deque.tcc: Wrap overlong lines...

2004-02-01  Paolo Carlini  <pcarlini@suse.de>

	* include/bits/deque.tcc: Wrap overlong lines, constify
	a few variables, reformat according to the coding standards.
	* include/bits/list.tcc: Likewise.
	* include/bits/stl_deque.h: Likewise.
	* include/bits/stl_function.h: Likewise.
	* include/bits/stl_iterator.h: Likewise.
	* include/bits/stl_iterator_base_funcs.h: Likewise.
	* include/bits/stl_iterator_base_types.h: Likewise.
	* include/bits/stl_list.h: Likewise.
	* include/bits/stl_map.h: Likewise.
	* include/bits/stl_multimap.h: Likewise.
	* include/bits/stl_multiset.h: Likewise.
	* include/bits/stl_relops.h: Likewise.
	* include/bits/stl_set.h: Likewise.

From-SVN: r77077
This commit is contained in:
Paolo Carlini 2004-02-01 17:34:44 +00:00 committed by Paolo Carlini
parent e0a24727f2
commit f6592a9e2c
14 changed files with 3963 additions and 3535 deletions

View File

@ -1,3 +1,20 @@
2004-02-01 Paolo Carlini <pcarlini@suse.de>
* include/bits/deque.tcc: Wrap overlong lines, constify
a few variables, reformat according to the coding standards.
* include/bits/list.tcc: Likewise.
* include/bits/stl_deque.h: Likewise.
* include/bits/stl_function.h: Likewise.
* include/bits/stl_iterator.h: Likewise.
* include/bits/stl_iterator_base_funcs.h: Likewise.
* include/bits/stl_iterator_base_types.h: Likewise.
* include/bits/stl_list.h: Likewise.
* include/bits/stl_map.h: Likewise.
* include/bits/stl_multimap.h: Likewise.
* include/bits/stl_multiset.h: Likewise.
* include/bits/stl_relops.h: Likewise.
* include/bits/stl_set.h: Likewise.
2004-02-01 Paolo Carlini <pcarlini@suse.de>
* include/bits/stl_bvector.h: Wrap overlong lines, constify

View File

@ -1,6 +1,6 @@
// Deque implementation (out of line) -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -70,16 +70,17 @@ namespace __gnu_norm
{
const size_type __len = size();
if (&__x != this)
{
if (__len >= __x.size())
erase(std::copy(__x.begin(), __x.end(), this->_M_start), this->_M_finish);
else
{
const_iterator __mid = __x.begin() + difference_type(__len);
std::copy(__x.begin(), __mid, this->_M_start);
insert(this->_M_finish, __mid, __x.end());
}
}
{
if (__len >= __x.size())
erase(std::copy(__x.begin(), __x.end(), this->_M_start),
this->_M_finish);
else
{
const_iterator __mid = __x.begin() + difference_type(__len);
std::copy(__x.begin(), __mid, this->_M_start);
insert(this->_M_finish, __mid, __x.end());
}
}
return *this;
}
@ -89,17 +90,17 @@ namespace __gnu_norm
insert(iterator position, const value_type& __x)
{
if (position._M_cur == this->_M_start._M_cur)
{
push_front(__x);
return this->_M_start;
}
{
push_front(__x);
return this->_M_start;
}
else if (position._M_cur == this->_M_finish._M_cur)
{
push_back(__x);
iterator __tmp = this->_M_finish;
--__tmp;
return __tmp;
}
{
push_back(__x);
iterator __tmp = this->_M_finish;
--__tmp;
return __tmp;
}
else
return _M_insert_aux(position, __x);
}
@ -113,15 +114,15 @@ namespace __gnu_norm
++__next;
size_type __index = __position - this->_M_start;
if (__index < (size() >> 1))
{
std::copy_backward(this->_M_start, __position, __next);
pop_front();
}
{
std::copy_backward(this->_M_start, __position, __next);
pop_front();
}
else
{
std::copy(__next, this->_M_finish, __position);
pop_back();
}
{
std::copy(__next, this->_M_finish, __position);
pop_back();
}
return this->_M_start + __index;
}
@ -131,33 +132,33 @@ namespace __gnu_norm
erase(iterator __first, iterator __last)
{
if (__first == this->_M_start && __last == this->_M_finish)
{
clear();
return this->_M_finish;
}
{
clear();
return this->_M_finish;
}
else
{
difference_type __n = __last - __first;
difference_type __elems_before = __first - this->_M_start;
if (static_cast<size_type>(__elems_before) < (size() - __n) / 2)
{
std::copy_backward(this->_M_start, __first, __last);
iterator __new_start = this->_M_start + __n;
std::_Destroy(this->_M_start, __new_start);
_M_destroy_nodes(this->_M_start._M_node, __new_start._M_node);
this->_M_start = __new_start;
}
else
{
std::copy(__last, this->_M_finish, __first);
iterator __new_finish = this->_M_finish - __n;
std::_Destroy(__new_finish, this->_M_finish);
_M_destroy_nodes(__new_finish._M_node + 1,
this->_M_finish._M_node + 1);
this->_M_finish = __new_finish;
}
return this->_M_start + __elems_before;
}
{
const difference_type __n = __last - __first;
const difference_type __elems_before = __first - this->_M_start;
if (static_cast<size_type>(__elems_before) < (size() - __n) / 2)
{
std::copy_backward(this->_M_start, __first, __last);
iterator __new_start = this->_M_start + __n;
std::_Destroy(this->_M_start, __new_start);
_M_destroy_nodes(this->_M_start._M_node, __new_start._M_node);
this->_M_start = __new_start;
}
else
{
std::copy(__last, this->_M_finish, __first);
iterator __new_finish = this->_M_finish - __n;
std::_Destroy(__new_finish, this->_M_finish);
_M_destroy_nodes(__new_finish._M_node + 1,
this->_M_finish._M_node + 1);
this->_M_finish = __new_finish;
}
return this->_M_start + __elems_before;
}
}
template <typename _Tp, typename _Alloc>
@ -168,17 +169,17 @@ namespace __gnu_norm
for (_Map_pointer __node = this->_M_start._M_node + 1;
__node < this->_M_finish._M_node;
++__node)
{
std::_Destroy(*__node, *__node + _S_buffer_size());
_M_deallocate_node(*__node);
}
{
std::_Destroy(*__node, *__node + _S_buffer_size());
_M_deallocate_node(*__node);
}
if (this->_M_start._M_node != this->_M_finish._M_node)
{
std::_Destroy(this->_M_start._M_cur, this->_M_start._M_last);
std::_Destroy(this->_M_finish._M_first, this->_M_finish._M_cur);
_M_deallocate_node(this->_M_finish._M_first);
}
{
std::_Destroy(this->_M_start._M_cur, this->_M_start._M_last);
std::_Destroy(this->_M_finish._M_first, this->_M_finish._M_cur);
_M_deallocate_node(this->_M_finish._M_first);
}
else
std::_Destroy(this->_M_start._M_cur, this->_M_finish._M_cur);
@ -189,7 +190,8 @@ namespace __gnu_norm
template <typename _InputIterator>
void
deque<_Tp,_Alloc>
::_M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag)
::_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
@ -206,34 +208,34 @@ namespace __gnu_norm
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
{
if (__pos._M_cur == this->_M_start._M_cur)
{
iterator __new_start = _M_reserve_elements_at_front(__n);
try
{
std::uninitialized_fill(__new_start, this->_M_start, __x);
this->_M_start = __new_start;
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
{
iterator __new_start = _M_reserve_elements_at_front(__n);
try
{
std::uninitialized_fill(__new_start, this->_M_start, __x);
this->_M_start = __new_start;
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
else if (__pos._M_cur == this->_M_finish._M_cur)
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
try
{
std::uninitialized_fill(this->_M_finish, __new_finish, __x);
this->_M_finish = __new_finish;
}
catch(...)
{
_M_destroy_nodes(this->_M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
try
{
std::uninitialized_fill(this->_M_finish, __new_finish, __x);
this->_M_finish = __new_finish;
}
catch(...)
{
_M_destroy_nodes(this->_M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
else
_M_insert_aux(__pos, __n, __x);
}
@ -288,7 +290,7 @@ namespace __gnu_norm
_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag)
{
size_type __n = std::distance(__first, __last);
const size_type __n = std::distance(__first, __last);
this->_M_initialize_map(__n);
_Map_pointer __cur_node;
@ -389,9 +391,7 @@ namespace __gnu_norm
_M_range_insert_aux(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{
std::copy(__first, __last, std::inserter(*this, __pos));
}
{ std::copy(__first, __last, std::inserter(*this, __pos)); }
template <typename _Tp, typename _Alloc>
template <typename _ForwardIterator>
@ -403,34 +403,34 @@ namespace __gnu_norm
{
size_type __n = std::distance(__first, __last);
if (__pos._M_cur == this->_M_start._M_cur)
{
iterator __new_start = _M_reserve_elements_at_front(__n);
try
{
std::uninitialized_copy(__first, __last, __new_start);
this->_M_start = __new_start;
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
{
iterator __new_start = _M_reserve_elements_at_front(__n);
try
{
std::uninitialized_copy(__first, __last, __new_start);
this->_M_start = __new_start;
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
else if (__pos._M_cur == this->_M_finish._M_cur)
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
try
{
std::uninitialized_copy(__first, __last, this->_M_finish);
this->_M_finish = __new_finish;
}
catch(...)
{
_M_destroy_nodes(this->_M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
try
{
std::uninitialized_copy(__first, __last, this->_M_finish);
this->_M_finish = __new_finish;
}
catch(...)
{
_M_destroy_nodes(this->_M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
else
_M_insert_aux(__pos, __first, __last, __n);
}
@ -443,27 +443,27 @@ namespace __gnu_norm
difference_type __index = __pos - this->_M_start;
value_type __x_copy = __x; // XXX copy
if (static_cast<size_type>(__index) < size() / 2)
{
push_front(front());
iterator __front1 = this->_M_start;
++__front1;
iterator __front2 = __front1;
++__front2;
__pos = this->_M_start + __index;
iterator __pos1 = __pos;
++__pos1;
std::copy(__front2, __pos1, __front1);
}
{
push_front(front());
iterator __front1 = this->_M_start;
++__front1;
iterator __front2 = __front1;
++__front2;
__pos = this->_M_start + __index;
iterator __pos1 = __pos;
++__pos1;
std::copy(__front2, __pos1, __front1);
}
else
{
push_back(back());
iterator __back1 = this->_M_finish;
--__back1;
iterator __back2 = __back1;
--__back2;
__pos = this->_M_start + __index;
std::copy_backward(__pos, __back2, __back1);
}
{
push_back(back());
iterator __back1 = this->_M_finish;
--__back1;
iterator __back2 = __back1;
--__back2;
__pos = this->_M_start + __index;
std::copy_backward(__pos, __back2, __back1);
}
*__pos = __x_copy;
return __pos;
}
@ -477,67 +477,71 @@ namespace __gnu_norm
size_type __length = this->size();
value_type __x_copy = __x;
if (__elems_before < difference_type(__length / 2))
{
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = this->_M_start;
__pos = this->_M_start + __elems_before;
try
{
if (__elems_before >= difference_type(__n))
{
iterator __start_n = this->_M_start + difference_type(__n);
std::uninitialized_copy(this->_M_start, __start_n, __new_start);
this->_M_start = __new_start;
std::copy(__start_n, __pos, __old_start);
fill(__pos - difference_type(__n), __pos, __x_copy);
}
else
{
std::__uninitialized_copy_fill(this->_M_start, __pos, __new_start,
this->_M_start, __x_copy);
this->_M_start = __new_start;
std::fill(__old_start, __pos, __x_copy);
}
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
{
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = this->_M_start;
__pos = this->_M_start + __elems_before;
try
{
if (__elems_before >= difference_type(__n))
{
iterator __start_n = this->_M_start + difference_type(__n);
std::uninitialized_copy(this->_M_start, __start_n,
__new_start);
this->_M_start = __new_start;
std::copy(__start_n, __pos, __old_start);
fill(__pos - difference_type(__n), __pos, __x_copy);
}
else
{
std::__uninitialized_copy_fill(this->_M_start, __pos,
__new_start,
this->_M_start, __x_copy);
this->_M_start = __new_start;
std::fill(__old_start, __pos, __x_copy);
}
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
else
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = this->_M_finish;
const difference_type __elems_after =
difference_type(__length) - __elems_before;
__pos = this->_M_finish - __elems_after;
try
{
if (__elems_after > difference_type(__n))
{
iterator __finish_n = this->_M_finish - difference_type(__n);
std::uninitialized_copy(__finish_n, this->_M_finish, this->_M_finish);
this->_M_finish = __new_finish;
std::copy_backward(__pos, __finish_n, __old_finish);
std::fill(__pos, __pos + difference_type(__n), __x_copy);
}
else
{
std::__uninitialized_fill_copy(this->_M_finish,
__pos + difference_type(__n),
__x_copy, __pos, this->_M_finish);
this->_M_finish = __new_finish;
std::fill(__pos, __old_finish, __x_copy);
}
}
catch(...)
{
_M_destroy_nodes(this->_M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = this->_M_finish;
const difference_type __elems_after =
difference_type(__length) - __elems_before;
__pos = this->_M_finish - __elems_after;
try
{
if (__elems_after > difference_type(__n))
{
iterator __finish_n = this->_M_finish - difference_type(__n);
std::uninitialized_copy(__finish_n, this->_M_finish,
this->_M_finish);
this->_M_finish = __new_finish;
std::copy_backward(__pos, __finish_n, __old_finish);
std::fill(__pos, __pos + difference_type(__n), __x_copy);
}
else
{
std::__uninitialized_fill_copy(this->_M_finish,
__pos + difference_type(__n),
__x_copy, __pos,
this->_M_finish);
this->_M_finish = __new_finish;
std::fill(__pos, __old_finish, __x_copy);
}
}
catch(...)
{
_M_destroy_nodes(this->_M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
}
template <typename _Tp, typename _Alloc>
@ -551,36 +555,37 @@ namespace __gnu_norm
const difference_type __elemsbefore = __pos - this->_M_start;
size_type __length = size();
if (static_cast<size_type>(__elemsbefore) < __length / 2)
{
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = this->_M_start;
__pos = this->_M_start + __elemsbefore;
try
{
if (__elemsbefore >= difference_type(__n))
{
iterator __start_n = this->_M_start + difference_type(__n);
std::uninitialized_copy(this->_M_start, __start_n, __new_start);
this->_M_start = __new_start;
std::copy(__start_n, __pos, __old_start);
std::copy(__first, __last, __pos - difference_type(__n));
}
else
{
_ForwardIterator __mid = __first;
std::advance(__mid, difference_type(__n) - __elemsbefore);
std::__uninitialized_copy_copy(this->_M_start, __pos,
__first, __mid, __new_start);
this->_M_start = __new_start;
std::copy(__mid, __last, __old_start);
}
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
{
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = this->_M_start;
__pos = this->_M_start + __elemsbefore;
try
{
if (__elemsbefore >= difference_type(__n))
{
iterator __start_n = this->_M_start + difference_type(__n);
std::uninitialized_copy(this->_M_start, __start_n,
__new_start);
this->_M_start = __new_start;
std::copy(__start_n, __pos, __old_start);
std::copy(__first, __last, __pos - difference_type(__n));
}
else
{
_ForwardIterator __mid = __first;
std::advance(__mid, difference_type(__n) - __elemsbefore);
std::__uninitialized_copy_copy(this->_M_start, __pos,
__first, __mid, __new_start);
this->_M_start = __new_start;
std::copy(__mid, __last, __old_start);
}
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node);
__throw_exception_again;
}
}
else
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
@ -591,24 +596,25 @@ namespace __gnu_norm
try
{
if (__elemsafter > difference_type(__n))
{
iterator __finish_n = this->_M_finish - difference_type(__n);
std::uninitialized_copy(__finish_n,
this->_M_finish,
this->_M_finish);
this->_M_finish = __new_finish;
std::copy_backward(__pos, __finish_n, __old_finish);
std::copy(__first, __last, __pos);
}
{
iterator __finish_n = this->_M_finish - difference_type(__n);
std::uninitialized_copy(__finish_n,
this->_M_finish,
this->_M_finish);
this->_M_finish = __new_finish;
std::copy_backward(__pos, __finish_n, __old_finish);
std::copy(__first, __last, __pos);
}
else
{
_ForwardIterator __mid = __first;
std::advance(__mid, __elemsafter);
std::__uninitialized_copy_copy(__mid, __last, __pos,
this->_M_finish, this->_M_finish);
this->_M_finish = __new_finish;
std::copy(__first, __mid, __pos);
}
{
_ForwardIterator __mid = __first;
std::advance(__mid, __elemsafter);
std::__uninitialized_copy_copy(__mid, __last, __pos,
this->_M_finish,
this->_M_finish);
this->_M_finish = __new_finish;
std::copy(__first, __mid, __pos);
}
}
catch(...)
{
@ -625,7 +631,7 @@ namespace __gnu_norm
_M_new_elements_at_front(size_type __new_elems)
{
size_type __new_nodes
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
_M_reserve_map_at_front(__new_nodes);
size_type __i;
try
@ -674,35 +680,36 @@ namespace __gnu_norm
_Map_pointer __new_nstart;
if (this->_M_map_size > 2 * __new_num_nodes)
{
__new_nstart
= this->_M_map + (this->_M_map_size - __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
if (__new_nstart < this->_M_start._M_node)
std::copy(this->_M_start._M_node,
{
__new_nstart = this->_M_map + (this->_M_map_size
- __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
if (__new_nstart < this->_M_start._M_node)
std::copy(this->_M_start._M_node,
this->_M_finish._M_node + 1,
__new_nstart);
else
std::copy_backward(this->_M_start._M_node,
this->_M_finish._M_node + 1,
__new_nstart + __old_num_nodes);
}
else
std::copy_backward(this->_M_start._M_node,
this->_M_finish._M_node + 1,
__new_nstart + __old_num_nodes);
}
else
{
size_type __new_map_size =
this->_M_map_size + std::max(this->_M_map_size, __nodes_to_add) + 2;
{
size_type __new_map_size = this->_M_map_size
+ std::max(this->_M_map_size,
__nodes_to_add) + 2;
_Map_pointer __new_map = this->_M_allocate_map(__new_map_size);
__new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
std::copy(this->_M_start._M_node,
this->_M_finish._M_node + 1,
__new_nstart);
_M_deallocate_map(this->_M_map, this->_M_map_size);
_Map_pointer __new_map = this->_M_allocate_map(__new_map_size);
__new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
std::copy(this->_M_start._M_node,
this->_M_finish._M_node + 1,
__new_nstart);
_M_deallocate_map(this->_M_map, this->_M_map_size);
this->_M_map = __new_map;
this->_M_map_size = __new_map_size;
}
this->_M_map = __new_map;
this->_M_map_size = __new_map_size;
}
this->_M_start._M_set_node(__new_nstart);
this->_M_finish._M_set_node(__new_nstart + __old_num_nodes - 1);

View File

@ -1,6 +1,6 @@
// List implementation (out of line) -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -120,18 +120,18 @@ namespace __gnu_norm
operator=(const list& __x)
{
if (this != &__x)
{
iterator __first1 = begin();
iterator __last1 = end();
const_iterator __first2 = __x.begin();
const_iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
*__first1++ = *__first2++;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
{
iterator __first1 = begin();
iterator __last1 = end();
const_iterator __first2 = __x.begin();
const_iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
*__first1++ = *__first2++;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
return *this;
}
@ -191,7 +191,8 @@ namespace __gnu_norm
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
if (__first == __last)
return;
iterator __next = __first;
while (++__next != __last)
{
@ -245,19 +246,21 @@ namespace __gnu_norm
list * __counter;
do
{
__carry.splice(__carry.begin(), *this, begin());
{
__carry.splice(__carry.begin(), *this, begin());
for(__counter = &__tmp[0];
(__counter != __fill) && !__counter->empty();
++__counter)
{
__counter->merge(__carry);
__carry.swap(*__counter);
}
__carry.swap(*__counter);
if (__counter == __fill) ++__fill;
} while ( !empty() );
for(__counter = &__tmp[0];
(__counter != __fill) && !__counter->empty();
++__counter)
{
__counter->merge(__carry);
__carry.swap(*__counter);
}
__carry.swap(*__counter);
if (__counter == __fill)
++__fill;
}
while ( !empty() );
for (__counter = &__tmp[1]; __counter != __fill; ++__counter)
__counter->merge( *(__counter-1) );
@ -277,7 +280,8 @@ namespace __gnu_norm
{
iterator __next = __first;
++__next;
if (__pred(*__first)) _M_erase(__first);
if (__pred(*__first))
_M_erase(__first);
__first = __next;
}
}
@ -332,39 +336,41 @@ namespace __gnu_norm
template<typename _Tp, typename _Alloc>
template <typename _StrictWeakOrdering>
void
list<_Tp,_Alloc>::
sort(_StrictWeakOrdering __comp)
{
// Do nothing if the list has length 0 or 1.
if (this->_M_node._M_next != &this->_M_node &&
this->_M_node._M_next->_M_next != &this->_M_node)
void
list<_Tp,_Alloc>::
sort(_StrictWeakOrdering __comp)
{
list __carry;
list __tmp[64];
list * __fill = &__tmp[0];
list * __counter;
// Do nothing if the list has length 0 or 1.
if (this->_M_node._M_next != &this->_M_node
&& this->_M_node._M_next->_M_next != &this->_M_node)
{
list __carry;
list __tmp[64];
list * __fill = &__tmp[0];
list * __counter;
do
{
__carry.splice(__carry.begin(), *this, begin());
do
{
__carry.splice(__carry.begin(), *this, begin());
for(__counter = &__tmp[0];
(__counter != __fill) && !__counter->empty();
++__counter)
{
__counter->merge(__carry, __comp);
__carry.swap(*__counter);
}
__carry.swap(*__counter);
if (__counter == __fill) ++__fill;
} while ( !empty() );
for(__counter = &__tmp[0];
(__counter != __fill) && !__counter->empty();
++__counter)
{
__counter->merge(__carry, __comp);
__carry.swap(*__counter);
}
__carry.swap(*__counter);
if (__counter == __fill)
++__fill;
}
while ( !empty() );
for (__counter = &__tmp[1]; __counter != __fill; ++__counter)
__counter->merge( *(__counter-1), __comp );
swap( *(__fill-1) );
for (__counter = &__tmp[1]; __counter != __fill; ++__counter)
__counter->merge( *(__counter-1), __comp );
swap( *(__fill-1) );
}
}
}
} // namespace __gnu_norm
#endif /* _LIST_TCC */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
// Iterators -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -137,7 +137,8 @@ namespace std
* @return @c current, the %iterator used for underlying work.
*/
iterator_type
base() const { return current; }
base() const
{ return current; }
/**
* @return TODO
@ -157,7 +158,8 @@ namespace std
* @doctodo
*/
pointer
operator->() const { return &(operator*()); }
operator->() const
{ return &(operator*()); }
/**
* @return TODO
@ -256,7 +258,8 @@ namespace std
* @doctodo
*/
reference
operator[](difference_type __n) const { return *(*this + __n); }
operator[](difference_type __n) const
{ return *(*this + __n); }
};
//@{
@ -364,15 +367,18 @@ namespace std
/// Simply returns *this.
back_insert_iterator&
operator*() { return *this; }
operator*()
{ return *this; }
/// Simply returns *this. (This %iterator does not "move".)
back_insert_iterator&
operator++() { return *this; }
operator++()
{ return *this; }
/// Simply returns *this. (This %iterator does not "move".)
back_insert_iterator
operator++(int) { return *this; }
operator++(int)
{ return *this; }
};
/**
@ -435,15 +441,18 @@ namespace std
/// Simply returns *this.
front_insert_iterator&
operator*() { return *this; }
operator*()
{ return *this; }
/// Simply returns *this. (This %iterator does not "move".)
front_insert_iterator&
operator++() { return *this; }
operator++()
{ return *this; }
/// Simply returns *this. (This %iterator does not "move".)
front_insert_iterator
operator++(int) { return *this; }
operator++(int)
{ return *this; }
};
/**
@ -528,15 +537,18 @@ namespace std
/// Simply returns *this.
insert_iterator&
operator*() { return *this; }
operator*()
{ return *this; }
/// Simply returns *this. (This %iterator does not "move".)
insert_iterator&
operator++() { return *this; }
operator++()
{ return *this; }
/// Simply returns *this. (This %iterator does not "move".)
insert_iterator&
operator++(int) { return *this; }
operator++(int)
{ return *this; }
};
/**
@ -578,12 +590,12 @@ namespace __gnu_cxx
public:
typedef typename iterator_traits<_Iterator>::iterator_category
iterator_category;
iterator_category;
typedef typename iterator_traits<_Iterator>::value_type value_type;
typedef typename iterator_traits<_Iterator>::difference_type
difference_type;
typedef typename iterator_traits<_Iterator>::reference reference;
typedef typename iterator_traits<_Iterator>::pointer pointer;
difference_type;
typedef typename iterator_traits<_Iterator>::reference reference;
typedef typename iterator_traits<_Iterator>::pointer pointer;
__normal_iterator() : _M_current(_Iterator()) { }
@ -592,28 +604,41 @@ namespace __gnu_cxx
// Allow iterator to const_iterator conversion
template<typename _Iter>
inline __normal_iterator(const __normal_iterator<_Iter, _Container>& __i)
inline __normal_iterator(const __normal_iterator<_Iter,
_Container>& __i)
: _M_current(__i.base()) { }
// Forward iterator requirements
reference
operator*() const { return *_M_current; }
operator*() const
{ return *_M_current; }
pointer
operator->() const { return _M_current; }
operator->() const
{ return _M_current; }
__normal_iterator&
operator++() { ++_M_current; return *this; }
operator++()
{
++_M_current;
return *this;
}
__normal_iterator
operator++(int) { return __normal_iterator(_M_current++); }
operator++(int)
{ return __normal_iterator(_M_current++); }
// Bidirectional iterator requirements
__normal_iterator&
operator--() { --_M_current; return *this; }
operator--()
{
--_M_current;
return *this;
}
__normal_iterator
operator--(int) { return __normal_iterator(_M_current--); }
operator--(int)
{ return __normal_iterator(_M_current--); }
// Random access iterator requirements
reference
@ -637,7 +662,8 @@ namespace __gnu_cxx
{ return __normal_iterator(_M_current - __n); }
const _Iterator&
base() const { return _M_current; }
base() const
{ return _M_current; }
};
// Note: In what follows, the left- and right-hand-side iterators are
@ -650,93 +676,93 @@ namespace __gnu_cxx
// Forward iterator requirements
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() == __rhs.base(); }
inline bool
operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() == __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() == __rhs.base(); }
inline bool
operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() == __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() != __rhs.base(); }
inline bool
operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() != __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() != __rhs.base(); }
inline bool
operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() != __rhs.base(); }
// Random access iterator requirements
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() < __rhs.base(); }
inline bool
operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() < __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() < __rhs.base(); }
inline bool
operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() < __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() > __rhs.base(); }
inline bool
operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() > __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() > __rhs.base(); }
inline bool
operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() > __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() <= __rhs.base(); }
inline bool
operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() <= __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() <= __rhs.base(); }
inline bool
operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() <= __rhs.base(); }
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline bool
operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() >= __rhs.base(); }
inline bool
operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() >= __rhs.base(); }
template<typename _Iterator, typename _Container>
inline bool
operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() >= __rhs.base(); }
inline bool
operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
const __normal_iterator<_Iterator, _Container>& __rhs)
{ return __lhs.base() >= __rhs.base(); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// According to the resolution of DR179 not only the various comparison
// operators but also operator- must accept mixed iterator/const_iterator
// parameters.
template<typename _IteratorL, typename _IteratorR, typename _Container>
inline typename __normal_iterator<_IteratorL, _Container>::difference_type
operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() - __rhs.base(); }
inline typename __normal_iterator<_IteratorL, _Container>::difference_type
operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
const __normal_iterator<_IteratorR, _Container>& __rhs)
{ return __lhs.base() - __rhs.base(); }
template<typename _Iterator, typename _Container>
inline __normal_iterator<_Iterator, _Container>
operator+(typename __normal_iterator<_Iterator, _Container>::difference_type __n,
const __normal_iterator<_Iterator, _Container>& __i)
{ return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
inline __normal_iterator<_Iterator, _Container>
operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
__n, const __normal_iterator<_Iterator, _Container>& __i)
{ return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
} // namespace __gnu_cxx
#endif

View File

@ -1,6 +1,6 @@
// Functions used by iterators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -78,9 +78,11 @@ namespace std
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
typename iterator_traits<_InputIterator>::difference_type __n = 0;
while (__first != __last) {
++__first; ++__n;
}
while (__first != __last)
{
++__first;
++__n;
}
return __n;
}
@ -90,7 +92,8 @@ namespace std
random_access_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_RandomAccessIteratorConcept<
_RandomAccessIterator>)
return __last - __first;
}
@ -111,7 +114,8 @@ namespace std
distance(_InputIterator __first, _InputIterator __last)
{
// concept requirements -- taken care of in __distance
return std::__distance(__first, __last, std::__iterator_category(__first));
return std::__distance(__first, __last,
std::__iterator_category(__first));
}
template<typename _InputIterator, typename _Distance>
@ -120,7 +124,8 @@ namespace std
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
while (__n--) ++__i;
while (__n--)
++__i;
}
template<typename _BidirectionalIterator, typename _Distance>
@ -129,8 +134,8 @@ namespace std
bidirectional_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator>)
__glibcxx_function_requires(_BidirectionalIteratorConcept<
_BidirectionalIterator>)
if (__n > 0)
while (__n--) ++__i;
else
@ -143,7 +148,8 @@ namespace std
random_access_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__i += __n;
}

View File

@ -1,6 +1,6 @@
// Types used in iterator implementation -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -82,9 +82,11 @@ namespace std
struct output_iterator_tag {};
/// Forward iterators support a superset of input iterator operations.
struct forward_iterator_tag : public input_iterator_tag {};
/// Bidirectional iterators support a superset of forward iterator operations.
/// Bidirectional iterators support a superset of forward iterator
/// operations.
struct bidirectional_iterator_tag : public forward_iterator_tag {};
/// Random-access iterators support a superset of bidirectional iterator operations.
/// Random-access iterators support a superset of bidirectional iterator
/// operations.
struct random_access_iterator_tag : public bidirectional_iterator_tag {};
//@}

View File

@ -94,7 +94,6 @@ namespace __gnu_norm
_Tp _M_data; ///< User's data.
};
/**
* @brief A list::iterator.
*
@ -325,7 +324,6 @@ namespace __gnu_norm
}
};
/**
* @brief A standard container with linear time access to elements,
* and fixed time insertion/deletion at any point in the sequence.
@ -573,7 +571,8 @@ namespace __gnu_norm
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const { return _Base::get_allocator(); }
get_allocator() const
{ return _Base::get_allocator(); }
// iterators
/**
@ -581,7 +580,8 @@ namespace __gnu_norm
* %list. Iteration is done in ordinary element order.
*/
iterator
begin() { return this->_M_node._M_next; }
begin()
{ return this->_M_node._M_next; }
/**
* Returns a read-only (constant) iterator that points to the
@ -589,7 +589,8 @@ namespace __gnu_norm
* element order.
*/
const_iterator
begin() const { return this->_M_node._M_next; }
begin() const
{ return this->_M_node._M_next; }
/**
* Returns a read/write iterator that points one past the last
@ -605,7 +606,8 @@ namespace __gnu_norm
* element order.
*/
const_iterator
end() const { return &this->_M_node; }
end() const
{ return &this->_M_node; }
/**
* Returns a read/write reverse iterator that points to the last
@ -613,7 +615,8 @@ namespace __gnu_norm
* order.
*/
reverse_iterator
rbegin() { return reverse_iterator(end()); }
rbegin()
{ return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to
@ -621,7 +624,8 @@ namespace __gnu_norm
* element order.
*/
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
rbegin() const
{ return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one
@ -629,7 +633,8 @@ namespace __gnu_norm
* reverse element order.
*/
reverse_iterator
rend() { return reverse_iterator(begin()); }
rend()
{ return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
@ -646,15 +651,18 @@ namespace __gnu_norm
* end().)
*/
bool
empty() const { return this->_M_node._M_next == &this->_M_node; }
empty() const
{ return this->_M_node._M_next == &this->_M_node; }
/** Returns the number of elements in the %list. */
size_type
size() const { return std::distance(begin(), end()); }
size() const
{ return std::distance(begin(), end()); }
/** Returns the size() of the largest possible %list. */
size_type
max_size() const { return size_type(-1); }
max_size() const
{ return size_type(-1); }
/**
* @brief Resizes the %list to the specified number of elements.
@ -679,7 +687,8 @@ namespace __gnu_norm
* and new elements are default-constructed.
*/
void
resize(size_type __new_size) { this->resize(__new_size, value_type()); }
resize(size_type __new_size)
{ this->resize(__new_size, value_type()); }
// element access
/**
@ -687,28 +696,32 @@ namespace __gnu_norm
* element of the %list.
*/
reference
front() { return *begin(); }
front()
{ return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %list.
*/
const_reference
front() const { return *begin(); }
front() const
{ return *begin(); }
/**
* Returns a read/write reference to the data at the last element
* of the %list.
*/
reference
back() { return *(--end()); }
back()
{ return *(--end()); }
/**
* Returns a read-only (constant) reference to the data at the last
* element of the %list.
*/
const_reference
back() const { return *(--end()); }
back() const
{ return *(--end()); }
// [23.2.2.3] modifiers
/**
@ -722,7 +735,8 @@ namespace __gnu_norm
* references.
*/
void
push_front(const value_type& __x) { this->_M_insert(begin(), __x); }
push_front(const value_type& __x)
{ this->_M_insert(begin(), __x); }
/**
* @brief Removes first element.
@ -737,7 +751,8 @@ namespace __gnu_norm
* called.
*/
void
pop_front() { this->_M_erase(begin()); }
pop_front()
{ this->_M_erase(begin()); }
/**
* @brief Add data to the end of the %list.
@ -750,7 +765,8 @@ namespace __gnu_norm
* references.
*/
void
push_back(const value_type& __x) { this->_M_insert(end(), __x); }
push_back(const value_type& __x)
{ this->_M_insert(end(), __x); }
/**
* @brief Removes last element.
@ -764,7 +780,8 @@ namespace __gnu_norm
* is needed, it should be retrieved before pop_back() is called.
*/
void
pop_back() { this->_M_erase(this->_M_node._M_prev); }
pop_back()
{ this->_M_erase(this->_M_node._M_prev); }
/**
* @brief Inserts given value into %list before specified iterator.
@ -876,7 +893,8 @@ namespace __gnu_norm
* function.
*/
void
swap(list& __x) { _List_node_base::swap(this->_M_node,__x._M_node); }
swap(list& __x)
{ _List_node_base::swap(this->_M_node,__x._M_node); }
/**
* Erases all the elements. Note that this function only erases
@ -922,7 +940,8 @@ namespace __gnu_norm
{
iterator __j = __i;
++__j;
if (__position == __i || __position == __j) return;
if (__position == __i || __position == __j)
return;
this->_M_transfer(__position, __i, __j);
}
@ -1037,7 +1056,8 @@ namespace __gnu_norm
* Reverse the order of elements in the list in linear time.
*/
void
reverse() { this->_M_node.reverse(); }
reverse()
{ this->_M_node.reverse(); }
/**
* @brief Sort the elements.
@ -1118,16 +1138,13 @@ namespace __gnu_norm
// Moves the elements from [first,last) before position.
void
_M_transfer(iterator __position, iterator __first, iterator __last)
{
__position._M_node->transfer(__first._M_node,__last._M_node);
}
{ __position._M_node->transfer(__first._M_node,__last._M_node); }
// Inserts new element at position given and with value given.
void
_M_insert(iterator __position, const value_type& __x)
{
_Node* __tmp = _M_create_node(__x);
__tmp->hook(__position._M_node);
}
@ -1142,7 +1159,6 @@ namespace __gnu_norm
}
};
/**
* @brief List equality comparison.
* @param x A %list.
@ -1167,7 +1183,7 @@ namespace __gnu_norm
{
++__i1;
++__i2;
}
}
return __i1 == __end1 && __i2 == __end2;
}
@ -1185,10 +1201,8 @@ namespace __gnu_norm
template<typename _Tp, typename _Alloc>
inline bool
operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{
return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
{ return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end()); }
/// Based on operator==
template<typename _Tp, typename _Alloc>

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
// Multimap implementation -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -103,466 +103,507 @@ namespace __gnu_norm
*/
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
class multimap
{
// concept requirements
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
{
// concept requirements
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key,
_BinaryFunctionConcept)
public:
typedef _Key key_type;
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
public:
typedef _Key key_type;
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
class value_compare
class value_compare
: public binary_function<value_type, value_type, bool>
{
friend class multimap<_Key,_Tp,_Compare,_Alloc>;
friend class multimap<_Key,_Tp,_Compare,_Alloc>;
protected:
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
_Compare comp;
value_compare(_Compare __c)
: comp(__c) { }
public:
bool operator()(const value_type& __x, const value_type& __y) const
{ return comp(__x.first, __y.first); }
};
bool operator()(const value_type& __x, const value_type& __y) const
{ return comp(__x.first, __y.first); }
};
private:
/// @if maint This turns a red-black tree into a [multi]map. @endif
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
/// @if maint The actual tree structure. @endif
_Rep_type _M_t;
private:
/// @if maint This turns a red-black tree into a [multi]map. @endif
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
/// @if maint The actual tree structure. @endif
_Rep_type _M_t;
public:
// many of these are specified differently in ISO, but the following are
// "functionally equivalent"
typedef typename _Rep_type::allocator_type allocator_type;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
public:
// many of these are specified differently in ISO, but the following are
// "functionally equivalent"
typedef typename _Rep_type::allocator_type allocator_type;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
// [23.3.2] construct/copy/destroy
// (get_allocator() is also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
multimap() : _M_t(_Compare(), allocator_type()) { }
// [23.3.2] construct/copy/destroy
// (get_allocator() is also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
multimap()
: _M_t(_Compare(), allocator_type()) { }
// for some reason this was made a separate function
/**
* @brief Default constructor creates no elements.
*/
explicit
multimap(const _Compare& __comp, const allocator_type& __a = allocator_type())
// for some reason this was made a separate function
/**
* @brief Default constructor creates no elements.
*/
explicit
multimap(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { }
/**
* @brief %Multimap copy constructor.
* @param x A %multimap of identical element and allocator types.
*
* The newly-created %multimap uses a copy of the allocation object used
* by @a x.
*/
multimap(const multimap& __x)
/**
* @brief %Multimap copy constructor.
* @param x A %multimap of identical element and allocator types.
*
* The newly-created %multimap uses a copy of the allocation object used
* by @a x.
*/
multimap(const multimap& __x)
: _M_t(__x._M_t) { }
/**
* @brief Builds a %multimap from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Create a %multimap consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <typename _InputIterator>
multimap(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
/**
* @brief Builds a %multimap from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Create a %multimap consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <typename _InputIterator>
multimap(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
/**
* @brief Builds a %multimap from a range.
* @param first An input iterator.
* @param last An input iterator.
* @param comp A comparison functor.
* @param a An allocator object.
*
* Create a %multimap consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <typename _InputIterator>
multimap(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
/**
* @brief Builds a %multimap from a range.
* @param first An input iterator.
* @param last An input iterator.
* @param comp A comparison functor.
* @param a An allocator object.
*
* Create a %multimap consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <typename _InputIterator>
multimap(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a)
{ _M_t.insert_equal(__first, __last); }
// FIXME There is no dtor declared, but we should have something generated
// by Doxygen. I don't know what tags to add to this paragraph to make
// that happen:
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
// FIXME There is no dtor declared, but we should have something generated
// by Doxygen. I don't know what tags to add to this paragraph to make
// that happen:
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
/**
* @brief %Multimap assignment operator.
* @param x A %multimap of identical element and allocator types.
*
* All the elements of @a x are copied, but unlike the copy constructor,
* the allocator object is not copied.
*/
multimap&
operator=(const multimap& __x)
{
_M_t = __x._M_t;
return *this;
}
/**
* @brief %Multimap assignment operator.
* @param x A %multimap of identical element and allocator types.
*
* All the elements of @a x are copied, but unlike the copy constructor,
* the allocator object is not copied.
*/
multimap&
operator=(const multimap& __x)
{
_M_t = __x._M_t;
return *this;
}
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const { return _M_t.get_allocator(); }
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const
{ return _M_t.get_allocator(); }
// iterators
/**
* Returns a read/write iterator that points to the first pair in the
* %multimap. Iteration is done in ascending order according to the keys.
*/
iterator
begin() { return _M_t.begin(); }
// iterators
/**
* Returns a read/write iterator that points to the first pair in the
* %multimap. Iteration is done in ascending order according to the
* keys.
*/
iterator
begin()
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points to the first pair
* in the %multimap. Iteration is done in ascending order according to the
* keys.
*/
const_iterator
begin() const { return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points to the first pair
* in the %multimap. Iteration is done in ascending order according to
* the keys.
*/
const_iterator
begin() const
{ return _M_t.begin(); }
/**
* Returns a read/write iterator that points one past the last pair in the
* %multimap. Iteration is done in ascending order according to the keys.
*/
iterator
end() { return _M_t.end(); }
/**
* Returns a read/write iterator that points one past the last pair in
* the %multimap. Iteration is done in ascending order according to the
* keys.
*/
iterator
end()
{ return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* pair in the %multimap. Iteration is done in ascending order according
* to the keys.
*/
const_iterator
end() const { return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* pair in the %multimap. Iteration is done in ascending order according
* to the keys.
*/
const_iterator
end() const
{ return _M_t.end(); }
/**
* Returns a read/write reverse iterator that points to the last pair in
* the %multimap. Iteration is done in descending order according to the
* keys.
*/
reverse_iterator
rbegin() { return _M_t.rbegin(); }
/**
* Returns a read/write reverse iterator that points to the last pair in
* the %multimap. Iteration is done in descending order according to the
* keys.
*/
reverse_iterator
rbegin()
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
* pair in the %multimap. Iteration is done in descending order according
* to the keys.
*/
const_reverse_iterator
rbegin() const { return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %multimap. Iteration is done in descending order
* according to the keys.
*/
const_reverse_iterator
rbegin() const
{ return _M_t.rbegin(); }
/**
* Returns a read/write reverse iterator that points to one before the
* first pair in the %multimap. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator
rend() { return _M_t.rend(); }
/**
* Returns a read/write reverse iterator that points to one before the
* first pair in the %multimap. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator
rend()
{ return _M_t.rend(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first pair in the %multimap. Iteration is done in descending
* order according to the keys.
*/
const_reverse_iterator
rend() const { return _M_t.rend(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first pair in the %multimap. Iteration is done in
* descending order according to the keys.
*/
const_reverse_iterator
rend() const
{ return _M_t.rend(); }
// capacity
/** Returns true if the %multimap is empty. */
bool
empty() const { return _M_t.empty(); }
// capacity
/** Returns true if the %multimap is empty. */
bool
empty() const
{ return _M_t.empty(); }
/** Returns the size of the %multimap. */
size_type
size() const { return _M_t.size(); }
/** Returns the size of the %multimap. */
size_type
size() const
{ return _M_t.size(); }
/** Returns the maximum size of the %multimap. */
size_type
max_size() const { return _M_t.max_size(); }
/** Returns the maximum size of the %multimap. */
size_type
max_size() const
{ return _M_t.max_size(); }
// modifiers
/**
* @brief Inserts a std::pair into the %multimap.
* @param x Pair to be inserted (see std::make_pair for easy creation of
* pairs).
* @return An iterator that points to the inserted (key,value) pair.
*
* This function inserts a (key, value) pair into the %multimap. Contrary
* to a std::map the %multimap does not rely on unique keys and thus
* multiple pairs with the same key can be inserted.
*
* Insertion requires logarithmic time.
*/
iterator
insert(const value_type& __x) { return _M_t.insert_equal(__x); }
// modifiers
/**
* @brief Inserts a std::pair into the %multimap.
* @param x Pair to be inserted (see std::make_pair for easy creation
* of pairs).
* @return An iterator that points to the inserted (key,value) pair.
*
* This function inserts a (key, value) pair into the %multimap.
* Contrary to a std::map the %multimap does not rely on unique keys and
* thus multiple pairs with the same key can be inserted.
*
* Insertion requires logarithmic time.
*/
iterator
insert(const value_type& __x)
{ return _M_t.insert_equal(__x); }
/**
* @brief Inserts a std::pair into the %multimap.
* @param position An iterator that serves as a hint as to where the
* pair should be inserted.
* @param x Pair to be inserted (see std::make_pair for easy creation of
* pairs).
* @return An iterator that points to the inserted (key,value) pair.
*
* This function inserts a (key, value) pair into the %multimap. Contrary
* to a std::map the %multimap does not rely on unique keys and thus
* multiple pairs with the same key can be inserted.
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
* for more on "hinting".
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator
insert(iterator __position, const value_type& __x)
{ return _M_t.insert_equal(__position, __x); }
/**
* @brief Inserts a std::pair into the %multimap.
* @param position An iterator that serves as a hint as to where the
* pair should be inserted.
* @param x Pair to be inserted (see std::make_pair for easy creation
* of pairs).
* @return An iterator that points to the inserted (key,value) pair.
*
* This function inserts a (key, value) pair into the %multimap.
* Contrary to a std::map the %multimap does not rely on unique keys and
* thus multiple pairs with the same key can be inserted.
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
* for more on "hinting".
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator
insert(iterator __position, const value_type& __x)
{ return _M_t.insert_equal(__position, __x); }
/**
* @brief A template function that attemps to insert a range of elements.
* @param first Iterator pointing to the start of the range to be
* inserted.
* @param last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template <typename _InputIterator>
/**
* @brief A template function that attemps to insert a range of elements.
* @param first Iterator pointing to the start of the range to be
* inserted.
* @param last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template <typename _InputIterator>
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_t.insert_equal(__first, __last); }
/**
* @brief Erases an element from a %multimap.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator,
* from a %multimap. Note that this function only erases the element,
* and that if the element is itself a pointer, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibilty.
*/
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_t.insert_equal(__first, __last); }
erase(iterator __position)
{ _M_t.erase(__position); }
/**
* @brief Erases an element from a %multimap.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator, from
* a %multimap. Note that this function only erases the element, and that
* if the element is itself a pointer, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
void
erase(iterator __position) { _M_t.erase(__position); }
/**
* @brief Erases elements according to the provided key.
* @param x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all elements located by the given key from a
* %multimap.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
size_type
erase(const key_type& __x)
{ return _M_t.erase(__x); }
/**
* @brief Erases elements according to the provided key.
* @param x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all elements located by the given key from a
* %multimap.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
size_type
erase(const key_type& __x) { return _M_t.erase(__x); }
/**
* @brief Erases a [first,last) range of elements from a %multimap.
* @param first Iterator pointing to the start of the range to be
* erased.
* @param last Iterator pointing to the end of the range to be erased.
*
* This function erases a sequence of elements from a %multimap.
* Note that this function only erases the elements, and that if
* the elements themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
void
erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
/**
* @brief Erases a [first,last) range of elements from a %multimap.
* @param first Iterator pointing to the start of the range to be erased.
* @param last Iterator pointing to the end of the range to be erased.
*
* This function erases a sequence of elements from a %multimap.
* Note that this function only erases the elements, and that if
* the elements themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
void
erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
/**
* @brief Swaps data with another %multimap.
* @param x A %multimap of the same element and allocator types.
*
* This exchanges the elements between two multimaps in constant time.
* (It is only swapping a pointer, an integer, and an instance of
* the @c Compare type (which itself is often stateless and empty), so it
* should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(m1,m2) will feed to this function.
*/
void
swap(multimap& __x)
{ _M_t.swap(__x._M_t); }
/**
* @brief Swaps data with another %multimap.
* @param x A %multimap of the same element and allocator types.
*
* This exchanges the elements between two multimaps in constant time.
* (It is only swapping a pointer, an integer, and an instance of
* the @c Compare type (which itself is often stateless and empty), so it
* should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(m1,m2) will feed to this function.
*/
void
swap(multimap& __x) { _M_t.swap(__x._M_t); }
/**
* Erases all elements in a %multimap. Note that this function only
* erases the elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibilty.
*/
void
clear()
{ _M_t.clear(); }
/**
* Erases all elements in a %multimap. Note that this function only erases
* the elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void
clear() { _M_t.clear(); }
// observers
/**
* Returns the key comparison object out of which the %multimap
* was constructed.
*/
key_compare
key_comp() const
{ return _M_t.key_comp(); }
// observers
/**
* Returns the key comparison object out of which the %multimap
* was constructed.
*/
key_compare
key_comp() const { return _M_t.key_comp(); }
/**
* Returns a value comparison object, built from the key comparison
* object out of which the %multimap was constructed.
*/
value_compare
value_comp() const
{ return value_compare(_M_t.key_comp()); }
/**
* Returns a value comparison object, built from the key comparison
* object out of which the %multimap was constructed.
*/
value_compare
value_comp() const { return value_compare(_M_t.key_comp()); }
// multimap operations
/**
* @brief Tries to locate an element in a %multimap.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to sought-after element,
* or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after %pair. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x)
{ return _M_t.find(__x); }
// multimap operations
/**
* @brief Tries to locate an element in a %multimap.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to sought-after element,
* or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after %pair. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x) { return _M_t.find(__x); }
/**
* @brief Tries to locate an element in a %multimap.
* @param x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to sought-after
* element, or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns a constant
* iterator pointing to the sought after %pair. If unsuccessful it
* returns the past-the-end ( @c end() ) iterator.
*/
const_iterator
find(const key_type& __x) const
{ return _M_t.find(__x); }
/**
* @brief Tries to locate an element in a %multimap.
* @param x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to sought-after
* element, or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns a constant iterator
* pointing to the sought after %pair. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
const_iterator
find(const key_type& __x) const { return _M_t.find(__x); }
/**
* @brief Finds the number of elements with given key.
* @param x Key of (key, value) pairs to be located.
* @return Number of elements with specified key.
*/
size_type
count(const key_type& __x) const
{ return _M_t.count(__x); }
/**
* @brief Finds the number of elements with given key.
* @param x Key of (key, value) pairs to be located.
* @return Number of elements with specified key.
*/
size_type
count(const key_type& __x) const { return _M_t.count(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to first element equal to or greater
* than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator
lower_bound(const key_type& __x)
{ return _M_t.lower_bound(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to first element equal to or greater
* than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator
lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to first element
* equal to or greater than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful the iterator will point
* to the next greatest element or, if no such greater element exists, to
* end().
*/
const_iterator
lower_bound(const key_type& __x) const
{ return _M_t.lower_bound(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to first element
* equal to or greater than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful the iterator will point
* to the next greatest element or, if no such greater element exists, to
* end().
*/
const_iterator
lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator
upper_bound(const key_type& __x)
{ return _M_t.upper_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator
upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to first iterator
* greater than key, or end().
*/
const_iterator
upper_bound(const key_type& __x) const
{ return _M_t.upper_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Read-only (constant) iterator pointing to first iterator
* greater than key, or end().
*/
const_iterator
upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); }
/**
* @brief Finds a subsequence matching given key.
* @param x Key of (key, value) pairs to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*/
pair<iterator,iterator>
equal_range(const key_type& __x)
{ return _M_t.equal_range(__x); }
/**
* @brief Finds a subsequence matching given key.
* @param x Key of (key, value) pairs to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*/
pair<iterator,iterator>
equal_range(const key_type& __x) { return _M_t.equal_range(__x); }
/**
* @brief Finds a subsequence matching given key.
* @param x Key of (key, value) pairs to be located.
* @return Pair of read-only (constant) iterators that possibly points
* to the subsequence matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*/
pair<const_iterator,const_iterator>
equal_range(const key_type& __x) const
{ return _M_t.equal_range(__x); }
/**
* @brief Finds a subsequence matching given key.
* @param x Key of (key, value) pairs to be located.
* @return Pair of read-only (constant) iterators that possibly points to
* the subsequence matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*/
pair<const_iterator,const_iterator>
equal_range(const key_type& __x) const { return _M_t.equal_range(__x); }
template <typename _K1, typename _T1, typename _C1, typename _A1>
friend bool
operator== (const multimap<_K1,_T1,_C1,_A1>&,
const multimap<_K1,_T1,_C1,_A1>&);
template <typename _K1, typename _T1, typename _C1, typename _A1>
friend bool operator== (const multimap<_K1,_T1,_C1,_A1>&,
const multimap<_K1,_T1,_C1,_A1>&);
template <typename _K1, typename _T1, typename _C1, typename _A1>
friend bool operator< (const multimap<_K1,_T1,_C1,_A1>&,
const multimap<_K1,_T1,_C1,_A1>&);
template <typename _K1, typename _T1, typename _C1, typename _A1>
friend bool
operator< (const multimap<_K1,_T1,_C1,_A1>&,
const multimap<_K1,_T1,_C1,_A1>&);
};
/**
* @brief Multimap equality comparison.
* @param x A %multimap.
@ -577,9 +618,7 @@ namespace __gnu_norm
inline bool
operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
{
return __x._M_t == __y._M_t;
}
{ return __x._M_t == __y._M_t; }
/**
* @brief Multimap ordering relation.

View File

@ -66,19 +66,18 @@
namespace __gnu_norm
{
// Forward declaration of operators < and ==, needed for friend declaration.
// Forward declaration of operators < and ==, needed for friend declaration.
template <class _Key, class _Compare = less<_Key>,
class _Alloc = allocator<_Key> >
class multiset;
template <class _Key, class _Compare = less<_Key>,
class _Alloc = allocator<_Key> >
class multiset;
template <class _Key, class _Compare, class _Alloc>
inline bool operator==(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y);
template <class _Key, class _Compare, class _Alloc>
inline bool operator==(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y);
template <class _Key, class _Compare, class _Alloc>
inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y);
template <class _Key, class _Compare, class _Alloc>
inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y);
/**
* @brief A standard container made up of elements, which can be retrieved
@ -101,362 +100,410 @@ inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
* @endif
*/
template <class _Key, class _Compare, class _Alloc>
class multiset
{
// concept requirements
__glibcxx_class_requires(_Key, _SGIAssignableConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
class multiset
{
// concept requirements
__glibcxx_class_requires(_Key, _SGIAssignableConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key,
_BinaryFunctionConcept)
public:
public:
// typedefs:
typedef _Key key_type;
typedef _Key value_type;
typedef _Compare key_compare;
typedef _Compare value_compare;
// typedefs:
private:
/// @if maint This turns a red-black tree into a [multi]set. @endif
typedef _Rb_tree<key_type, value_type,
_Identity<value_type>, key_compare, _Alloc> _Rep_type;
/// @if maint The actual tree structure. @endif
_Rep_type _M_t;
typedef _Key key_type;
typedef _Key value_type;
typedef _Compare key_compare;
typedef _Compare value_compare;
private:
/// @if maint This turns a red-black tree into a [multi]set. @endif
typedef _Rb_tree<key_type, value_type,
_Identity<value_type>, key_compare, _Alloc> _Rep_type;
/// @if maint The actual tree structure. @endif
_Rep_type _M_t;
public:
typedef typename _Alloc::pointer pointer;
typedef typename _Alloc::const_pointer const_pointer;
typedef typename _Alloc::reference reference;
typedef typename _Alloc::const_reference const_reference;
typedef typename _Rep_type::const_iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
public:
typedef typename _Alloc::pointer pointer;
typedef typename _Alloc::const_pointer const_pointer;
typedef typename _Alloc::reference reference;
typedef typename _Alloc::const_reference const_reference;
typedef typename _Rep_type::const_iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
/**
* @brief Default constructor creates no elements.
*/
multiset() : _M_t(_Compare(), allocator_type()) {}
explicit multiset(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) {}
/**
* @brief Builds a %multiset from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Create a %multiset consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <class _InputIterator>
multiset(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
/**
* @brief Builds a %multiset from a range.
* @param first An input iterator.
* @param last An input iterator.
* @param comp A comparison functor.
* @param a An allocator object.
*
* Create a %multiset consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <class _InputIterator>
multiset(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
/**
* @brief %Multiset copy constructor.
* @param x A %multiset of identical element and allocator types.
*
* The newly-created %multiset uses a copy of the allocation object used
* by @a x.
*/
multiset(const multiset<_Key,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
/**
* @brief %Multiset assignment operator.
* @param x A %multiset of identical element and allocator types.
*
* All the elements of @a x are copied, but unlike the copy constructor,
* the allocator object is not copied.
*/
multiset<_Key,_Compare,_Alloc>&
operator=(const multiset<_Key,_Compare,_Alloc>& __x) {
_M_t = __x._M_t;
return *this;
}
// accessors:
/// Returns the comparison object.
key_compare key_comp() const { return _M_t.key_comp(); }
/// Returns the comparison object.
value_compare value_comp() const { return _M_t.key_comp(); }
/// Returns the memory allocation object.
allocator_type get_allocator() const { return _M_t.get_allocator(); }
/**
* Returns a read/write iterator that points to the first element in the
* %multiset. Iteration is done in ascending order according to the
* keys.
*/
iterator begin() const { return _M_t.begin(); }
multiset()
: _M_t(_Compare(), allocator_type()) { }
/**
* Returns a read/write iterator that points one past the last element in
* the %multiset. Iteration is done in ascending order according to the
* keys.
*/
iterator end() const { return _M_t.end(); }
explicit multiset(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { }
/**
* Returns a read/write reverse iterator that points to the last element
* in the %multiset. Iteration is done in descending order according to
* the keys.
*/
reverse_iterator rbegin() const { return _M_t.rbegin(); }
/**
* @brief Builds a %multiset from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Create a %multiset consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <class _InputIterator>
multiset(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
/**
* Returns a read/write reverse iterator that points to the last element
* in the %multiset. Iteration is done in descending order according to
* the keys.
*/
reverse_iterator rend() const { return _M_t.rend(); }
/**
* @brief Builds a %multiset from a range.
* @param first An input iterator.
* @param last An input iterator.
* @param comp A comparison functor.
* @param a An allocator object.
*
* Create a %multiset consisting of copies of the elements from
* [first,last). This is linear in N if the range is already sorted,
* and NlogN otherwise (where N is distance(first,last)).
*/
template <class _InputIterator>
multiset(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a)
{ _M_t.insert_equal(__first, __last); }
/// Returns true if the %set is empty.
bool empty() const { return _M_t.empty(); }
/**
* @brief %Multiset copy constructor.
* @param x A %multiset of identical element and allocator types.
*
* The newly-created %multiset uses a copy of the allocation object used
* by @a x.
*/
multiset(const multiset<_Key,_Compare,_Alloc>& __x)
: _M_t(__x._M_t) { }
/// Returns the size of the %set.
size_type size() const { return _M_t.size(); }
/**
* @brief %Multiset assignment operator.
* @param x A %multiset of identical element and allocator types.
*
* All the elements of @a x are copied, but unlike the copy constructor,
* the allocator object is not copied.
*/
multiset<_Key,_Compare,_Alloc>&
operator=(const multiset<_Key,_Compare,_Alloc>& __x)
{
_M_t = __x._M_t;
return *this;
}
/// Returns the maximum size of the %set.
size_type max_size() const { return _M_t.max_size(); }
// accessors:
/**
* @brief Swaps data with another %multiset.
* @param x A %multiset of the same element and allocator types.
*
* This exchanges the elements between two multisets in constant time.
* (It is only swapping a pointer, an integer, and an instance of the @c
* Compare type (which itself is often stateless and empty), so it should
* be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(s1,s2) will feed to this function.
*/
void swap(multiset<_Key,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
/// Returns the comparison object.
key_compare
key_comp() const
{ return _M_t.key_comp(); }
/// Returns the comparison object.
value_compare
value_comp() const
{ return _M_t.key_comp(); }
/// Returns the memory allocation object.
allocator_type
get_allocator() const
{ return _M_t.get_allocator(); }
// insert/erase
/**
* @brief Inserts an element into the %multiset.
* @param x Element to be inserted.
* @return An iterator that points to the inserted element.
*
* This function inserts an element into the %multiset. Contrary
* to a std::set the %multiset does not rely on unique keys and thus
* multiple copies of the same element can be inserted.
*
* Insertion requires logarithmic time.
*/
iterator insert(const value_type& __x) {
return _M_t.insert_equal(__x);
}
/**
* Returns a read/write iterator that points to the first element in the
* %multiset. Iteration is done in ascending order according to the
* keys.
*/
iterator
begin() const
{ return _M_t.begin(); }
/**
* @brief Inserts an element into the %multiset.
* @param position An iterator that serves as a hint as to where the
* element should be inserted.
* @param x Element to be inserted.
* @return An iterator that points to the inserted element.
*
* This function inserts an element into the %multiset. Contrary
* to a std::set the %multiset does not rely on unique keys and thus
* multiple copies of the same element can be inserted.
*
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
* for more on "hinting".
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator insert(iterator __position, const value_type& __x) {
typedef typename _Rep_type::iterator _Rep_iterator;
return _M_t.insert_equal((_Rep_iterator&)__position, __x);
}
/**
* Returns a read/write iterator that points one past the last element in
* the %multiset. Iteration is done in ascending order according to the
* keys.
*/
iterator
end() const
{ return _M_t.end(); }
/**
* @brief A template function that attemps to insert a range of elements.
* @param first Iterator pointing to the start of the range to be
* inserted.
* @param last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_equal(__first, __last);
}
/**
* Returns a read/write reverse iterator that points to the last element
* in the %multiset. Iteration is done in descending order according to
* the keys.
*/
reverse_iterator
rbegin() const
{ return _M_t.rbegin(); }
/**
* @brief Erases an element from a %multiset.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator,
* from a %multiset. Note that this function only erases the element,
* and that if the element is itself a pointer, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibilty.
*/
void erase(iterator __position) {
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__position);
}
/**
* Returns a read/write reverse iterator that points to the last element
* in the %multiset. Iteration is done in descending order according to
* the keys.
*/
reverse_iterator
rend() const
{ return _M_t.rend(); }
/**
* @brief Erases elements according to the provided key.
* @param x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all elements located by the given key from a
* %multiset.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
size_type erase(const key_type& __x) {
return _M_t.erase(__x);
}
/// Returns true if the %set is empty.
bool
empty() const
{ return _M_t.empty(); }
/**
* @brief Erases a [first,last) range of elements from a %multiset.
* @param first Iterator pointing to the start of the range to be erased.
* @param last Iterator pointing to the end of the range to be erased.
*
* This function erases a sequence of elements from a %multiset.
* Note that this function only erases the elements, and that if
* the elements themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
void erase(iterator __first, iterator __last) {
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
}
/// Returns the size of the %set.
size_type
size() const
{ return _M_t.size(); }
/**
* Erases all elements in a %multiset. Note that this function only
* erases the elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibilty.
*/
void clear() { _M_t.clear(); }
/// Returns the maximum size of the %set.
size_type
max_size() const
{ return _M_t.max_size(); }
// multiset operations:
/**
* @brief Swaps data with another %multiset.
* @param x A %multiset of the same element and allocator types.
*
* This exchanges the elements between two multisets in constant time.
* (It is only swapping a pointer, an integer, and an instance of the @c
* Compare type (which itself is often stateless and empty), so it should
* be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(s1,s2) will feed to this function.
*/
void
swap(multiset<_Key,_Compare,_Alloc>& __x)
{ _M_t.swap(__x._M_t); }
/**
* @brief Finds the number of elements with given key.
* @param x Key of elements to be located.
* @return Number of elements with specified key.
*/
size_type count(const key_type& __x) const { return _M_t.count(__x); }
// insert/erase
/**
* @brief Inserts an element into the %multiset.
* @param x Element to be inserted.
* @return An iterator that points to the inserted element.
*
* This function inserts an element into the %multiset. Contrary
* to a std::set the %multiset does not rely on unique keys and thus
* multiple copies of the same element can be inserted.
*
* Insertion requires logarithmic time.
*/
iterator
insert(const value_type& __x)
{ return _M_t.insert_equal(__x); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 214. set::find() missing const overload
//@{
/**
* @brief Tries to locate an element in a %set.
* @param x Element to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after element. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
//@}
/**
* @brief Inserts an element into the %multiset.
* @param position An iterator that serves as a hint as to where the
* element should be inserted.
* @param x Element to be inserted.
* @return An iterator that points to the inserted element.
*
* This function inserts an element into the %multiset. Contrary
* to a std::set the %multiset does not rely on unique keys and thus
* multiple copies of the same element can be inserted.
*
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
* for more on "hinting".
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator
insert(iterator __position, const value_type& __x)
{
typedef typename _Rep_type::iterator _Rep_iterator;
return _M_t.insert_equal((_Rep_iterator&)__position, __x);
}
//@{
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param x Key to be located.
* @return Iterator pointing to first element equal to or greater
* than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator lower_bound(const key_type& __x) {
return _M_t.lower_bound(__x);
}
const_iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
//@}
/**
* @brief A template function that attemps to insert a range of elements.
* @param first Iterator pointing to the start of the range to be
* inserted.
* @param last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template <class _InputIterator>
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_t.insert_equal(__first, __last); }
//@{
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key to be located.
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator upper_bound(const key_type& __x) {
return _M_t.upper_bound(__x);
}
const_iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
//@}
/**
* @brief Erases an element from a %multiset.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator,
* from a %multiset. Note that this function only erases the element,
* and that if the element is itself a pointer, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibilty.
*/
void
erase(iterator __position)
{
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__position);
}
//@{
/**
* @brief Finds a subsequence matching given key.
* @param x Key to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*
* This function probably only makes sense for multisets.
*/
pair<iterator,iterator> equal_range(const key_type& __x) {
return _M_t.equal_range(__x);
}
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
/**
* @brief Erases elements according to the provided key.
* @param x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all elements located by the given key from a
* %multiset.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
size_type
erase(const key_type& __x)
{ return _M_t.erase(__x); }
template <class _K1, class _C1, class _A1>
friend bool operator== (const multiset<_K1,_C1,_A1>&,
const multiset<_K1,_C1,_A1>&);
template <class _K1, class _C1, class _A1>
friend bool operator< (const multiset<_K1,_C1,_A1>&,
const multiset<_K1,_C1,_A1>&);
};
/**
* @brief Erases a [first,last) range of elements from a %multiset.
* @param first Iterator pointing to the start of the range to be
* erased.
* @param last Iterator pointing to the end of the range to be erased.
*
* This function erases a sequence of elements from a %multiset.
* Note that this function only erases the elements, and that if
* the elements themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
void
erase(iterator __first, iterator __last)
{
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
}
/**
* Erases all elements in a %multiset. Note that this function only
* erases the elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibilty.
*/
void
clear()
{ _M_t.clear(); }
// multiset operations:
/**
* @brief Finds the number of elements with given key.
* @param x Key of elements to be located.
* @return Number of elements with specified key.
*/
size_type
count(const key_type& __x) const
{ return _M_t.count(__x); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 214. set::find() missing const overload
//@{
/**
* @brief Tries to locate an element in a %set.
* @param x Element to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after element. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x)
{ return _M_t.find(__x); }
const_iterator
find(const key_type& __x) const
{ return _M_t.find(__x); }
//@}
//@{
/**
* @brief Finds the beginning of a subsequence matching given key.
* @param x Key to be located.
* @return Iterator pointing to first element equal to or greater
* than key, or end().
*
* This function returns the first element of a subsequence of elements
* that matches the given key. If unsuccessful it returns an iterator
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator
lower_bound(const key_type& __x)
{ return _M_t.lower_bound(__x); }
const_iterator
lower_bound(const key_type& __x) const
{ return _M_t.lower_bound(__x); }
//@}
//@{
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key to be located.
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator
upper_bound(const key_type& __x)
{ return _M_t.upper_bound(__x); }
const_iterator
upper_bound(const key_type& __x) const
{ return _M_t.upper_bound(__x); }
//@}
//@{
/**
* @brief Finds a subsequence matching given key.
* @param x Key to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function is equivalent to
* @code
* std::make_pair(c.lower_bound(val),
* c.upper_bound(val))
* @endcode
* (but is faster than making the calls separately).
*
* This function probably only makes sense for multisets.
*/
pair<iterator,iterator>
equal_range(const key_type& __x)
{ return _M_t.equal_range(__x); }
pair<const_iterator,const_iterator>
equal_range(const key_type& __x) const
{ return _M_t.equal_range(__x); }
template <class _K1, class _C1, class _A1>
friend bool
operator== (const multiset<_K1,_C1,_A1>&,
const multiset<_K1,_C1,_A1>&);
template <class _K1, class _C1, class _A1>
friend bool
operator< (const multiset<_K1,_C1,_A1>&,
const multiset<_K1,_C1,_A1>&);
};
/**
* @brief Multiset equality comparison.
@ -464,7 +511,8 @@ inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
* @param y A %multiset of the same type as @a x.
* @return True iff the size and elements of the multisets are equal.
*
* This is an equivalence relation. It is linear in the size of the multisets.
* This is an equivalence relation. It is linear in the size of the
* multisets.
* Multisets are considered equivalent if their sizes are equal, and if
* corresponding elements compare equal.
*/
@ -472,7 +520,7 @@ inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
inline bool
operator==(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y)
{ return __x._M_t == __y._M_t; }
{ return __x._M_t == __y._M_t; }
/**
* @brief Multiset ordering relation.
@ -489,42 +537,42 @@ inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
inline bool
operator<(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y)
{ return __x._M_t < __y._M_t; }
{ return __x._M_t < __y._M_t; }
/// Returns !(x == y).
template <class _Key, class _Compare, class _Alloc>
inline bool
operator!=(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y)
{ return !(__x == __y); }
{ return !(__x == __y); }
/// Returns y < x.
template <class _Key, class _Compare, class _Alloc>
inline bool
operator>(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y)
{ return __y < __x; }
{ return __y < __x; }
/// Returns !(y < x)
template <class _Key, class _Compare, class _Alloc>
inline bool
operator<=(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y)
{ return !(__y < __x); }
{ return !(__y < __x); }
/// Returns !(x < y)
template <class _Key, class _Compare, class _Alloc>
inline bool
operator>=(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y)
{ return !(__x < __y); }
{ return !(__x < __y); }
/// See std::multiset::swap().
template <class _Key, class _Compare, class _Alloc>
inline void
swap(multiset<_Key,_Compare,_Alloc>& __x,
multiset<_Key,_Compare,_Alloc>& __y)
{ __x.swap(__y); }
{ __x.swap(__y); }
} // namespace __gnu_norm

View File

@ -1,6 +1,6 @@
// std::rel_ops implementation -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -75,61 +75,61 @@ namespace std
{
namespace rel_ops
{
/** @namespace std::rel_ops
* @brief The generated relational operators are sequestered here.
*/
/** @namespace std::rel_ops
* @brief The generated relational operators are sequestered here.
*/
/**
* @brief Defines @c != for arbitrary types, in terms of @c ==.
* @param x A thing.
* @param y Another thing.
* @return x != y
*
* This function uses @c == to determine its result.
*/
template <class _Tp>
inline bool operator!=(const _Tp& __x, const _Tp& __y) {
return !(__x == __y);
}
/**
* @brief Defines @c != for arbitrary types, in terms of @c ==.
* @param x A thing.
* @param y Another thing.
* @return x != y
*
* This function uses @c == to determine its result.
*/
template <class _Tp>
inline bool
operator!=(const _Tp& __x, const _Tp& __y)
{ return !(__x == __y); }
/**
* @brief Defines @c > for arbitrary types, in terms of @c <.
* @param x A thing.
* @param y Another thing.
* @return x > y
*
* This function uses @c < to determine its result.
*/
template <class _Tp>
inline bool operator>(const _Tp& __x, const _Tp& __y) {
return __y < __x;
}
/**
* @brief Defines @c > for arbitrary types, in terms of @c <.
* @param x A thing.
* @param y Another thing.
* @return x > y
*
* This function uses @c < to determine its result.
*/
template <class _Tp>
inline bool
operator>(const _Tp& __x, const _Tp& __y)
{ return __y < __x; }
/**
* @brief Defines @c <= for arbitrary types, in terms of @c <.
* @param x A thing.
* @param y Another thing.
* @return x <= y
*
* This function uses @c < to determine its result.
*/
template <class _Tp>
inline bool operator<=(const _Tp& __x, const _Tp& __y) {
return !(__y < __x);
}
/**
* @brief Defines @c <= for arbitrary types, in terms of @c <.
* @param x A thing.
* @param y Another thing.
* @return x <= y
*
* This function uses @c < to determine its result.
*/
template <class _Tp>
inline bool
operator<=(const _Tp& __x, const _Tp& __y)
{ return !(__y < __x); }
/**
* @brief Defines @c >= for arbitrary types, in terms of @c <.
* @param x A thing.
* @param y Another thing.
* @return x >= y
*
* This function uses @c < to determine its result.
*/
template <class _Tp>
inline bool operator>=(const _Tp& __x, const _Tp& __y) {
return !(__x < __y);
}
/**
* @brief Defines @c >= for arbitrary types, in terms of @c <.
* @param x A thing.
* @param y Another thing.
* @return x >= y
*
* This function uses @c < to determine its result.
*/
template <class _Tp>
inline bool
operator>=(const _Tp& __x, const _Tp& __y)
{ return !(__x < __y); }
} // namespace rel_ops
} // namespace std

View File

@ -108,7 +108,8 @@ namespace __gnu_norm
{
// concept requirements
__glibcxx_class_requires(_Key, _SGIAssignableConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
__glibcxx_class_requires4(_Compare, bool, _Key, _Key,
_BinaryFunctionConcept)
public:
// typedefs:
@ -142,7 +143,8 @@ namespace __gnu_norm
// allocation/deallocation
/// Default constructor creates no elements.
set() : _M_t(_Compare(), allocator_type()) {}
set()
: _M_t(_Compare(), allocator_type()) {}
/**
* @brief Default constructor creates no elements.
@ -152,7 +154,7 @@ namespace __gnu_norm
*/
explicit set(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) {}
: _M_t(__comp, __a) {}
/**
* @brief Builds a %set from a range.
@ -164,9 +166,9 @@ namespace __gnu_norm
* otherwise (where N is distance(first,last)).
*/
template<class _InputIterator>
set(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
set(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
/**
* @brief Builds a %set from a range.
@ -180,10 +182,11 @@ namespace __gnu_norm
* otherwise (where N is distance(first,last)).
*/
template<class _InputIterator>
set(_InputIterator __first, _InputIterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
set(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a)
{ _M_t.insert_unique(__first, __last); }
{ _M_t.insert_unique(__first, __last); }
/**
* @brief Set copy constructor.
@ -192,7 +195,8 @@ namespace __gnu_norm
* The newly-created %set uses a copy of the allocation object used
* by @a x.
*/
set(const set<_Key,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
set(const set<_Key,_Compare,_Alloc>& __x)
: _M_t(__x._M_t) { }
/**
* @brief Set assignment operator.
@ -201,7 +205,8 @@ namespace __gnu_norm
* All the elements of @a x are copied, but unlike the copy constructor,
* the allocator object is not copied.
*/
set<_Key,_Compare,_Alloc>& operator=(const set<_Key, _Compare, _Alloc>& __x)
set<_Key,_Compare,_Alloc>&
operator=(const set<_Key, _Compare, _Alloc>& __x)
{
_M_t = __x._M_t;
return *this;
@ -210,45 +215,66 @@ namespace __gnu_norm
// accessors:
/// Returns the comparison object with which the %set was constructed.
key_compare key_comp() const { return _M_t.key_comp(); }
key_compare
key_comp() const
{ return _M_t.key_comp(); }
/// Returns the comparison object with which the %set was constructed.
value_compare value_comp() const { return _M_t.key_comp(); }
value_compare
value_comp() const
{ return _M_t.key_comp(); }
/// Returns the allocator object with which the %set was constructed.
allocator_type get_allocator() const { return _M_t.get_allocator(); }
allocator_type
get_allocator() const
{ return _M_t.get_allocator(); }
/**
* Returns a read/write iterator that points to the first element in the
* %set. Iteration is done in ascending order according to the keys.
*/
iterator begin() const { return _M_t.begin(); }
iterator
begin() const
{ return _M_t.begin(); }
/**
* Returns a read/write iterator that points one past the last element in
* the %set. Iteration is done in ascending order according to the keys.
*/
iterator end() const { return _M_t.end(); }
iterator
end() const
{ return _M_t.end(); }
/**
* Returns a read/write reverse iterator that points to the last element in
* the %set. Iteration is done in descending order according to the keys.
* Returns a read/write reverse iterator that points to the last element
* in the %set. Iteration is done in descending order according to the
* keys.
*/
reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator
rbegin() const
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
* pair in the %map. Iteration is done in descending order according to
* the keys.
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %map. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator rend() const { return _M_t.rend(); }
reverse_iterator
rend() const
{ return _M_t.rend(); }
/// Returns true if the %set is empty.
bool empty() const { return _M_t.empty(); }
bool
empty() const
{ return _M_t.empty(); }
/// Returns the size of the %set.
size_type size() const { return _M_t.size(); }
size_type
size() const
{ return _M_t.size(); }
/// Returns the maximum size of the %set.
size_type max_size() const { return _M_t.max_size(); }
size_type
max_size() const
{ return _M_t.max_size(); }
/**
* @brief Swaps data with another %set.
@ -261,15 +287,17 @@ namespace __gnu_norm
* Note that the global std::swap() function is specialized such that
* std::swap(s1,s2) will feed to this function.
*/
void swap(set<_Key,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
void
swap(set<_Key,_Compare,_Alloc>& __x)
{ _M_t.swap(__x._M_t); }
// insert/erase
/**
* @brief Attempts to insert an element into the %set.
* @param x Element to be inserted.
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted element, and the second is a bool that
* is true if the element was actually inserted.
* to the possibly inserted element, and the second is a bool
* that is true if the element was actually inserted.
*
* This function attempts to insert an element into the %set. A %set
* relies on unique keys and thus an element is only inserted if it is
@ -277,7 +305,8 @@ namespace __gnu_norm
*
* Insertion requires logarithmic time.
*/
pair<iterator,bool> insert(const value_type& __x)
pair<iterator,bool>
insert(const value_type& __x)
{
pair<typename _Rep_type::iterator, bool> __p = _M_t.insert_unique(__x);
return pair<iterator, bool>(__p.first, __p.second);
@ -302,7 +331,8 @@ namespace __gnu_norm
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
iterator insert(iterator __position, const value_type& __x)
iterator
insert(iterator __position, const value_type& __x)
{
typedef typename _Rep_type::iterator _Rep_iterator;
return _M_t.insert_unique((_Rep_iterator&)__position, __x);
@ -317,7 +347,8 @@ namespace __gnu_norm
* Complexity similar to that of the range constructor.
*/
template<class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last)
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_t.insert_unique(__first, __last); }
/**
@ -329,7 +360,8 @@ namespace __gnu_norm
* that if the element is itself a pointer, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
void erase(iterator __position)
void
erase(iterator __position)
{
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__position);
@ -346,11 +378,13 @@ namespace __gnu_norm
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
size_type erase(const key_type& __x) { return _M_t.erase(__x); }
size_type
erase(const key_type& __x) { return _M_t.erase(__x); }
/**
* @brief Erases a [first,last) range of elements from a %set.
* @param first Iterator pointing to the start of the range to be erased.
* @param first Iterator pointing to the start of the range to be
* erased.
* @param last Iterator pointing to the end of the range to be erased.
*
* This function erases a sequence of elements from a %set.
@ -358,7 +392,8 @@ namespace __gnu_norm
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
void erase(iterator __first, iterator __last)
void
erase(iterator __first, iterator __last)
{
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
@ -370,7 +405,9 @@ namespace __gnu_norm
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void clear() { _M_t.clear(); }
void
clear()
{ _M_t.clear(); }
// set operations:
@ -382,7 +419,8 @@ namespace __gnu_norm
* This function only makes sense for multisets; for set the result will
* either be 0 (not present) or 1 (present).
*/
size_type count(const key_type& __x) const
size_type
count(const key_type& __x) const
{ return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
@ -399,8 +437,13 @@ namespace __gnu_norm
* pointing to the sought after element. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
iterator
find(const key_type& __x)
{ return _M_t.find(__x); }
const_iterator
find(const key_type& __x) const
{ return _M_t.find(__x); }
//@}
//@{
@ -415,9 +458,12 @@ namespace __gnu_norm
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
iterator lower_bound(const key_type& __x)
iterator
lower_bound(const key_type& __x)
{ return _M_t.lower_bound(__x); }
const_iterator lower_bound(const key_type& __x) const
const_iterator
lower_bound(const key_type& __x) const
{ return _M_t.lower_bound(__x); }
//@}
@ -428,9 +474,12 @@ namespace __gnu_norm
* @return Iterator pointing to the first element
* greater than key, or end().
*/
iterator upper_bound(const key_type& __x)
iterator
upper_bound(const key_type& __x)
{ return _M_t.upper_bound(__x); }
const_iterator upper_bound(const key_type& __x) const
const_iterator
upper_bound(const key_type& __x) const
{ return _M_t.upper_bound(__x); }
//@}
@ -450,16 +499,22 @@ namespace __gnu_norm
*
* This function probably only makes sense for multisets.
*/
pair<iterator,iterator> equal_range(const key_type& __x)
pair<iterator,iterator>
equal_range(const key_type& __x)
{ return _M_t.equal_range(__x); }
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const
pair<const_iterator,const_iterator>
equal_range(const key_type& __x) const
{ return _M_t.equal_range(__x); }
//@}
template<class _K1, class _C1, class _A1>
friend bool operator== (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
friend bool
operator== (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
template<class _K1, class _C1, class _A1>
friend bool operator< (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
friend bool
operator< (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
};
@ -508,8 +563,7 @@ namespace __gnu_norm
inline bool
operator>(const set<_Key,_Compare,_Alloc>& __x,
const set<_Key,_Compare,_Alloc>& __y)
{ return __y < __x; }
{ return __y < __x; }
/// Returns !(y < x)
template<class _Key, class _Compare, class _Alloc>