arm.c (arm_issue_rate): Return 2 for Cortex-A5.

* config/arm/arm.c (arm_issue_rate): Return 2 for Cortex-A5.
	* config/arm/arm.md (generic_sched): No for Cortex-A5.
	(generic_vfp): Likewise.
	(cortex-a5.md): Include.
	* config/arm/cortex-a5.md: New.

From-SVN: r163550
This commit is contained in:
Julian Brown 2010-08-25 15:35:24 +00:00 committed by Mark Mitchell
parent 0ceb020134
commit d8099dd859
4 changed files with 309 additions and 2 deletions

View File

@ -1,3 +1,11 @@
2010-08-25 Julian Brown <julian@codesourcery.com>
* config/arm/arm.c (arm_issue_rate): Return 2 for Cortex-A5.
* config/arm/arm.md (generic_sched): No for Cortex-A5.
(generic_vfp): Likewise.
(cortex-a5.md): Include.
* config/arm/cortex-a5.md: New.
2010-08-25 Richard Guenther <rguenther@suse.de>
* alias.c (get_alias_set): Assign a single alias-set to

View File

@ -22446,6 +22446,7 @@ arm_issue_rate (void)
{
case cortexr4:
case cortexr4f:
case cortexa5:
case cortexa8:
case cortexa9:
return 2;

View File

@ -495,7 +495,7 @@
(define_attr "generic_sched" "yes,no"
(const (if_then_else
(ior (eq_attr "tune" "arm926ejs,arm1020e,arm1026ejs,arm1136js,arm1136jfs,cortexa8,cortexa9")
(ior (eq_attr "tune" "arm926ejs,arm1020e,arm1026ejs,arm1136js,arm1136jfs,cortexa5,cortexa8,cortexa9")
(eq_attr "tune_cortexr4" "yes"))
(const_string "no")
(const_string "yes"))))
@ -503,7 +503,7 @@
(define_attr "generic_vfp" "yes,no"
(const (if_then_else
(and (eq_attr "fpu" "vfp")
(eq_attr "tune" "!arm1020e,arm1022e,cortexa8,cortexa9")
(eq_attr "tune" "!arm1020e,arm1022e,cortexa5,cortexa8,cortexa9")
(eq_attr "tune_cortexr4" "no"))
(const_string "yes")
(const_string "no"))))
@ -513,6 +513,7 @@
(include "arm1020e.md")
(include "arm1026ejs.md")
(include "arm1136jfs.md")
(include "cortex-a5.md")
(include "cortex-a8.md")
(include "cortex-a9.md")
(include "cortex-r4.md")

297
gcc/config/arm/cortex-a5.md Normal file
View File

@ -0,0 +1,297 @@
;; ARM Cortex-A5 pipeline description
;; Copyright (C) 2010 Free Software Foundation, Inc.
;; Contributed by CodeSourcery.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_automaton "cortex_a5")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Functional units.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The integer (ALU) pipeline. There are five DPU pipeline
;; stages. However the decode/issue stages operate the same for all
;; instructions, so do not model them. We only need to model the
;; first execute stage because instructions always advance one stage
;; per cycle in order. Only branch instructions may dual-issue, so a
;; single unit covers all of the LS, ALU, MAC and FPU pipelines.
(define_cpu_unit "cortex_a5_ex1" "cortex_a5")
;; The branch pipeline. Branches can dual-issue with other instructions
;; (except when those instructions take multiple cycles to issue).
(define_cpu_unit "cortex_a5_branch" "cortex_a5")
;; Pseudo-unit for blocking the multiply pipeline when a double-precision
;; multiply is in progress.
(define_cpu_unit "cortex_a5_fpmul_pipe" "cortex_a5")
;; The floating-point add pipeline (ex1/f1 stage), used to model the usage
;; of the add pipeline by fmac instructions, etc.
(define_cpu_unit "cortex_a5_fpadd_pipe" "cortex_a5")
;; Floating-point div/sqrt (long latency, out-of-order completion).
(define_cpu_unit "cortex_a5_fp_div_sqrt" "cortex_a5")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a5_alu" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "alu"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_alu_shift" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "alu_shift,alu_shift_reg"))
"cortex_a5_ex1")
;; Forwarding path for unshifted operands.
(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
"cortex_a5_alu")
(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
"cortex_a5_alu_shift"
"arm_no_early_alu_shift_dep")
;; The multiplier pipeline can forward results from wr stage only so
;; there's no need to specify bypasses).
(define_insn_reservation "cortex_a5_mul" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "mult"))
"cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/store instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Address-generation happens in the issue stage, which is one stage behind
;; the ex1 stage (the first stage we care about for scheduling purposes). The
;; dc1 stage is parallel with ex1, dc2 with ex2 and rot with wr.
(define_insn_reservation "cortex_a5_load1" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load_byte,load1"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store1" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store1"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_load2" 3
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load2"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store2" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store2"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_load3" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store3" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1")
(define_insn_reservation "cortex_a5_load4" 5
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store4" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branches.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Direct branches are the only instructions we can dual-issue (also IT and
;; nop, but those aren't very interesting for scheduling). (The latency here
;; is meant to represent when the branch actually takes place, but may not be
;; entirely correct.)
(define_insn_reservation "cortex_a5_branch" 3
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "branch,call"))
"cortex_a5_branch")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point arithmetic.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a5_fpalu" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fcpys, fmuls, f_cvt,\
fcmps, fcmpd"))
"cortex_a5_ex1+cortex_a5_fpadd_pipe")
;; For fconsts and fconstd, 8-bit immediate data is passed directly from
;; f1 to f3 (which I think reduces the latency by one cycle).
(define_insn_reservation "cortex_a5_fconst" 3
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fconsts,fconstd"))
"cortex_a5_ex1+cortex_a5_fpadd_pipe")
;; We should try not to attempt to issue a single-precision multiplication in
;; the middle of a double-precision multiplication operation (the usage of
;; cortex_a5_fpmul_pipe).
(define_insn_reservation "cortex_a5_fpmuls" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmuls"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe")
;; For single-precision multiply-accumulate, the add (accumulate) is issued
;; whilst the multiply is in F4. The multiply result can then be forwarded
;; from F5 to F1. The issue unit is only used once (when we first start
;; processing the instruction), but the usage of the FP add pipeline could
;; block other instructions attempting to use it simultaneously. We try to
;; avoid that using cortex_a5_fpadd_pipe.
(define_insn_reservation "cortex_a5_fpmacs" 8
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmacs"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
;; Non-multiply instructions can issue in the middle two instructions of a
;; double-precision multiply. Note that it isn't entirely clear when a branch
;; can dual-issue when a multi-cycle multiplication is in progress; we ignore
;; that for now though.
(define_insn_reservation "cortex_a5_fpmuld" 7
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmuld"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
cortex_a5_ex1+cortex_a5_fpmul_pipe")
(define_insn_reservation "cortex_a5_fpmacd" 11
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmacd"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point divide/square root instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ??? Not sure if the 14 cycles taken for single-precision divide to complete
;; includes the time taken for the special instruction used to collect the
;; result to travel down the multiply pipeline, or not. Assuming so. (If
;; that's wrong, the latency should be increased by a few cycles.)
;; fsqrt takes one cycle less, but that is not modelled, nor is the use of the
;; multiply pipeline to collect the divide/square-root result.
(define_insn_reservation "cortex_a5_fdivs" 14
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fdivs"))
"cortex_a5_ex1, cortex_a5_fp_div_sqrt * 13")
;; ??? Similarly for fdivd.
(define_insn_reservation "cortex_a5_fdivd" 29
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fdivd"))
"cortex_a5_ex1, cortex_a5_fp_div_sqrt * 28")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP to/from core transfers.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; FP loads take data from wr/rot/f3.
;; Core-to-VFP transfers use the multiply pipeline.
(define_insn_reservation "cortex_a5_r2f" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "r_2_f"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f2r" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_2_r"))
"cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP flag transfer.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ??? The flag forwarding from fmstat to the ex2 stage of the second
;; instruction is not modeled at present.
(define_insn_reservation "cortex_a5_f_flags" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_flag"))
"cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP load/store.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a5_f_loads" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_loads"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f_loadd" 5
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_load,f_loadd"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f_stores" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_stores"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f_stored" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_store,f_stored"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
;; Load-to-use for floating-point values has a penalty of one cycle,
;; i.e. a latency of two.
(define_bypass 2 "cortex_a5_f_loads"
"cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
cortex_a5_f2r")
(define_bypass 3 "cortex_a5_f_loadd"
"cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
cortex_a5_f2r")