x86_64-signal.h (HANDLE_DIVIDE_OVERFLOW): New.
2006-04-10 Andrew Haley <aph@redhat.com> * include/x86_64-signal.h (HANDLE_DIVIDE_OVERFLOW): New. (SIGNAL_HANDLER): Mark arg as unused. * configure.host (x86_64-* DIVIDESPEC): Use fno-use-divide-subroutine. From-SVN: r112827
This commit is contained in:
parent
1f3d30ed89
commit
e92857a103
@ -1,3 +1,10 @@
|
||||
2006-04-10 Andrew Haley <aph@redhat.com>
|
||||
|
||||
* include/x86_64-signal.h (HANDLE_DIVIDE_OVERFLOW): New.
|
||||
(SIGNAL_HANDLER): Mark arg as unused.
|
||||
* configure.host (x86_64-* DIVIDESPEC): Use
|
||||
fno-use-divide-subroutine.
|
||||
|
||||
2006-04-07 Andrew Haley <aph@redhat.com>
|
||||
|
||||
* java/net/InetAddress.java: Throw an UnknownHostException if
|
||||
|
@ -115,7 +115,7 @@ case "${host}" in
|
||||
libgcj_flags="${libgcj_flags} -fomit-frame-pointer"
|
||||
libgcj_cxxflags=
|
||||
libgcj_cflags=
|
||||
DIVIDESPEC=-f%{m32:no-}use-divide-subroutine
|
||||
DIVIDESPEC=-fno-use-divide-subroutine
|
||||
enable_hash_synchronization_default=yes
|
||||
slow_pthread_self=yes
|
||||
libgcj_interpreter=yes
|
||||
|
@ -19,9 +19,88 @@ details. */
|
||||
#include <sys/syscall.h>
|
||||
|
||||
#define HANDLE_SEGV 1
|
||||
#define HANDLE_FPE 1
|
||||
|
||||
#define SIGNAL_HANDLER(_name) \
|
||||
static void _Jv_##_name (int, siginfo_t *, void *_p)
|
||||
#define SIGNAL_HANDLER(_name) \
|
||||
static void _Jv_##_name (int, siginfo_t *, \
|
||||
void *_p __attribute__ ((__unused__)))
|
||||
|
||||
#define HANDLE_DIVIDE_OVERFLOW \
|
||||
do \
|
||||
{ \
|
||||
struct ucontext *_uc = (struct ucontext *)_p; \
|
||||
volatile struct sigcontext *_sc = (struct sigcontext *) &_uc->uc_mcontext; \
|
||||
\
|
||||
register unsigned char *_rip = (unsigned char *)_sc->rip; \
|
||||
\
|
||||
/* According to the JVM spec, "if the dividend is the negative \
|
||||
* integer of largest possible magnitude for the type and the \
|
||||
* divisor is -1, then overflow occurs and the result is equal to \
|
||||
* the dividend. Despite the overflow, no exception occurs". \
|
||||
\
|
||||
* We handle this by inspecting the instruction which generated the \
|
||||
* signal and advancing ip to point to the following instruction. \
|
||||
* As the instructions are variable length it is necessary to do a \
|
||||
* little calculation to figure out where the following instruction \
|
||||
* actually is. \
|
||||
\
|
||||
*/ \
|
||||
\
|
||||
bool _is_64_bit = false; \
|
||||
\
|
||||
if ((_rip[0] & 0xf0) == 0x40) /* REX byte present. */ \
|
||||
{ \
|
||||
unsigned char _rex = _rip[0] & 0x0f; \
|
||||
_is_64_bit = (_rex & 0x08) != 0; \
|
||||
_rip++; \
|
||||
} \
|
||||
\
|
||||
/* Detect a signed division of Integer.MIN_VALUE or Long.MIN_VALUE. */ \
|
||||
if (_rip[0] == 0xf7) \
|
||||
{ \
|
||||
bool _min_value_dividend = false; \
|
||||
unsigned char _modrm = _rip[1]; \
|
||||
\
|
||||
if (((_modrm >> 3) & 7) == 7) \
|
||||
{ \
|
||||
if (_is_64_bit) \
|
||||
_min_value_dividend = (_sc->rax == 0x8000000000000000L); \
|
||||
else \
|
||||
_min_value_dividend = ((_sc->rax & 0xffffffff) == 0x80000000); \
|
||||
} \
|
||||
\
|
||||
if (_min_value_dividend) \
|
||||
{ \
|
||||
unsigned char _rm = _modrm & 7; \
|
||||
_sc->rdx = 0; /* the remainder is zero */ \
|
||||
switch (_modrm >> 6) \
|
||||
{ \
|
||||
case 0: /* register indirect */ \
|
||||
if (_rm == 5) /* 32-bit displacement */ \
|
||||
_rip += 4; \
|
||||
if (_rm == 4) /* A SIB byte follows the ModR/M byte */ \
|
||||
_rip += 1; \
|
||||
break; \
|
||||
case 1: /* register indirect + 8-bit displacement */ \
|
||||
_rip += 1; \
|
||||
if (_rm == 4) /* A SIB byte follows the ModR/M byte */ \
|
||||
_rip += 1; \
|
||||
break; \
|
||||
case 2: /* register indirect + 32-bit displacement */ \
|
||||
_rip += 4; \
|
||||
if (_rm == 4) /* A SIB byte follows the ModR/M byte */ \
|
||||
_rip += 1; \
|
||||
break; \
|
||||
case 3: \
|
||||
break; \
|
||||
} \
|
||||
_rip += 2; \
|
||||
_sc->rip = (unsigned long)_rip; \
|
||||
return; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
extern "C"
|
||||
{
|
||||
@ -65,12 +144,29 @@ do \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
/* We use syscall(SYS_rt_sigaction) in INIT_SEGV instead of
|
||||
* sigaction() because on some systems the pthreads wrappers for
|
||||
* signal handlers are not compiled with unwind information, so it's
|
||||
* not possible to unwind through them. This is a problem that will
|
||||
* go away if all systems ever have pthreads libraries that are
|
||||
* compiled with unwind info. */
|
||||
#define INIT_FPE \
|
||||
do \
|
||||
{ \
|
||||
struct kernel_sigaction act; \
|
||||
act.k_sa_sigaction = _Jv_catch_fpe; \
|
||||
sigemptyset (&act.k_sa_mask); \
|
||||
act.k_sa_flags = SA_SIGINFO|0x4000000; \
|
||||
act.k_sa_restorer = restore_rt; \
|
||||
syscall (SYS_rt_sigaction, SIGFPE, &act, NULL, _NSIG / 8); \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
/* You might wonder why we use syscall(SYS_sigaction) in INIT_FPE
|
||||
* instead of the standard sigaction(). This is necessary because of
|
||||
* the shenanigans above where we increment the PC saved in the
|
||||
* context and then return. This trick will only work when we are
|
||||
* called _directly_ by the kernel, because linuxthreads wraps signal
|
||||
* handlers and its wrappers do not copy the sigcontext struct back
|
||||
* when returning from a signal handler. If we return from our divide
|
||||
* handler to a linuxthreads wrapper, we will lose the PC adjustment
|
||||
* we made and return to the faulting instruction again. Using
|
||||
* syscall(SYS_sigaction) causes our handler to be called directly
|
||||
* by the kernel, bypassing any wrappers. */
|
||||
|
||||
#endif /* JAVA_SIGNAL_H */
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user