Handle data dependence relations with different bases

This patch tries to calculate conservatively-correct distance
vectors for two references whose base addresses are not the same.
It sets a new flag DDR_COULD_BE_INDEPENDENT_P if the dependence
isn't guaranteed to occur.

The motivating example is:

  struct s { int x[8]; };
  void
  f (struct s *a, struct s *b)
  {
    for (int i = 0; i < 8; ++i)
      a->x[i] += b->x[i];
  }

in which the "a" and "b" accesses are either independent or have a
dependence distance of 0 (assuming -fstrict-aliasing).  Neither case
prevents vectorisation, so we can vectorise without an alias check.

I'd originally wanted to do the same thing for arrays as well, e.g.:

  void
  f (int a[][8], struct b[][8])
  {
    for (int i = 0; i < 8; ++i)
      a[0][i] += b[0][i];
  }

I think this is valid because C11 6.7.6.2/6 says:

  For two array types to be compatible, both shall have compatible
  element types, and if both size specifiers are present, and are
  integer constant expressions, then both size specifiers shall have
  the same constant value.

So if we access an array through an int (*)[8], it must have type X[8]
or X[], where X is compatible with int.  It doesn't seem possible in
either case for "a[0]" and "b[0]" to overlap when "a != b".

However, as the comment above "if (same_base_p)" explains, GCC is more
forgiving: it supports arbitrary overlap of arrays and allows arrays to
be accessed with different dimensionality.  There are examples of this
in PR50067.  The patch therefore only handles references that end in a
structure field access.

There are two ways of handling these dependences in the vectoriser:
use them to limit VF, or check at runtime as before.  I've gone for
the approach of checking at runtime if we can, to avoid limiting VF
unnecessarily, but falling back to a VF cap when runtime checks aren't
allowed.

The patch tests whether we queued an alias check with a dependence
distance of X and then picked a VF <= X, in which case it's safe to
drop the alias check.  Since vect_prune_runtime_alias_check_list
can be called twice with different VF for the same loop, it's no
longer safe to clear may_alias_ddrs on exit.  Instead we should use
comp_alias_ddrs to check whether versioning is necessary.

2017-08-04  Richard Sandiford  <richard.sandiford@linaro.org>

gcc/
	* tree-data-ref.h (subscript): Add access_fn field.
	(data_dependence_relation): Add could_be_independent_p.
	(SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros.
	(same_access_functions): Move to tree-data-ref.c.
	* tree-data-ref.c (ref_contains_union_access_p): New function.
	(access_fn_component_p): Likewise.
	(access_fn_components_comparable_p): Likewise.
	(dr_analyze_indices): Add a reference to access_fn_component_p.
	(dump_data_dependence_relation): Use SUB_ACCESS_FN instead of
	DR_ACCESS_FN.
	(constant_access_functions): Likewise.
	(add_other_self_distances): Likewise.
	(same_access_functions): Likewise.  (Moved from tree-data-ref.h.)
	(initialize_data_dependence_relation): Use XCNEW and remove
	explicit zeroing of DDR_REVERSED_P.  Look for a subsequence
	of access functions that have the same type.  Allow the
	subsequence to end with different bases in some circumstances.
	Record the chosen access functions in SUB_ACCESS_FN.
	(build_classic_dist_vector_1): Replace ddr_a and ddr_b with
	a_index and b_index.  Use SUB_ACCESS_FN instead of DR_ACCESS_FN.
	(subscript_dependence_tester_1): Likewise dra and drb.
	(build_classic_dist_vector): Update calls accordingly.
	(subscript_dependence_tester): Likewise.
	* tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check
	DDR_COULD_BE_INDEPENDENT_P.
	* tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test
	comp_alias_ddrs instead of may_alias_ddrs.
	* tree-vect-data-refs.c (vect_analyze_possibly_independent_ddr):
	New function.
	(vect_analyze_data_ref_dependence): Use it if
	DDR_COULD_BE_INDEPENDENT_P, but fall back to using the recorded
	distance vectors if that fails.
	(dependence_distance_ge_vf): New function.
	(vect_prune_runtime_alias_test_list): Use it.  Don't clear
	LOOP_VINFO_MAY_ALIAS_DDRS.

gcc/testsuite/
	* gcc.dg/vect/vect-alias-check-3.c: New test.
	* gcc.dg/vect/vect-alias-check-4.c: Likewise.
	* gcc.dg/vect/vect-alias-check-5.c: Likewise.

From-SVN: r250867
This commit is contained in:
Richard Sandiford 2017-08-04 10:39:44 +00:00 committed by Richard Sandiford
parent 165b2f5f5d
commit dfbddbeb1c
10 changed files with 734 additions and 116 deletions

View File

@ -1,3 +1,41 @@
2017-08-04 Richard Sandiford <richard.sandiford@linaro.org>
* tree-data-ref.h (subscript): Add access_fn field.
(data_dependence_relation): Add could_be_independent_p.
(SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros.
(same_access_functions): Move to tree-data-ref.c.
* tree-data-ref.c (ref_contains_union_access_p): New function.
(access_fn_component_p): Likewise.
(access_fn_components_comparable_p): Likewise.
(dr_analyze_indices): Add a reference to access_fn_component_p.
(dump_data_dependence_relation): Use SUB_ACCESS_FN instead of
DR_ACCESS_FN.
(constant_access_functions): Likewise.
(add_other_self_distances): Likewise.
(same_access_functions): Likewise. (Moved from tree-data-ref.h.)
(initialize_data_dependence_relation): Use XCNEW and remove
explicit zeroing of DDR_REVERSED_P. Look for a subsequence
of access functions that have the same type. Allow the
subsequence to end with different bases in some circumstances.
Record the chosen access functions in SUB_ACCESS_FN.
(build_classic_dist_vector_1): Replace ddr_a and ddr_b with
a_index and b_index. Use SUB_ACCESS_FN instead of DR_ACCESS_FN.
(subscript_dependence_tester_1): Likewise dra and drb.
(build_classic_dist_vector): Update calls accordingly.
(subscript_dependence_tester): Likewise.
* tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check
DDR_COULD_BE_INDEPENDENT_P.
* tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test
comp_alias_ddrs instead of may_alias_ddrs.
* tree-vect-data-refs.c (vect_analyze_possibly_independent_ddr):
New function.
(vect_analyze_data_ref_dependence): Use it if
DDR_COULD_BE_INDEPENDENT_P, but fall back to using the recorded
distance vectors if that fails.
(dependence_distance_ge_vf): New function.
(vect_prune_runtime_alias_test_list): Use it. Don't clear
LOOP_VINFO_MAY_ALIAS_DDRS.
2017-08-04 Richard Biener <rguenther@suse.de>
PR middle-end/81705

View File

@ -1,3 +1,9 @@
2017-08-04 Richard Sandiford <richard.sandiford@linaro.org>
* gcc.dg/vect/vect-alias-check-3.c: New test.
* gcc.dg/vect/vect-alias-check-4.c: Likewise.
* gcc.dg/vect/vect-alias-check-5.c: Likewise.
2017-08-04 Richard Biener <rguenther@suse.de>
PR middle-end/81705

View File

@ -0,0 +1,120 @@
/* { dg-do compile } */
/* { dg-require-effective-target vect_int } */
/* { dg-additional-options "--param vect-max-version-for-alias-checks=0 -fopenmp-simd" } */
/* Intended to be larger than any VF. */
#define GAP 128
#define N (GAP * 3)
struct s { int x[N + 1]; };
struct t { struct s x[N + 1]; };
struct u { int x[N + 1]; int y; };
struct v { struct s s; };
void
f1 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a->x[i] += b->x[i];
}
void
f2 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a[1].x[i] += b[2].x[i];
}
void
f3 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a[1].x[i] += b[i].x[i];
}
void
f4 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a[i].x[i] += b[i].x[i];
}
void
f5 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a->x[i] += b->x[i + 1];
}
void
f6 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a[1].x[i] += b[2].x[i + 1];
}
void
f7 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a[1].x[i] += b[i].x[i + 1];
}
void
f8 (struct s *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a[i].x[i] += b[i].x[i + 1];
}
void
f9 (struct s *a, struct t *b)
{
for (int i = 0; i < N; ++i)
a->x[i] += b->x[1].x[i];
}
void
f10 (struct s *a, struct t *b)
{
for (int i = 0; i < N; ++i)
a->x[i] += b->x[i].x[i];
}
void
f11 (struct u *a, struct u *b)
{
for (int i = 0; i < N; ++i)
a->x[i] += b->x[i] + b[i].y;
}
void
f12 (struct s *a, struct s *b)
{
for (int i = 0; i < GAP; ++i)
a->x[i + GAP] += b->x[i];
}
void
f13 (struct s *a, struct s *b)
{
for (int i = 0; i < GAP * 2; ++i)
a->x[i + GAP] += b->x[i];
}
void
f14 (struct v *a, struct s *b)
{
for (int i = 0; i < N; ++i)
a->s.x[i] = b->x[i];
}
void
f15 (struct s *a, struct s *b)
{
#pragma omp simd safelen(N)
for (int i = 0; i < N; ++i)
a->x[i + 1] += b->x[i];
}
/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 15 "vect" } } */

View File

@ -0,0 +1,35 @@
/* { dg-do compile } */
/* { dg-require-effective-target vect_int } */
/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } */
#define N 16
struct s1 { int a[N]; };
struct s2 { struct s1 b; int c; };
struct s3 { int d; struct s1 e; };
union u { struct s2 f; struct s3 g; };
/* We allow a and b to overlap arbitrarily. */
void
f1 (int a[][N], int b[][N])
{
for (int i = 0; i < N; ++i)
a[0][i] += b[0][i];
}
void
f2 (union u *a, union u *b)
{
for (int i = 0; i < N; ++i)
a->f.b.a[i] += b->g.e.a[i];
}
void
f3 (struct s1 *a, struct s1 *b)
{
for (int i = 0; i < N - 1; ++i)
a->a[i + 1] += b->a[i];
}
/* { dg-final { scan-tree-dump-not "LOOP VECTORIZED" "vect" } } */

View File

@ -0,0 +1,19 @@
/* { dg-do compile } */
/* { dg-require-effective-target vect_int } */
/* Intended to be larger than any VF. */
#define GAP 128
#define N (GAP * 3)
struct s { int x[N]; };
void
f1 (struct s *a, struct s *b)
{
for (int i = 0; i < GAP * 2; ++i)
a->x[i + GAP] += b->x[i];
}
/* { dg-final { scan-tree-dump-times "consider run-time aliasing" 1 "vect" } } */
/* { dg-final { scan-tree-dump-times "improved number of alias checks from 1 to 0" 1 "vect" } } */
/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 1 "vect" } } */

View File

@ -124,8 +124,7 @@ static struct datadep_stats
} dependence_stats;
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
struct data_reference *,
struct data_reference *,
unsigned int, unsigned int,
struct loop *);
/* Returns true iff A divides B. */
@ -145,6 +144,21 @@ int_divides_p (int a, int b)
return ((b % a) == 0);
}
/* Return true if reference REF contains a union access. */
static bool
ref_contains_union_access_p (tree ref)
{
while (handled_component_p (ref))
{
ref = TREE_OPERAND (ref, 0);
if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
|| TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
return true;
}
return false;
}
/* Dump into FILE all the data references from DATAREFS. */
@ -434,13 +448,14 @@ dump_data_dependence_relation (FILE *outf,
unsigned int i;
struct loop *loopi;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
subscript *sub;
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
{
fprintf (outf, " access_fn_A: ");
print_generic_stmt (outf, DR_ACCESS_FN (dra, i));
print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
fprintf (outf, " access_fn_B: ");
print_generic_stmt (outf, DR_ACCESS_FN (drb, i));
dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
dump_subscript (outf, sub);
}
fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
@ -920,6 +935,27 @@ dr_analyze_innermost (innermost_loop_behavior *drb, tree ref,
return true;
}
/* Return true if OP is a valid component reference for a DR access
function. This accepts a subset of what handled_component_p accepts. */
static bool
access_fn_component_p (tree op)
{
switch (TREE_CODE (op))
{
case REALPART_EXPR:
case IMAGPART_EXPR:
case ARRAY_REF:
return true;
case COMPONENT_REF:
return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
default:
return false;
}
}
/* Determines the base object and the list of indices of memory reference
DR, analyzed in LOOP and instantiated in loop nest NEST. */
@ -957,7 +993,9 @@ dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
access_fns.safe_push (integer_one_node);
}
/* Analyze access functions of dimensions we know to be independent. */
/* Analyze access functions of dimensions we know to be independent.
The list of component references handled here should be kept in
sync with access_fn_component_p. */
while (handled_component_p (ref))
{
if (TREE_CODE (ref) == ARRAY_REF)
@ -2148,6 +2186,38 @@ dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
return refs_may_alias_p (addr_a, addr_b);
}
/* REF_A and REF_B both satisfy access_fn_component_p. Return true
if it is meaningful to compare their associated access functions
when checking for dependencies. */
static bool
access_fn_components_comparable_p (tree ref_a, tree ref_b)
{
/* Allow pairs of component refs from the following sets:
{ REALPART_EXPR, IMAGPART_EXPR }
{ COMPONENT_REF }
{ ARRAY_REF }. */
tree_code code_a = TREE_CODE (ref_a);
tree_code code_b = TREE_CODE (ref_b);
if (code_a == IMAGPART_EXPR)
code_a = REALPART_EXPR;
if (code_b == IMAGPART_EXPR)
code_b = REALPART_EXPR;
if (code_a != code_b)
return false;
if (TREE_CODE (ref_a) == COMPONENT_REF)
/* ??? We cannot simply use the type of operand #0 of the refs here as
the Fortran compiler smuggles type punning into COMPONENT_REFs.
Use the DECL_CONTEXT of the FIELD_DECLs instead. */
return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
== DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
TREE_TYPE (TREE_OPERAND (ref_b, 0)));
}
/* Initialize a data dependence relation between data accesses A and
B. NB_LOOPS is the number of loops surrounding the references: the
size of the classic distance/direction vectors. */
@ -2160,11 +2230,10 @@ initialize_data_dependence_relation (struct data_reference *a,
struct data_dependence_relation *res;
unsigned int i;
res = XNEW (struct data_dependence_relation);
res = XCNEW (struct data_dependence_relation);
DDR_A (res) = a;
DDR_B (res) = b;
DDR_LOOP_NEST (res).create (0);
DDR_REVERSED_P (res) = false;
DDR_SUBSCRIPTS (res).create (0);
DDR_DIR_VECTS (res).create (0);
DDR_DIST_VECTS (res).create (0);
@ -2182,82 +2251,277 @@ initialize_data_dependence_relation (struct data_reference *a,
return res;
}
/* The case where the references are exactly the same. */
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
if (num_dimensions_a == 0 || num_dimensions_b == 0)
{
if ((loop_nest.exists ()
&& !object_address_invariant_in_loop_p (loop_nest[0],
DR_BASE_OBJECT (a)))
|| DR_NUM_DIMENSIONS (a) == 0)
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
/* For unconstrained bases, the root (highest-indexed) subscript
describes a variation in the base of the original DR_REF rather
than a component access. We have no type that accurately describes
the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
applying this subscript) so limit the search to the last real
component access.
E.g. for:
void
f (int a[][8], int b[][8])
{
for (int i = 0; i < 8; ++i)
a[i * 2][0] = b[i][0];
}
the a and b accesses have a single ARRAY_REF component reference [0]
but have two subscripts. */
if (DR_UNCONSTRAINED_BASE (a))
num_dimensions_a -= 1;
if (DR_UNCONSTRAINED_BASE (b))
num_dimensions_b -= 1;
/* These structures describe sequences of component references in
DR_REF (A) and DR_REF (B). Each component reference is tied to a
specific access function. */
struct {
/* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
indices. In C notation, these are the indices of the rightmost
component references; e.g. for a sequence .b.c.d, the start
index is for .d. */
unsigned int start_a;
unsigned int start_b;
/* The sequence contains LENGTH consecutive access functions from
each DR. */
unsigned int length;
/* The enclosing objects for the A and B sequences respectively,
i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */
tree object_a;
tree object_b;
} full_seq = {}, struct_seq = {};
/* Before each iteration of the loop:
- REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
- REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */
unsigned int index_a = 0;
unsigned int index_b = 0;
tree ref_a = DR_REF (a);
tree ref_b = DR_REF (b);
/* Now walk the component references from the final DR_REFs back up to
the enclosing base objects. Each component reference corresponds
to one access function in the DR, with access function 0 being for
the final DR_REF and the highest-indexed access function being the
one that is applied to the base of the DR.
Look for a sequence of component references whose access functions
are comparable (see access_fn_components_comparable_p). If more
than one such sequence exists, pick the one nearest the base
(which is the leftmost sequence in C notation). Store this sequence
in FULL_SEQ.
For example, if we have:
struct foo { struct bar s; ... } (*a)[10], (*b)[10];
A: a[0][i].s.c.d
B: __real b[0][i].s.e[i].f
(where d is the same type as the real component of f) then the access
functions would be:
0 1 2 3
A: .d .c .s [i]
0 1 2 3 4 5
B: __real .f [i] .e .s [i]
The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
and [i] is an ARRAY_REF. However, the A1/B3 column contains two
COMPONENT_REF accesses for struct bar, so is comparable. Likewise
the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
so is comparable. The A3/B5 column contains two ARRAY_REFs that
index foo[10] arrays, so is again comparable. The sequence is
therefore:
A: [1, 3] (i.e. [i].s.c)
B: [3, 5] (i.e. [i].s.e)
Also look for sequences of component references whose access
functions are comparable and whose enclosing objects have the same
RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above
example, STRUCT_SEQ would be:
A: [1, 2] (i.e. s.c)
B: [3, 4] (i.e. s.e) */
while (index_a < num_dimensions_a && index_b < num_dimensions_b)
{
/* REF_A and REF_B must be one of the component access types
allowed by dr_analyze_indices. */
gcc_checking_assert (access_fn_component_p (ref_a));
gcc_checking_assert (access_fn_component_p (ref_b));
/* Get the immediately-enclosing objects for REF_A and REF_B,
i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
and DR_ACCESS_FN (B, INDEX_B). */
tree object_a = TREE_OPERAND (ref_a, 0);
tree object_b = TREE_OPERAND (ref_b, 0);
tree type_a = TREE_TYPE (object_a);
tree type_b = TREE_TYPE (object_b);
if (access_fn_components_comparable_p (ref_a, ref_b))
{
/* This pair of component accesses is comparable for dependence
analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
DR_ACCESS_FN (B, INDEX_B) in the sequence. */
if (full_seq.start_a + full_seq.length != index_a
|| full_seq.start_b + full_seq.length != index_b)
{
/* The accesses don't extend the current sequence,
so start a new one here. */
full_seq.start_a = index_a;
full_seq.start_b = index_b;
full_seq.length = 0;
}
/* Add this pair of references to the sequence. */
full_seq.length += 1;
full_seq.object_a = object_a;
full_seq.object_b = object_b;
/* If the enclosing objects are structures (and thus have the
same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */
if (TREE_CODE (type_a) == RECORD_TYPE)
struct_seq = full_seq;
/* Move to the next containing reference for both A and B. */
ref_a = object_a;
ref_b = object_b;
index_a += 1;
index_b += 1;
continue;
}
/* Try to approach equal type sizes. */
if (!COMPLETE_TYPE_P (type_a)
|| !COMPLETE_TYPE_P (type_b)
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
break;
unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
if (size_a <= size_b)
{
index_a += 1;
ref_a = object_a;
}
if (size_b <= size_a)
{
index_b += 1;
ref_b = object_b;
}
}
/* See whether FULL_SEQ ends at the base and whether the two bases
are equal. We do not care about TBAA or alignment info so we can
use OEP_ADDRESS_OF to avoid false negatives. */
tree base_a = DR_BASE_OBJECT (a);
tree base_b = DR_BASE_OBJECT (b);
bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
&& full_seq.start_b + full_seq.length == num_dimensions_b
&& DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
&& operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
&& types_compatible_p (TREE_TYPE (base_a),
TREE_TYPE (base_b))
&& (!loop_nest.exists ()
|| (object_address_invariant_in_loop_p
(loop_nest[0], base_a))));
/* If the bases are the same, we can include the base variation too.
E.g. the b accesses in:
for (int i = 0; i < n; ++i)
b[i + 4][0] = b[i][0];
have a definite dependence distance of 4, while for:
for (int i = 0; i < n; ++i)
a[i + 4][0] = b[i][0];
the dependence distance depends on the gap between a and b.
If the bases are different then we can only rely on the sequence
rooted at a structure access, since arrays are allowed to overlap
arbitrarily and change shape arbitrarily. E.g. we treat this as
valid code:
int a[256];
...
((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
where two lvalues with the same int[4][3] type overlap, and where
both lvalues are distinct from the object's declared type. */
if (same_base_p)
{
if (DR_UNCONSTRAINED_BASE (a))
full_seq.length += 1;
}
else
full_seq = struct_seq;
/* Punt if we didn't find a suitable sequence. */
if (full_seq.length == 0)
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
if (!same_base_p)
{
/* Partial overlap is possible for different bases when strict aliasing
is not in effect. It's also possible if either base involves a union
access; e.g. for:
struct s1 { int a[2]; };
struct s2 { struct s1 b; int c; };
struct s3 { int d; struct s1 e; };
union u { struct s2 f; struct s3 g; } *p, *q;
the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
"p->g.e" (base "p->g") and might partially overlap the s1 at
"q->g.e" (base "q->g"). */
if (!flag_strict_aliasing
|| ref_contains_union_access_p (full_seq.object_a)
|| ref_contains_union_access_p (full_seq.object_b))
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
DDR_AFFINE_P (res) = true;
DDR_ARE_DEPENDENT (res) = NULL_TREE;
DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
DDR_LOOP_NEST (res) = loop_nest;
DDR_INNER_LOOP (res) = 0;
DDR_SELF_REFERENCE (res) = true;
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
{
struct subscript *subscript;
subscript = XNEW (struct subscript);
SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
SUB_DISTANCE (subscript) = chrec_dont_know;
DDR_SUBSCRIPTS (res).safe_push (subscript);
}
return res;
}
/* If the references do not access the same object, we do not know
whether they alias or not. We do not care about TBAA or alignment
info so we can use OEP_ADDRESS_OF to avoid false negatives.
But the accesses have to use compatible types as otherwise the
built indices would not match. */
if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), OEP_ADDRESS_OF)
|| !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
TREE_TYPE (DR_BASE_OBJECT (b))))
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
/* If the base of the object is not invariant in the loop nest, we cannot
analyze it. TODO -- in fact, it would suffice to record that there may
be arbitrary dependences in the loops where the base object varies. */
if ((loop_nest.exists ()
&& !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT (a)))
|| DR_NUM_DIMENSIONS (a) == 0)
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
/* If the number of dimensions of the access to not agree we can have
a pointer access to a component of the array element type and an
array access while the base-objects are still the same. Punt. */
if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
DDR_COULD_BE_INDEPENDENT_P (res) = true;
}
DDR_AFFINE_P (res) = true;
DDR_ARE_DEPENDENT (res) = NULL_TREE;
DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
DDR_SUBSCRIPTS (res).create (full_seq.length);
DDR_LOOP_NEST (res) = loop_nest;
DDR_INNER_LOOP (res) = 0;
DDR_SELF_REFERENCE (res) = false;
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
for (i = 0; i < full_seq.length; ++i)
{
struct subscript *subscript;
subscript = XNEW (struct subscript);
SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
@ -3839,14 +4103,15 @@ add_outer_distances (struct data_dependence_relation *ddr,
}
/* Return false when fail to represent the data dependence as a
distance vector. INIT_B is set to true when a component has been
distance vector. A_INDEX is the index of the first reference
(0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
second reference. INIT_B is set to true when a component has been
added to the distance vector DIST_V. INDEX_CARRY is then set to
the index in DIST_V that carries the dependence. */
static bool
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
struct data_reference *ddr_a,
struct data_reference *ddr_b,
unsigned int a_index, unsigned int b_index,
lambda_vector dist_v, bool *init_b,
int *index_carry)
{
@ -3864,8 +4129,8 @@ build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
return false;
}
access_fn_a = DR_ACCESS_FN (ddr_a, i);
access_fn_b = DR_ACCESS_FN (ddr_b, i);
access_fn_a = SUB_ACCESS_FN (subscript, a_index);
access_fn_b = SUB_ACCESS_FN (subscript, b_index);
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
@ -3925,10 +4190,11 @@ static bool
constant_access_functions (const struct data_dependence_relation *ddr)
{
unsigned i;
subscript *sub;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
|| !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
|| !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
return false;
return true;
@ -3991,10 +4257,11 @@ add_other_self_distances (struct data_dependence_relation *ddr)
lambda_vector dist_v;
unsigned i;
int index_carry = DDR_NB_LOOPS (ddr);
subscript *sub;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
{
tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
tree access_fun = SUB_ACCESS_FN (sub, 0);
if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
{
@ -4006,7 +4273,7 @@ add_other_self_distances (struct data_dependence_relation *ddr)
return;
}
access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
add_multivariate_self_dist (ddr, access_fun);
@ -4077,6 +4344,23 @@ add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
}
}
/* Return true when the DDR contains two data references that have the
same access functions. */
static inline bool
same_access_functions (const struct data_dependence_relation *ddr)
{
unsigned i;
subscript *sub;
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
SUB_ACCESS_FN (sub, 1)))
return false;
return true;
}
/* Compute the classic per loop distance vector. DDR is the data
dependence relation to build a vector from. Return false when fail
to represent the data dependence as a distance vector. */
@ -4108,8 +4392,7 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
}
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
dist_v, &init_b, &index_carry))
if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
return false;
/* Save the distance vector if we initialized one. */
@ -4142,12 +4425,11 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
{
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
loop_nest))
if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
return false;
compute_subscript_distance (ddr);
if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
save_v, &init_b, &index_carry))
if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
&index_carry))
return false;
save_dist_v (ddr, save_v);
DDR_REVERSED_P (ddr) = true;
@ -4183,12 +4465,10 @@ build_classic_dist_vector (struct data_dependence_relation *ddr,
{
lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
DDR_A (ddr), loop_nest))
if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
return false;
compute_subscript_distance (ddr);
if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
opposite_v, &init_b,
if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
&index_carry))
return false;
@ -4267,13 +4547,13 @@ build_classic_dir_vector (struct data_dependence_relation *ddr)
}
}
/* Helper function. Returns true when there is a dependence between
data references DRA and DRB. */
/* Helper function. Returns true when there is a dependence between the
data references. A_INDEX is the index of the first reference (0 for
DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */
static bool
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
struct data_reference *dra,
struct data_reference *drb,
unsigned int a_index, unsigned int b_index,
struct loop *loop_nest)
{
unsigned int i;
@ -4285,8 +4565,8 @@ subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
{
conflict_function *overlaps_a, *overlaps_b;
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
DR_ACCESS_FN (drb, i),
analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
SUB_ACCESS_FN (subscript, b_index),
&overlaps_a, &overlaps_b,
&last_conflicts, loop_nest);
@ -4335,7 +4615,7 @@ static void
subscript_dependence_tester (struct data_dependence_relation *ddr,
struct loop *loop_nest)
{
if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
dependence_stats.num_dependence_dependent++;
compute_subscript_distance (ddr);

View File

@ -260,6 +260,9 @@ struct conflict_function
struct subscript
{
/* The access functions of the two references. */
tree access_fn[2];
/* A description of the iterations for which the elements are
accessed twice. */
conflict_function *conflicting_iterations_in_a;
@ -278,6 +281,7 @@ struct subscript
typedef struct subscript *subscript_p;
#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
#define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
#define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
#define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
@ -333,6 +337,33 @@ struct data_dependence_relation
/* Set to true when the dependence relation is on the same data
access. */
bool self_reference_p;
/* True if the dependence described is conservatively correct rather
than exact, and if it is still possible for the accesses to be
conditionally independent. For example, the a and b references in:
struct s *a, *b;
for (int i = 0; i < n; ++i)
a->f[i] += b->f[i];
conservatively have a distance vector of (0), for the case in which
a == b, but the accesses are independent if a != b. Similarly,
the a and b references in:
struct s *a, *b;
for (int i = 0; i < n; ++i)
a[0].f[i] += b[i].f[i];
conservatively have a distance vector of (0), but they are indepenent
when a != b + i. In contrast, the references in:
struct s *a;
for (int i = 0; i < n; ++i)
a->f[i] += a->f[i];
have the same distance vector of (0), but the accesses can never be
independent. */
bool could_be_independent_p;
};
typedef struct data_dependence_relation *ddr_p;
@ -363,6 +394,7 @@ typedef struct data_dependence_relation *ddr_p;
#define DDR_DIST_VECT(DDR, I) \
DDR_DIST_VECTS (DDR)[I]
#define DDR_REVERSED_P(DDR) (DDR)->reversed_p
#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
bool dr_analyze_innermost (innermost_loop_behavior *, tree, struct loop *);
@ -459,22 +491,6 @@ same_data_refs (data_reference_p a, data_reference_p b)
return true;
}
/* Return true when the DDR contains two data references that have the
same access functions. */
static inline bool
same_access_functions (const struct data_dependence_relation *ddr)
{
unsigned i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
DR_ACCESS_FN (DDR_B (ddr), i)))
return false;
return true;
}
/* Returns true when all the dependences are computable. */
inline bool

View File

@ -1668,6 +1668,7 @@ determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
refb = (struct mem_ref *) DDR_B (dep)->aux;
if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
|| DDR_COULD_BE_INDEPENDENT_P (dep)
|| DDR_NUM_DIST_VECTS (dep) == 0)
{
/* If the dependence cannot be analyzed, assume that there might be

View File

@ -160,6 +160,60 @@ vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
}
/* A subroutine of vect_analyze_data_ref_dependence. Handle
DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
distances. These distances are conservatively correct but they don't
reflect a guaranteed dependence.
Return true if this function does all the work necessary to avoid
an alias or false if the caller should use the dependence distances
to limit the vectorization factor in the usual way. LOOP_DEPTH is
the depth of the loop described by LOOP_VINFO and the other arguments
are as for vect_analyze_data_ref_dependence. */
static bool
vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
loop_vec_info loop_vinfo,
int loop_depth, int *max_vf)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
lambda_vector dist_v;
unsigned int i;
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
{
int dist = dist_v[loop_depth];
if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
{
/* If the user asserted safelen >= DIST consecutive iterations
can be executed concurrently, assume independence.
??? An alternative would be to add the alias check even
in this case, and vectorize the fallback loop with the
maximum VF set to safelen. However, if the user has
explicitly given a length, it's less likely that that
would be a win. */
if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
{
if (loop->safelen < *max_vf)
*max_vf = loop->safelen;
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
continue;
}
/* For dependence distances of 2 or more, we have the option
of limiting VF or checking for an alias at runtime.
Prefer to check at runtime if we can, to avoid limiting
the VF unnecessarily when the bases are in fact independent.
Note that the alias checks will be removed if the VF ends up
being small enough. */
return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
}
}
return true;
}
/* Function vect_analyze_data_ref_dependence.
Return TRUE if there (might) exist a dependence between a memory-reference
@ -305,6 +359,12 @@ vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
}
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
if (DDR_COULD_BE_INDEPENDENT_P (ddr)
&& vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
loop_depth, max_vf))
return false;
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
{
int dist = dist_v[loop_depth];
@ -2878,6 +2938,44 @@ vect_no_alias_p (struct data_reference *a, struct data_reference *b,
return false;
}
/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
in DDR is >= VF. */
static bool
dependence_distance_ge_vf (data_dependence_relation *ddr,
unsigned int loop_depth, unsigned HOST_WIDE_INT vf)
{
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
|| DDR_NUM_DIST_VECTS (ddr) == 0)
return false;
/* If the dependence is exact, we should have limited the VF instead. */
gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
unsigned int i;
lambda_vector dist_v;
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
{
HOST_WIDE_INT dist = dist_v[loop_depth];
if (dist != 0
&& !(dist > 0 && DDR_REVERSED_P (ddr))
&& (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf)
return false;
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"dependence distance between ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
dump_printf (MSG_NOTE, " and ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
dump_printf (MSG_NOTE, " is >= VF\n");
}
return true;
}
/* Function vect_prune_runtime_alias_test_list.
Prune a list of ddrs to be tested at run-time by versioning for alias.
@ -2908,6 +3006,10 @@ vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
comp_alias_ddrs.create (may_alias_ddrs.length ());
unsigned int loop_depth
= index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
LOOP_VINFO_LOOP_NEST (loop_vinfo));
/* First, we collect all data ref pairs for aliasing checks. */
FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
{
@ -2917,6 +3019,11 @@ vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
tree segment_length_a, segment_length_b;
gimple *stmt_a, *stmt_b;
/* Ignore the alias if the VF we chose ended up being no greater
than the dependence distance. */
if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
continue;
dr_a = DDR_A (ddr);
stmt_a = DR_STMT (DDR_A (ddr));
dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
@ -2993,10 +3100,6 @@ vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
return false;
}
/* All alias checks have been resolved at compilation time. */
if (!comp_alias_ddrs.length ())
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
return true;
}

View File

@ -358,7 +358,7 @@ typedef struct _loop_vec_info : public vec_info {
#define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
((L)->may_misalign_stmts.length () > 0)
#define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
((L)->may_alias_ddrs.length () > 0)
((L)->comp_alias_ddrs.length () > 0)
#define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
(LOOP_VINFO_NITERS_ASSUMPTIONS (L))
#define LOOP_REQUIRES_VERSIONING(L) \