, neon_qsub,\
neon_sub_halve, neon_abs, neon_neg, neon_qneg,\
neon_qabs, neon_abd, neon_minmax, neon_compare,\
neon_compare_zero, neon_arith_acc, neon_reduc_add,\
neon_reduc_add_acc, neon_reduc_minmax,\
neon_logic, neon_tst, neon_shift_imm,\
neon_shift_reg, neon_shift_acc, neon_sat_shift_imm,\
neon_sat_shift_reg, neon_ins, neon_move,\
neon_permute, neon_zip, neon_tbl1,\
neon_tbl2, neon_tbl3, neon_tbl4, neon_bsl,\
neon_cls, neon_cnt, neon_dup,\
neon_ext, neon_rbit, neon_rev,\
neon_fp_abd_s, neon_fp_abd_d,\
neon_fp_abs_s, neon_fp_abs_d,\
neon_fp_addsub_s, neon_fp_addsub_d, neon_fp_compare_s,\
neon_fp_compare_d, neon_fp_minmax_s,\
neon_fp_minmax_d, neon_fp_neg_s, neon_fp_neg_d,\
neon_fp_reduc_add_s, neon_fp_reduc_add_d,\
neon_fp_reduc_minmax_s, neon_fp_reduc_minmax_d,\
neon_fp_cvt_widen_h, neon_fp_to_int_s,neon_fp_to_int_d,\
neon_int_to_fp_s, neon_int_to_fp_d, neon_fp_round_s,\
neon_fp_recpe_s, neon_fp_recpe_d, neon_fp_recps_s,\
neon_fp_recps_d, neon_fp_recpx_s, neon_fp_recpx_d,\
neon_fp_rsqrte_s, neon_fp_rsqrte_d, neon_fp_rsqrts_s,\
neon_fp_rsqrts_d")
(const_string "advsimd_alu")
(eq_attr "type" "neon_add_q, neon_add_widen, neon_add_long,\
neon_qadd_q, neon_add_halve_q, neon_add_halve_narrow_q,\
neon_sub_q, neon_sub_widen, neon_sub_long,\
neon_qsub_q, neon_sub_halve_q, neon_sub_halve_narrow_q,\
neon_abs_q, neon_neg_q, neon_qneg_q, neon_qabs_q,\
neon_abd_q, neon_abd_long, neon_minmax_q,\
neon_compare_q, neon_compare_zero_q,\
neon_arith_acc_q, neon_reduc_add_q,\
neon_reduc_add_long, neon_reduc_add_acc_q,\
neon_reduc_minmax_q, neon_logic_q, neon_tst_q,\
neon_shift_imm_q, neon_shift_imm_narrow_q,\
neon_shift_imm_long, neon_shift_reg_q,\
neon_shift_acc_q, neon_sat_shift_imm_q,\
neon_sat_shift_imm_narrow_q, neon_sat_shift_reg_q,\
neon_ins_q, neon_move_q, neon_move_narrow_q,\
neon_permute_q, neon_zip_q,\
neon_tbl1_q, neon_tbl2_q, neon_tbl3_q,\
neon_tbl4_q, neon_bsl_q, neon_cls_q, neon_cnt_q,\
neon_dup_q, neon_ext_q, neon_rbit_q,\
neon_rev_q, neon_fp_abd_s_q, neon_fp_abd_d_q,\
neon_fp_abs_s_q, neon_fp_abs_d_q,\
neon_fp_addsub_s_q, neon_fp_addsub_d_q,\
neon_fp_compare_s_q, neon_fp_compare_d_q,\
neon_fp_minmax_s_q, neon_fp_minmax_d_q,\
neon_fp_cvt_widen_s, neon_fp_neg_s_q, neon_fp_neg_d_q,\
neon_fp_reduc_add_s_q, neon_fp_reduc_add_d_q,\
neon_fp_reduc_minmax_s_q, neon_fp_reduc_minmax_d_q,\
neon_fp_cvt_narrow_s_q, neon_fp_cvt_narrow_d_q,\
neon_fp_to_int_s_q, neon_fp_to_int_d_q,\
neon_int_to_fp_s_q, neon_int_to_fp_d_q,\
neon_fp_round_s_q,\
neon_fp_recpe_s_q, neon_fp_recpe_d_q,\
neon_fp_recps_s_q, neon_fp_recps_d_q,\
neon_fp_recpx_s_q, neon_fp_recpx_d_q,\
neon_fp_rsqrte_s_q, neon_fp_rsqrte_d_q,\
neon_fp_rsqrts_s_q, neon_fp_rsqrts_d_q")
(const_string "advsimd_alu_q")
(eq_attr "type" "neon_mul_b, neon_mul_h, neon_mul_s,\
neon_mul_h_scalar, neon_mul_s_scalar,\
neon_sat_mul_b, neon_sat_mul_h, neon_sat_mul_s,\
neon_sat_mul_h_scalar, neon_sat_mul_s_scalar,\
neon_mla_b, neon_mla_h, neon_mla_s,\
neon_mla_h_scalar, neon_mla_s_scalar,\
neon_fp_mul_s, neon_fp_mul_s_scalar,\
neon_fp_mul_d, neon_fp_mla_s,\
neon_fp_mla_s_scalar, neon_fp_mla_d")
(const_string "advsimd_mul")
(eq_attr "type" "neon_mul_b_q, neon_mul_h_q, neon_mul_s_q,\
neon_mul_b_long, neon_mul_h_long, neon_mul_s_long,\
neon_mul_d_long, neon_mul_h_scalar_q,\
neon_mul_s_scalar_q, neon_mul_h_scalar_long,\
neon_mul_s_scalar_long, neon_sat_mul_b_q,\
neon_sat_mul_h_q, neon_sat_mul_s_q,\
neon_sat_mul_b_long, neon_sat_mul_h_long,\
neon_sat_mul_s_long, neon_sat_mul_h_scalar_q,\
neon_sat_mul_s_scalar_q, neon_sat_mul_h_scalar_long,\
neon_sat_mul_s_scalar_long, neon_mla_b_q,\
neon_mla_h_q, neon_mla_s_q, neon_mla_b_long,\
neon_mla_h_long, neon_mla_s_long,\
neon_mla_h_scalar_q, neon_mla_s_scalar_q,\
neon_mla_h_scalar_long, neon_mla_s_scalar_long,\
neon_sat_mla_b_long, neon_sat_mla_h_long,\
neon_sat_mla_s_long, neon_sat_mla_h_scalar_long,\
neon_sat_mla_s_scalar_long,\
neon_fp_mul_s_q, neon_fp_mul_s_scalar_q,\
neon_fp_mul_d_q, neon_fp_mul_d_scalar_q,\
neon_fp_mla_s_q, neon_fp_mla_s_scalar_q,\
neon_fp_mla_d_q, neon_fp_mla_d_scalar_q")
(const_string "advsimd_mul_q")
(eq_attr "type" "neon_fp_sqrt_s, neon_fp_div_s")
(const_string "advsimd_div_s")
(eq_attr "type" "neon_fp_sqrt_s_q, neon_fp_div_s_q")
(const_string "advsimd_div_s_q")
(eq_attr "type" "neon_fp_sqrt_d, neon_fp_div_d")
(const_string "advsimd_div_d")
(eq_attr "type" "neon_fp_sqrt_d_q, neon_fp_div_d_q")
(const_string "advsimd_div_d_q")
(eq_attr "type" "neon_ldr, neon_load1_1reg,\
neon_load1_all_lanes, neon_load1_all_lanes_q,\
neon_load1_one_lane, neon_load1_one_lane_q")
(const_string "advsimd_load_64")
(eq_attr "type" "neon_str, neon_store1_1reg,\
neon_store1_one_lane,neon_store1_one_lane_q")
(const_string "advsimd_store_64")
(eq_attr "type" "neon_load1_1reg_q, neon_load1_2reg,\
neon_load2_2reg,\
neon_load2_all_lanes, neon_load2_all_lanes_q,\
neon_load2_one_lane, neon_load2_one_lane_q")
(const_string "advsimd_load_128")
(eq_attr "type" "neon_store1_1reg_q, neon_store1_2reg,\
neon_store2_2reg,\
neon_store2_one_lane, neon_store2_one_lane_q")
(const_string "advsimd_store_128")
(eq_attr "type" "neon_load1_2reg_q, neon_load1_3reg, neon_load1_3reg_q,\
neon_load1_4reg, neon_load1_4reg_q, \
neon_load2_2reg_q, neon_load2_4reg,\
neon_load2_4reg_q, neon_load3_3reg,\
neon_load3_3reg_q, neon_load3_all_lanes,\
neon_load3_all_lanes_q, neon_load3_one_lane,\
neon_load3_one_lane_q, neon_load4_4reg,\
neon_load4_4reg_q, neon_load4_all_lanes,\
neon_load4_all_lanes_q, neon_load4_one_lane,\
neon_load4_one_lane_q, neon_ldp, neon_ldp_q")
(const_string "advsimd_load_lots")
(eq_attr "type" "neon_store1_2reg_q, neon_store1_3reg,\
neon_store1_3reg_q, neon_store1_4reg,\
neon_store1_4reg_q, neon_store2_2reg_q,\
neon_store2_4reg, neon_store2_4reg_q,\
neon_store3_3reg, neon_store3_3reg_q,\
neon_store3_one_lane, neon_store3_one_lane_q,\
neon_store4_4reg, neon_store4_4reg_q,\
neon_store4_one_lane, neon_store4_one_lane_q,\
neon_stp, neon_stp_q")
(const_string "advsimd_store_lots")]
(const_string "unknown")))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point/Advanced SIMD functional units.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; We model the Advanced SIMD unit as two 64-bit units, each with three
;; pipes, FP_ALU, FP_MUL, FP_DIV. We also give convenient reservations
;; for 128-bit Advanced SIMD instructions, which use both units.
;; The floating-point/Advanced SIMD ALU pipelines.
(define_cpu_unit "cortex_a53_fp_alu_lo,\
cortex_a53_fp_alu_hi"
"cortex_a53_advsimd")
(define_reservation "cortex_a53_fp_alu"
"cortex_a53_fp_alu_lo\
|cortex_a53_fp_alu_hi")
(define_reservation "cortex_a53_fp_alu_q"
"cortex_a53_fp_alu_lo\
+cortex_a53_fp_alu_hi")
;; The floating-point/Advanced SIMD multiply/multiply-accumulate
;; pipelines.
(define_cpu_unit "cortex_a53_fp_mul_lo,\
cortex_a53_fp_mul_hi"
"cortex_a53_advsimd")
(define_reservation "cortex_a53_fp_mul"
"cortex_a53_fp_mul_lo\
|cortex_a53_fp_mul_hi")
(define_reservation "cortex_a53_fp_mul_q"
"cortex_a53_fp_mul_lo\
+cortex_a53_fp_mul_hi")
;; Floating-point/Advanced SIMD divide/square root.
(define_cpu_unit "cortex_a53_fp_div_lo,\
cortex_a53_fp_div_hi"
"cortex_a53_advsimd")
;; Once we choose a pipe, stick with it for three simulated cycles.
(define_reservation "cortex_a53_fp_div"
"(cortex_a53_fp_div_lo*3)\
|(cortex_a53_fp_div_hi*3)")
(define_reservation "cortex_a53_fp_div_q"
"(cortex_a53_fp_div_lo*3)\
+(cortex_a53_fp_div_hi*3)")
;; Cryptographic extensions
(define_cpu_unit "cortex_a53_crypto"
"cortex_a53_advsimd")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point arithmetic.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_fpalu" 4
(define_insn_reservation "cortex_a53_fpalu" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov, fmuls,\
f_cvt,f_cvtf2i,f_cvti2f,\
fcmps, fcmpd, fcsel, f_rints, f_rintd, f_minmaxs,\
f_minmaxd"))
"cortex_a53_slot0+cortex_a53_fpadd_pipe")
(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov,
f_cvt, fcmps, fcmpd, fcsel, f_rints, f_rintd,
f_minmaxs, f_minmaxd"))
"cortex_a53_slot_any,cortex_a53_fp_alu")
(define_insn_reservation "cortex_a53_fconst" 2
(define_insn_reservation "cortex_a53_fconst" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fconsts,fconstd"))
"cortex_a53_slot0+cortex_a53_fpadd_pipe")
"cortex_a53_slot_any,cortex_a53_fp_alu")
(define_insn_reservation "cortex_a53_fpmul" 4
(define_insn_reservation "cortex_a53_fpmul" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fmuls,fmuld"))
"cortex_a53_slot0")
"cortex_a53_slot_any,cortex_a53_fp_mul")
;; For single-precision multiply-accumulate, the add (accumulate) is issued after
;; the multiply completes. Model that accordingly.
;; For multiply-accumulate, model the add (accumulate) as being issued
;; after the multiply completes.
(define_insn_reservation "cortex_a53_fpmac" 8
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fmacs,fmacd,ffmas,ffmad"))
"cortex_a53_slot0, nothing*3, cortex_a53_fpadd_pipe")
"cortex_a53_slot_any,cortex_a53_fp_mul,
nothing*3, cortex_a53_fp_alu")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point divide/square root instructions.
;; Floating-point to/from core transfers.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fsqrt really takes one cycle less, but that is not modelled.
(define_insn_reservation "cortex_a53_fdivs" 14
(define_insn_reservation "cortex_a53_r2f" 6
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fdivs, fsqrts"))
"cortex_a53_slot0, cortex_a53_fp_div_sqrt * 5")
(eq_attr "type" "f_mcr,f_mcrr,f_cvti2f,
neon_from_gp, neon_from_gp_q"))
"cortex_a53_slot_any,cortex_a53_store,
nothing,cortex_a53_fp_alu")
(define_insn_reservation "cortex_a53_fdivd" 29
(define_insn_reservation "cortex_a53_f2r" 6
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fdivd, fsqrtd"))
"cortex_a53_slot0, cortex_a53_fp_div_sqrt * 8")
(eq_attr "type" "f_mrc,f_mrrc,f_cvtf2i,
neon_to_gp, neon_to_gp_q"))
"cortex_a53_slot_any,cortex_a53_fp_alu,
nothing,cortex_a53_store")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point flag transfer.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_f_flags" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_flag"))
"cortex_a53_slot_any")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point load/store.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_f_load_64" 4
(and (eq_attr "tune" "cortexa53")
(ior (eq_attr "type" "f_loads,f_loadd")
(eq_attr "cortex_a53_advsimd_type"
"advsimd_load_64")))
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_load")
(define_insn_reservation "cortex_a53_f_load_many" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type"
"advsimd_load_128,advsimd_load_lots"))
"cortex_a53_single_issue+cortex_a53_ls_agen,
cortex_a53_load+cortex_a53_slot0,
cortex_a53_load")
(define_insn_reservation "cortex_a53_f_store_64" 0
(and (eq_attr "tune" "cortexa53")
(ior (eq_attr "type" "f_stores,f_stored")
(eq_attr "cortex_a53_advsimd_type"
"advsimd_store_64")))
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_store")
(define_insn_reservation "cortex_a53_f_store_many" 0
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type"
"advsimd_store_128,advsimd_store_lots"))
"cortex_a53_slot_any+cortex_a53_ls_agen,
cortex_a53_store+cortex_a53_slot0,
cortex_a53_store")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Advanced SIMD.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Either we want to model use of the ALU pipe, the multiply pipe or the
;; divide/sqrt pipe. In all cases we need to check if we are a 64-bit
;; operation (in which case we model dual-issue without penalty)
;; or a 128-bit operation in which case we require in our model that we
;; issue from slot 0.
(define_insn_reservation "cortex_a53_advsimd_alu" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type" "advsimd_alu"))
"cortex_a53_slot_any,cortex_a53_fp_alu")
(define_insn_reservation "cortex_a53_advsimd_alu_q" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type" "advsimd_alu_q"))
"cortex_a53_slot0,cortex_a53_fp_alu_q")
(define_insn_reservation "cortex_a53_advsimd_mul" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type" "advsimd_mul"))
"cortex_a53_slot_any,cortex_a53_fp_mul")
(define_insn_reservation "cortex_a53_advsimd_mul_q" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type" "advsimd_mul_q"))
"cortex_a53_slot0,cortex_a53_fp_mul_q")
;; SIMD Dividers.
(define_insn_reservation "cortex_a53_advsimd_div_s" 14
(and (eq_attr "tune" "cortexa53")
(ior (eq_attr "type" "fdivs,fsqrts")
(eq_attr "cortex_a53_advsimd_type" "advsimd_div_s")))
"cortex_a53_slot0,cortex_a53_fp_mul,
cortex_a53_fp_div")
(define_insn_reservation "cortex_a53_advsimd_div_d" 29
(and (eq_attr "tune" "cortexa53")
(ior (eq_attr "type" "fdivd,fsqrtd")
(eq_attr "cortex_a53_advsimd_type" "advsimd_div_d")))
"cortex_a53_slot0,cortex_a53_fp_mul,
cortex_a53_fp_div")
(define_insn_reservation "cortex_a53_advsimd_div_s_q" 14
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type" "advsimd_div_s_q"))
"cortex_a53_single_issue,cortex_a53_fp_mul_q,
cortex_a53_fp_div_q")
(define_insn_reservation "cortex_a53_advsimd_divd_q" 29
(and (eq_attr "tune" "cortexa53")
(eq_attr "cortex_a53_advsimd_type" "advsimd_div_d_q"))
"cortex_a53_single_issue,cortex_a53_fp_mul_q,
cortex_a53_fp_div_q")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ARMv8-A Cryptographic extensions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_crypto_aese" 2
;; We want AESE and AESMC to end up consecutive to one another.
(define_insn_reservation "cortex_a53_crypto_aese" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "crypto_aese"))
"cortex_a53_simd0")
"cortex_a53_slot0")
(define_insn_reservation "cortex_a53_crypto_aesmc" 2
(define_insn_reservation "cortex_a53_crypto_aesmc" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "crypto_aesmc"))
"cortex_a53_simd0 | cortex_a53_simd1")
"cortex_a53_slot_any")
(define_insn_reservation "cortex_a53_crypto_sha1_fast" 2
;; SHA1H
(define_insn_reservation "cortex_a53_crypto_sha1_fast" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "crypto_sha1_fast, crypto_sha256_fast"))
"cortex_a53_simd0")
(eq_attr "type" "crypto_sha1_fast"))
"cortex_a53_slot_any,cortex_a53_crypto")
(define_insn_reservation "cortex_a53_crypto_sha1_xor" 3
(define_insn_reservation "cortex_a53_crypto_sha256_fast" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "crypto_sha256_fast"))
"cortex_a53_slot0,cortex_a53_crypto")
(define_insn_reservation "cortex_a53_crypto_sha1_xor" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "crypto_sha1_xor"))
"cortex_a53_simd0")
"cortex_a53_slot0,cortex_a53_crypto")
(define_insn_reservation "cortex_a53_crypto_sha_slow" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "crypto_sha1_slow, crypto_sha256_slow"))
"cortex_a53_simd0")
"cortex_a53_slot0,cortex_a53_crypto")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point/Advanced SIMD register bypasses.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Model the late use of the accumulator operand for floating-point
;; multiply-accumulate operations as a bypass reducing the latency
;; of producing instructions to near zero.
(define_bypass 1 "cortex_a53_fp*,
cortex_a53_r2f,
cortex_a53_f_load*"
"cortex_a53_fpmac"
"aarch_accumulator_forwarding")
;; Model a bypass from the result of an FP operation to a use.
(define_bypass 4 "cortex_a53_fpalu,
cortex_a53_fpmul"
"cortex_a53_fpalu,
cortex_a53_fpmul,
cortex_a53_fpmac,
cortex_a53_advsimd_div*")
;; We want AESE and AESMC to end up consecutive to one another.
(define_bypass 0 "cortex_a53_crypto_aese"
"cortex_a53_crypto_aesmc"
"aarch_crypto_can_dual_issue")
"cortex_a53_crypto_aesmc"
"aarch_crypto_can_dual_issue")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP to/from core transfers.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_r2f" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_mcr,f_mcrr"))
"cortex_a53_slot0")
(define_insn_reservation "cortex_a53_f2r" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_mrc,f_mrrc"))
"cortex_a53_slot0")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP flag transfer.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_f_flags" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_flag"))
"cortex_a53_slot0")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP load/store.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_f_loads" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_loads"))
"cortex_a53_slot0")
(define_insn_reservation "cortex_a53_f_loadd" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_loadd"))
"cortex_a53_slot0")
(define_insn_reservation "cortex_a53_f_load_2reg" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "neon_ldp, neon_ldp_q, neon_load2_2reg_q"))
"(cortex_a53_slot_any+cortex_a53_ls)*2")
(define_insn_reservation "cortex_a53_f_loadq" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "neon_load1_1reg_q"))
"cortex_a53_slot_any+cortex_a53_ls")
(define_insn_reservation "cortex_a53_f_stores" 0
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_stores"))
"cortex_a53_slot0")
(define_insn_reservation "cortex_a53_f_stored" 0
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "f_stored"))
"cortex_a53_slot0")
;; Load-to-use for floating-point values has a penalty of one cycle,
;; i.e. a latency of two.
(define_bypass 2 "cortex_a53_f_loads"
"cortex_a53_fpalu, cortex_a53_fpmac, cortex_a53_fpmul,\
cortex_a53_fdivs, cortex_a53_fdivd,\
cortex_a53_f2r")
(define_bypass 2 "cortex_a53_f_loadd"
"cortex_a53_fpalu, cortex_a53_fpmac, cortex_a53_fpmul,\
cortex_a53_fdivs, cortex_a53_fdivd,\
cortex_a53_f2r")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Crude Advanced SIMD approximation.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a53_advsimd" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "is_neon_type" "yes"))
"cortex_a53_simd0")