diff --git a/gcc/ChangeLog b/gcc/ChangeLog index e6f8549fd32..128edeadae2 100644 --- a/gcc/ChangeLog +++ b/gcc/ChangeLog @@ -1,3 +1,7 @@ +2008-08-18 H.J. Lu + + * mcf.c: Really add it. + 2008-08-18 Paul Yuan Vinodha Ramasamy diff --git a/gcc/mcf.c b/gcc/mcf.c new file mode 100644 index 00000000000..d7bc5f30e72 --- /dev/null +++ b/gcc/mcf.c @@ -0,0 +1,1401 @@ +/* Routines to implement minimum-cost maximal flow algorithm used to smooth + basic block and edge frequency counts. + Copyright (C) 2008 + Free Software Foundation, Inc. + Contributed by Paul Yuan (yingbo.com@gmail.com) and + Vinodha Ramasamy (vinodha@google.com). + +This file is part of GCC. +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +/* References: + [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles + from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen, + and Robert Hundt; GCC Summit 2008. + [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost + Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber; + HiPEAC '08. + + Algorithm to smooth basic block and edge counts: + 1. create_fixup_graph: Create fixup graph by translating function CFG into + a graph that satisfies MCF algorithm requirements. + 2. find_max_flow: Find maximal flow. + 3. compute_residual_flow: Form residual network. + 4. Repeat: + cancel_negative_cycle: While G contains a negative cost cycle C, reverse + the flow on the found cycle by the minimum residual capacity in that + cycle. + 5. Form the minimal cost flow + f(u,v) = rf(v, u). + 6. adjust_cfg_counts: Update initial edge weights with corrected weights. + delta(u.v) = f(u,v) -f(v,u). + w*(u,v) = w(u,v) + delta(u,v). */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "basic-block.h" +#include "output.h" +#include "langhooks.h" +#include "tree.h" +#include "gcov-io.h" + +#include "profile.h" + +/* CAP_INFINITY: Constant to represent infinite capacity. */ +#define CAP_INFINITY __LONG_LONG_MAX__ + +/* COST FUNCTION. */ +#define K_POS(b) ((b)) +#define K_NEG(b) (50 * (b)) +#define COST(k, w) ((k) / mcf_ln ((w) + 2)) +/* Limit the number of iterations for cancel_negative_cycles() to ensure + reasonable compile time. */ +#define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e))) +typedef enum +{ + INVALID_EDGE, + VERTEX_SPLIT_EDGE, /* Edge to represent vertex with w(e) = w(v). */ + REDIRECT_EDGE, /* Edge after vertex transformation. */ + REVERSE_EDGE, + SOURCE_CONNECT_EDGE, /* Single edge connecting to single source. */ + SINK_CONNECT_EDGE, /* Single edge connecting to single sink. */ + BALANCE_EDGE, /* Edge connecting with source/sink: cp(e) = 0. */ + REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge. */ + REVERSE_NORMALIZED_EDGE /* Normalized edge for a reverse edge. */ +} edge_type; + +/* Structure to represent an edge in the fixup graph. */ +typedef struct fixup_edge_d +{ + int src; + int dest; + /* Flag denoting type of edge and attributes for the flow field. */ + edge_type type; + bool is_rflow_valid; + /* Index to the normalization vertex added for this edge. */ + int norm_vertex_index; + /* Flow for this edge. */ + gcov_type flow; + /* Residual flow for this edge - used during negative cycle canceling. */ + gcov_type rflow; + gcov_type weight; + gcov_type cost; + gcov_type max_capacity; +} fixup_edge_type; + +typedef fixup_edge_type *fixup_edge_p; + +DEF_VEC_P (fixup_edge_p); +DEF_VEC_ALLOC_P (fixup_edge_p, heap); + +/* Structure to represent a vertex in the fixup graph. */ +typedef struct fixup_vertex_d +{ + VEC (fixup_edge_p, heap) *succ_edges; +} fixup_vertex_type; + +typedef fixup_vertex_type *fixup_vertex_p; + +/* Fixup graph used in the MCF algorithm. */ +typedef struct fixup_graph_d +{ + /* Current number of vertices for the graph. */ + int num_vertices; + /* Current number of edges for the graph. */ + int num_edges; + /* Index of new entry vertex. */ + int new_entry_index; + /* Index of new exit vertex. */ + int new_exit_index; + /* Fixup vertex list. Adjacency list for fixup graph. */ + fixup_vertex_p vertex_list; + /* Fixup edge list. */ + fixup_edge_p edge_list; +} fixup_graph_type; + +typedef struct queue_d +{ + int *queue; + int head; + int tail; + int size; +} queue_type; + +/* Structure used in the maximal flow routines to find augmenting path. */ +typedef struct augmenting_path_d +{ + /* Queue used to hold vertex indices. */ + queue_type queue_list; + /* Vector to hold chain of pred vertex indices in augmenting path. */ + int *bb_pred; + /* Vector that indicates if basic block i has been visited. */ + int *is_visited; +} augmenting_path_type; + + +/* Function definitions. */ + +/* Dump routines to aid debugging. */ + +/* Print basic block with index N for FIXUP_GRAPH in n' and n'' format. */ + +static void +print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n) +{ + if (n == ENTRY_BLOCK) + fputs ("ENTRY", file); + else if (n == ENTRY_BLOCK + 1) + fputs ("ENTRY''", file); + else if (n == 2 * EXIT_BLOCK) + fputs ("EXIT", file); + else if (n == 2 * EXIT_BLOCK + 1) + fputs ("EXIT''", file); + else if (n == fixup_graph->new_exit_index) + fputs ("NEW_EXIT", file); + else if (n == fixup_graph->new_entry_index) + fputs ("NEW_ENTRY", file); + else + { + fprintf (file, "%d", n / 2); + if (n % 2) + fputs ("''", file); + else + fputs ("'", file); + } +} + + +/* Print edge S->D for given fixup_graph with n' and n'' format. + PARAMETERS: + S is the index of the source vertex of the edge (input) and + D is the index of the destination vertex of the edge (input) for the given + fixup_graph (input). */ + +static void +print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d) +{ + print_basic_block (file, fixup_graph, s); + fputs ("->", file); + print_basic_block (file, fixup_graph, d); +} + + +/* Dump out the attributes of a given edge FEDGE in the fixup_graph to a + file. */ +static void +dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge) +{ + if (!fedge) + { + fputs ("NULL fixup graph edge.\n", file); + return; + } + + print_edge (file, fixup_graph, fedge->src, fedge->dest); + fputs (": ", file); + + if (fedge->type) + { + fprintf (file, "flow/capacity=" HOST_WIDEST_INT_PRINT_DEC "/", + fedge->flow); + if (fedge->max_capacity == CAP_INFINITY) + fputs ("+oo,", file); + else + fprintf (file, "" HOST_WIDEST_INT_PRINT_DEC ",", fedge->max_capacity); + } + + if (fedge->is_rflow_valid) + { + if (fedge->rflow == CAP_INFINITY) + fputs (" rflow=+oo.", file); + else + fprintf (file, " rflow=" HOST_WIDEST_INT_PRINT_DEC ",", fedge->rflow); + } + + fprintf (file, " cost=" HOST_WIDEST_INT_PRINT_DEC ".", fedge->cost); + + fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest); + + if (fedge->type) + { + switch (fedge->type) + { + case VERTEX_SPLIT_EDGE: + fputs (" @VERTEX_SPLIT_EDGE", file); + break; + + case REDIRECT_EDGE: + fputs (" @REDIRECT_EDGE", file); + break; + + case SOURCE_CONNECT_EDGE: + fputs (" @SOURCE_CONNECT_EDGE", file); + break; + + case SINK_CONNECT_EDGE: + fputs (" @SINK_CONNECT_EDGE", file); + break; + + case REVERSE_EDGE: + fputs (" @REVERSE_EDGE", file); + break; + + case BALANCE_EDGE: + fputs (" @BALANCE_EDGE", file); + break; + + case REDIRECT_NORMALIZED_EDGE: + case REVERSE_NORMALIZED_EDGE: + fputs (" @NORMALIZED_EDGE", file); + break; + + default: + fputs (" @INVALID_EDGE", file); + break; + } + } + fputs ("\n", file); +} + + +/* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump + file. The input string MSG is printed out as a heading. */ + +static void +dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg) +{ + int i, j; + int fnum_vertices, fnum_edges; + + fixup_vertex_p fvertex_list, pfvertex; + fixup_edge_p pfedge; + + gcc_assert (fixup_graph); + fvertex_list = fixup_graph->vertex_list; + fnum_vertices = fixup_graph->num_vertices; + fnum_edges = fixup_graph->num_edges; + + fprintf (file, "\nDump fixup graph for %s(): %s.\n", + lang_hooks.decl_printable_name (current_function_decl, 2), msg); + fprintf (file, + "There are %d vertices and %d edges. new_exit_index is %d.\n\n", + fnum_vertices, fnum_edges, fixup_graph->new_exit_index); + + for (i = 0; i < fnum_vertices; i++) + { + pfvertex = fvertex_list + i; + fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n", + i, VEC_length (fixup_edge_p, pfvertex->succ_edges)); + + for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge); + j++) + { + /* Distinguish forward edges and backward edges in the residual flow + network. */ + if (pfedge->type) + fputs ("(f) ", file); + else if (pfedge->is_rflow_valid) + fputs ("(b) ", file); + dump_fixup_edge (file, fixup_graph, pfedge); + } + } + + fputs ("\n", file); +} + + +/* Utility routines. */ +/* ln() implementation: approximate calculation. Returns ln of X. */ + +static double +mcf_ln (double x) +{ +#define E 2.71828 + int l = 1; + double m = E; + + gcc_assert (x >= 0); + + while (m < x) + { + m *= E; + l++; + } + + return l; +} + + +/* sqrt() implementation: based on open source QUAKE3 code (magic sqrt + implementation) by John Carmack. Returns sqrt of X. */ + +static double +mcf_sqrt (double x) +{ +#define MAGIC_CONST1 0x1fbcf800 +#define MAGIC_CONST2 0x5f3759df + union { + int intPart; + float floatPart; + } convertor, convertor2; + + gcc_assert (x >= 0); + + convertor.floatPart = x; + convertor2.floatPart = x; + convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1); + convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1); + + return 0.5f * (convertor.floatPart + (x * convertor2.floatPart)); +} + + +/* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge + (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge + added set to COST. */ + +static fixup_edge_p +add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost) +{ + fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src; + fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges; + curr_edge->src = src; + curr_edge->dest = dest; + curr_edge->cost = cost; + fixup_graph->num_edges++; + if (dump_file) + dump_fixup_edge (dump_file, fixup_graph, curr_edge); + VEC_safe_push (fixup_edge_p, heap, curr_vertex->succ_edges, curr_edge); + return curr_edge; +} + + +/* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and + MAX_CAPACITY to the edge_list in the fixup graph. */ + +static void +add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest, int type, + gcov_type weight, gcov_type cost, gcov_type max_capacity) +{ + fixup_edge_p curr_edge = add_edge(fixup_graph, src, dest, cost); + curr_edge->type = type; + curr_edge->weight = weight; + curr_edge->max_capacity = max_capacity; +} + + +/* Add a residual edge (SRC->DEST) with attributes RFLOW and COST + to the fixup graph. */ + +static void +add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest, + gcov_type rflow, gcov_type cost) +{ + fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost); + curr_edge->rflow = rflow; + curr_edge->is_rflow_valid = true; + /* This edge is not a valid edge - merely used to hold residual flow. */ + curr_edge->type = INVALID_EDGE; +} + + +/* Return the pointer to fixup edge SRC->DEST or NULL if edge does not + exist in the FIXUP_GRAPH. */ + +static fixup_edge_p +find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest) +{ + int j; + fixup_edge_p pfedge; + fixup_vertex_p pfvertex; + + gcc_assert (src < fixup_graph->num_vertices); + + pfvertex = fixup_graph->vertex_list + src; + + for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge); + j++) + if (pfedge->dest == dest) + return pfedge; + + return NULL; +} + + +/* Cleanup routine to free structures in FIXUP_GRAPH. */ + +static void +delete_fixup_graph (fixup_graph_type *fixup_graph) +{ + int i; + int fnum_vertices = fixup_graph->num_vertices; + fixup_vertex_p pfvertex = fixup_graph->vertex_list; + + for (i = 0; i < fnum_vertices; i++, pfvertex++) + VEC_free (fixup_edge_p, heap, pfvertex->succ_edges); + + free (fixup_graph->vertex_list); + free (fixup_graph->edge_list); +} + + +/* Creates a fixup graph FIXUP_GRAPH from the function CFG. */ + +static void +create_fixup_graph (fixup_graph_type *fixup_graph) +{ + double sqrt_avg_vertex_weight = 0; + double total_vertex_weight = 0; + double k_pos = 0; + double k_neg = 0; + /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */ + gcov_type *diff_out_in = NULL; + gcov_type supply_value = 1, demand_value = 0; + gcov_type fcost = 0; + int new_entry_index = 0, new_exit_index = 0; + int i = 0, j = 0; + int new_index = 0; + basic_block bb; + edge e; + edge_iterator ei; + fixup_edge_p pfedge, r_pfedge; + fixup_edge_p fedge_list; + int fnum_edges; + + /* Each basic_block will be split into 2 during vertex transformation. */ + int fnum_vertices_after_transform = 2 * n_basic_blocks; + int fnum_edges_after_transform = n_edges + n_basic_blocks; + + /* Count the new SOURCE and EXIT vertices to be added. */ + int fmax_num_vertices = + fnum_vertices_after_transform + n_edges + n_basic_blocks + 2; + + /* In create_fixup_graph: Each basic block and edge can be split into 3 + edges. Number of balance edges = n_basic_blocks. So after + create_fixup_graph: + max_edges = 4 * n_basic_blocks + 3 * n_edges + Accounting for residual flow edges + max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges) + = 8 * n_basic_blocks + 6 * n_edges + < 8 * n_basic_blocks + 8 * n_edges. */ + int fmax_num_edges = 8 * (n_basic_blocks + n_edges); + + /* Initial num of vertices in the fixup graph. */ + fixup_graph->num_vertices = n_basic_blocks; + + /* Fixup graph vertex list. */ + fixup_graph->vertex_list = + (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type)); + + /* Fixup graph edge list. */ + fixup_graph->edge_list = + (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type)); + + diff_out_in = + (gcov_type *) xcalloc (1 + fnum_vertices_after_transform, + sizeof (gcov_type)); + + /* Compute constants b, k_pos, k_neg used in the cost function calculation. + b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b. */ + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) + total_vertex_weight += bb->count; + + sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight / n_basic_blocks); + + k_pos = K_POS (sqrt_avg_vertex_weight); + k_neg = K_NEG (sqrt_avg_vertex_weight); + + /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'', + connected by an edge e from v' to v''. w(e) = w(v). */ + + if (dump_file) + fprintf (dump_file, "\nVertex transformation:\n"); + + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) + { + /* v'->v'': index1->(index1+1). */ + i = 2 * bb->index; + fcost = (gcov_type) COST (k_pos, bb->count); + add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count, + fcost, CAP_INFINITY); + fixup_graph->num_vertices++; + + FOR_EACH_EDGE (e, ei, bb->succs) + { + /* Edges with ignore attribute set should be treated like they don't + exist. */ + if (EDGE_INFO (e) && EDGE_INFO (e)->ignore) + continue; + j = 2 * e->dest->index; + fcost = (gcov_type) COST (k_pos, e->count); + add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, e->count, fcost, + CAP_INFINITY); + } + } + + /* After vertex transformation. */ + gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform); + /* Redirect edges are not added for edges with ignore attribute. */ + gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform); + + fnum_edges_after_transform = fixup_graph->num_edges; + + /* 2. Initialize D(v). */ + for (i = 0; i < fnum_edges_after_transform; i++) + { + pfedge = fixup_graph->edge_list + i; + diff_out_in[pfedge->src] += pfedge->weight; + diff_out_in[pfedge->dest] -= pfedge->weight; + } + + /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3. */ + for (i = 0; i <= 3; i++) + diff_out_in[i] = 0; + + /* 3. Add reverse edges: needed to decrease counts during smoothing. */ + if (dump_file) + fprintf (dump_file, "\nReverse edges:\n"); + for (i = 0; i < fnum_edges_after_transform; i++) + { + pfedge = fixup_graph->edge_list + i; + if ((pfedge->src == 0) || (pfedge->src == 2)) + continue; + r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src); + if (!r_pfedge && pfedge->weight) + { + /* Skip adding reverse edges for edges with w(e) = 0, as its maximum + capacity is 0. */ + fcost = (gcov_type) COST (k_neg, pfedge->weight); + add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src, + REVERSE_EDGE, 0, fcost, pfedge->weight); + } + } + + /* 4. Create single source and sink. Connect new source vertex s' to function + entry block. Connect sink vertex t' to function exit. */ + if (dump_file) + fprintf (dump_file, "\ns'->S, T->t':\n"); + + new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices; + fixup_graph->num_vertices++; + /* Set supply_value to 1 to avoid zero count function ENTRY. */ + add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE, + 1 /* supply_value */, 0, 1 /* supply_value */); + + /* Create new exit with EXIT_BLOCK as single pred. */ + new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices; + fixup_graph->num_vertices++; + add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index, + SINK_CONNECT_EDGE, + 0 /* demand_value */, 0, 0 /* demand_value */); + + /* Connect vertices with unbalanced D(v) to source/sink. */ + if (dump_file) + fprintf (dump_file, "\nD(v) balance:\n"); + /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4. + diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */ + for (i = 4; i < new_entry_index; i += 2) + { + if (diff_out_in[i] > 0) + { + add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0, + diff_out_in[i]); + demand_value += diff_out_in[i]; + } + else if (diff_out_in[i] < 0) + { + add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0, + -diff_out_in[i]); + supply_value -= diff_out_in[i]; + } + } + + /* Set supply = demand. */ + if (dump_file) + { + fprintf (dump_file, "\nAdjust supply and demand:\n"); + fprintf (dump_file, "supply_value=" HOST_WIDEST_INT_PRINT_DEC "\n", + supply_value); + fprintf (dump_file, "demand_value=" HOST_WIDEST_INT_PRINT_DEC "\n", + demand_value); + } + + if (demand_value > supply_value) + { + pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK); + pfedge->max_capacity += (demand_value - supply_value); + } + else + { + pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index); + pfedge->max_capacity += (supply_value - demand_value); + } + + /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are + created by the vertex transformation step from self-edges in the original + CFG and by the reverse edges added earlier. */ + if (dump_file) + fprintf (dump_file, "\nNormalize edges:\n"); + + fnum_edges = fixup_graph->num_edges; + fedge_list = fixup_graph->edge_list; + + for (i = 0; i < fnum_edges; i++) + { + pfedge = fedge_list + i; + r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src); + if (((pfedge->type == VERTEX_SPLIT_EDGE) + || (pfedge->type == REDIRECT_EDGE)) && r_pfedge) + { + new_index = fixup_graph->num_vertices; + fixup_graph->num_vertices++; + + if (dump_file) + { + fprintf (dump_file, "\nAnti-parallel edge:\n"); + dump_fixup_edge (dump_file, fixup_graph, pfedge); + dump_fixup_edge (dump_file, fixup_graph, r_pfedge); + fprintf (dump_file, "New vertex is %d.\n", new_index); + fprintf (dump_file, "------------------\n"); + } + + pfedge->cost /= 2; + pfedge->norm_vertex_index = new_index; + if (dump_file) + { + fprintf (dump_file, "After normalization:\n"); + dump_fixup_edge (dump_file, fixup_graph, pfedge); + } + + /* Add a new fixup edge: new_index->src. */ + add_fixup_edge (fixup_graph, new_index, pfedge->src, + REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost, + r_pfedge->max_capacity); + gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices); + + /* Edge: r_pfedge->src -> r_pfedge->dest + ==> r_pfedge->src -> new_index. */ + r_pfedge->dest = new_index; + r_pfedge->type = REVERSE_NORMALIZED_EDGE; + r_pfedge->cost = pfedge->cost; + r_pfedge->max_capacity = pfedge->max_capacity; + if (dump_file) + dump_fixup_edge (dump_file, fixup_graph, r_pfedge); + } + } + + if (dump_file) + dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()"); + + /* Cleanup. */ + free (diff_out_in); +} + + +/* Allocates space for the structures in AUGMENTING_PATH. The space needed is + proportional to the number of nodes in the graph, which is given by + GRAPH_SIZE. */ + +static void +init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size) +{ + augmenting_path->queue_list.queue = (int *) + xcalloc (graph_size + 2, sizeof (int)); + augmenting_path->queue_list.size = graph_size + 2; + augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int)); + augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int)); +} + +/* Free the structures in AUGMENTING_PATH. */ +static void +free_augmenting_path (augmenting_path_type *augmenting_path) +{ + free (augmenting_path->queue_list.queue); + free (augmenting_path->bb_pred); + free (augmenting_path->is_visited); +} + + +/* Queue routines. Assumes queue will never overflow. */ + +static void +init_queue (queue_type *queue_list) +{ + gcc_assert (queue_list); + queue_list->head = 0; + queue_list->tail = 0; +} + +/* Return true if QUEUE_LIST is empty. */ +static bool +is_empty (queue_type *queue_list) +{ + return (queue_list->head == queue_list->tail); +} + +/* Insert element X into QUEUE_LIST. */ +static void +enqueue (queue_type *queue_list, int x) +{ + gcc_assert (queue_list->tail < queue_list->size); + queue_list->queue[queue_list->tail] = x; + (queue_list->tail)++; +} + +/* Return the first element in QUEUE_LIST. */ +static int +dequeue (queue_type *queue_list) +{ + int x; + gcc_assert (queue_list->head >= 0); + x = queue_list->queue[queue_list->head]; + (queue_list->head)++; + return x; +} + + +/* Finds a negative cycle in the residual network using + the Bellman-Ford algorithm. The flow on the found cycle is reversed by the + minimum residual capacity of that cycle. ENTRY and EXIT vertices are not + considered. + +Parameters: + FIXUP_GRAPH - Residual graph (input/output) + The following are allocated/freed by the caller: + PI - Vector to hold predecessors in path (pi = pred index) + D - D[I] holds minimum cost of path from i to sink + CYCLE - Vector to hold the minimum cost cycle + +Return: + true if a negative cycle was found, false otherwise. */ + +static bool +cancel_negative_cycle (fixup_graph_type *fixup_graph, + int *pi, gcov_type *d, int *cycle) +{ + int i, j, k; + int fnum_vertices, fnum_edges; + fixup_edge_p fedge_list, pfedge, r_pfedge; + bool found_cycle = false; + int cycle_start = 0, cycle_end = 0; + gcov_type sum_cost = 0, cycle_flow = 0; + int new_entry_index; + bool propagated = false; + + gcc_assert (fixup_graph); + fnum_vertices = fixup_graph->num_vertices; + fnum_edges = fixup_graph->num_edges; + fedge_list = fixup_graph->edge_list; + new_entry_index = fixup_graph->new_entry_index; + + /* Initialize. */ + /* Skip ENTRY. */ + for (i = 1; i < fnum_vertices; i++) + { + d[i] = CAP_INFINITY; + pi[i] = -1; + cycle[i] = -1; + } + d[ENTRY_BLOCK] = 0; + + /* Relax. */ + for (k = 1; k < fnum_vertices; k++) + { + propagated = false; + for (i = 0; i < fnum_edges; i++) + { + pfedge = fedge_list + i; + if (pfedge->src == new_entry_index) + continue; + if (pfedge->is_rflow_valid && pfedge->rflow + && d[pfedge->src] != CAP_INFINITY + && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost)) + { + d[pfedge->dest] = d[pfedge->src] + pfedge->cost; + pi[pfedge->dest] = pfedge->src; + propagated = true; + } + } + if (!propagated) + break; + } + + if (!propagated) + /* No negative cycles exist. */ + return 0; + + /* Detect. */ + for (i = 0; i < fnum_edges; i++) + { + pfedge = fedge_list + i; + if (pfedge->src == new_entry_index) + continue; + if (pfedge->is_rflow_valid && pfedge->rflow + && d[pfedge->src] != CAP_INFINITY + && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost)) + { + found_cycle = true; + break; + } + } + + if (!found_cycle) + return 0; + + /* Augment the cycle with the cycle's minimum residual capacity. */ + found_cycle = false; + cycle[0] = pfedge->dest; + j = pfedge->dest; + + for (i = 1; i < fnum_vertices; i++) + { + j = pi[j]; + cycle[i] = j; + for (k = 0; k < i; k++) + { + if (cycle[k] == j) + { + /* cycle[k] -> ... -> cycle[i]. */ + cycle_start = k; + cycle_end = i; + found_cycle = true; + break; + } + } + if (found_cycle) + break; + } + + gcc_assert (cycle[cycle_start] == cycle[cycle_end]); + if (dump_file) + fprintf (dump_file, "\nNegative cycle length is %d:\n", + cycle_end - cycle_start); + + sum_cost = 0; + cycle_flow = CAP_INFINITY; + for (k = cycle_start; k < cycle_end; k++) + { + pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]); + cycle_flow = MIN (cycle_flow, pfedge->rflow); + sum_cost += pfedge->cost; + if (dump_file) + fprintf (dump_file, "%d ", cycle[k]); + } + + if (dump_file) + { + fprintf (dump_file, "%d", cycle[k]); + fprintf (dump_file, + ": (" HOST_WIDEST_INT_PRINT_DEC ", " HOST_WIDEST_INT_PRINT_DEC + ")\n", sum_cost, cycle_flow); + fprintf (dump_file, + "Augment cycle with " HOST_WIDEST_INT_PRINT_DEC "\n", + cycle_flow); + } + + for (k = cycle_start; k < cycle_end; k++) + { + pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]); + r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]); + pfedge->rflow -= cycle_flow; + if (pfedge->type) + pfedge->flow += cycle_flow; + r_pfedge->rflow += cycle_flow; + if (r_pfedge->type) + r_pfedge->flow -= cycle_flow; + } + + return true; +} + + +/* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of + the edges. ENTRY and EXIT vertices should not be considered. */ + +static void +compute_residual_flow (fixup_graph_type *fixup_graph) +{ + int i; + int fnum_edges; + fixup_edge_p fedge_list, pfedge; + + gcc_assert (fixup_graph); + + if (dump_file) + fputs ("\ncompute_residual_flow():\n", dump_file); + + fnum_edges = fixup_graph->num_edges; + fedge_list = fixup_graph->edge_list; + + for (i = 0; i < fnum_edges; i++) + { + pfedge = fedge_list + i; + pfedge->rflow = pfedge->max_capacity - pfedge->flow; + pfedge->is_rflow_valid = true; + add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow, + -pfedge->cost); + } +} + + +/* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to + SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by + this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated + to reflect the path found. + Returns: 0 if no augmenting path is found, 1 otherwise. */ + +static int +find_augmenting_path (fixup_graph_type *fixup_graph, + augmenting_path_type *augmenting_path, int source, + int sink) +{ + int u = 0; + int i; + fixup_vertex_p fvertex_list, pfvertex; + fixup_edge_p pfedge; + int *bb_pred, *is_visited; + queue_type *queue_list; + + gcc_assert (augmenting_path); + bb_pred = augmenting_path->bb_pred; + gcc_assert (bb_pred); + is_visited = augmenting_path->is_visited; + gcc_assert (is_visited); + queue_list = &(augmenting_path->queue_list); + + gcc_assert (fixup_graph); + + fvertex_list = fixup_graph->vertex_list; + + for (u = 0; u < fixup_graph->num_vertices; u++) + is_visited[u] = 0; + + init_queue (queue_list); + enqueue (queue_list, source); + bb_pred[source] = -1; + + while (!is_empty (queue_list)) + { + u = dequeue (queue_list); + is_visited[u] = 1; + pfvertex = fvertex_list + u; + for (i = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, i, pfedge); + i++) + { + int dest = pfedge->dest; + if ((pfedge->rflow > 0) && (is_visited[dest] == 0)) + { + enqueue (queue_list, dest); + bb_pred[dest] = u; + is_visited[dest] = 1; + if (dest == sink) + return 1; + } + } + } + + return 0; +} + + +/* Routine to find the maximal flow: + Algorithm: + 1. Initialize flow to 0 + 2. Find an augmenting path form source to sink. + 3. Send flow equal to the path's residual capacity along the edges of this path. + 4. Repeat steps 2 and 3 until no new augmenting path is found. + +Parameters: +SOURCE: index of source vertex (input) +SINK: index of sink vertex (input) +FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be + set to have a valid maximal flow by this routine. (input) +Return: Maximum flow possible. */ + +static gcov_type +find_max_flow (fixup_graph_type *fixup_graph, int source, int sink) +{ + int fnum_edges; + augmenting_path_type augmenting_path; + int *bb_pred; + gcov_type max_flow = 0; + int i, u; + fixup_edge_p fedge_list, pfedge, r_pfedge; + + gcc_assert (fixup_graph); + + fnum_edges = fixup_graph->num_edges; + fedge_list = fixup_graph->edge_list; + + /* Initialize flow to 0. */ + for (i = 0; i < fnum_edges; i++) + { + pfedge = fedge_list + i; + pfedge->flow = 0; + } + + compute_residual_flow (fixup_graph); + + init_augmenting_path (&augmenting_path, fixup_graph->num_vertices); + + bb_pred = augmenting_path.bb_pred; + while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink)) + { + /* Determine the amount by which we can increment the flow. */ + gcov_type increment = CAP_INFINITY; + for (u = sink; u != source; u = bb_pred[u]) + { + pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u); + increment = MIN (increment, pfedge->rflow); + } + max_flow += increment; + + /* Now increment the flow. EXIT vertex index is 1. */ + for (u = sink; u != source; u = bb_pred[u]) + { + pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u); + r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]); + if (pfedge->type) + { + /* forward edge. */ + pfedge->flow += increment; + pfedge->rflow -= increment; + r_pfedge->rflow += increment; + } + else + { + /* backward edge. */ + gcc_assert (r_pfedge->type); + r_pfedge->rflow += increment; + r_pfedge->flow -= increment; + pfedge->rflow -= increment; + } + } + + if (dump_file) + { + fprintf (dump_file, "\nDump augmenting path:\n"); + for (u = sink; u != source; u = bb_pred[u]) + { + print_basic_block (dump_file, fixup_graph, u); + fprintf (dump_file, "<-"); + } + fprintf (dump_file, + "ENTRY (path_capacity=" HOST_WIDEST_INT_PRINT_DEC ")\n", + increment); + fprintf (dump_file, + "Network flow is " HOST_WIDEST_INT_PRINT_DEC ".\n", + max_flow); + } + } + + free_augmenting_path (&augmenting_path); + if (dump_file) + dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()"); + return max_flow; +} + + +/* Computes the corrected edge and basic block weights using FIXUP_GRAPH + after applying the find_minimum_cost_flow() routine. */ + +static void +adjust_cfg_counts (fixup_graph_type *fixup_graph) +{ + basic_block bb; + edge e; + edge_iterator ei; + int i, j; + fixup_edge_p pfedge, pfedge_n; + + gcc_assert (fixup_graph); + + if (dump_file) + fprintf (dump_file, "\nadjust_cfg_counts():\n"); + + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) + { + i = 2 * bb->index; + + /* Fixup BB. */ + if (dump_file) + fprintf (dump_file, + "BB%d: " HOST_WIDEST_INT_PRINT_DEC "", bb->index, bb->count); + + pfedge = find_fixup_edge (fixup_graph, i, i + 1); + if (pfedge->flow) + { + bb->count += pfedge->flow; + if (dump_file) + { + fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(", + pfedge->flow); + print_edge (dump_file, fixup_graph, i, i + 1); + fprintf (dump_file, ")"); + } + } + + pfedge_n = + find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index); + /* Deduct flow from normalized reverse edge. */ + if (pfedge->norm_vertex_index && pfedge_n->flow) + { + bb->count -= pfedge_n->flow; + if (dump_file) + { + fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(", + pfedge_n->flow); + print_edge (dump_file, fixup_graph, i + 1, + pfedge->norm_vertex_index); + fprintf (dump_file, ")"); + } + } + if (dump_file) + fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\n", bb->count); + + /* Fixup edge. */ + FOR_EACH_EDGE (e, ei, bb->succs) + { + /* Treat edges with ignore attribute set as if they don't exist. */ + if (EDGE_INFO (e) && EDGE_INFO (e)->ignore) + continue; + + j = 2 * e->dest->index; + if (dump_file) + fprintf (dump_file, "%d->%d: " HOST_WIDEST_INT_PRINT_DEC "", + bb->index, e->dest->index, e->count); + + pfedge = find_fixup_edge (fixup_graph, i + 1, j); + + if (bb->index != e->dest->index) + { + /* Non-self edge. */ + if (pfedge->flow) + { + e->count += pfedge->flow; + if (dump_file) + { + fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(", + pfedge->flow); + print_edge (dump_file, fixup_graph, i + 1, j); + fprintf (dump_file, ")"); + } + } + + pfedge_n = + find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index); + /* Deduct flow from normalized reverse edge. */ + if (pfedge->norm_vertex_index && pfedge_n->flow) + { + e->count -= pfedge_n->flow; + if (dump_file) + { + fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(", + pfedge_n->flow); + print_edge (dump_file, fixup_graph, j, + pfedge->norm_vertex_index); + fprintf (dump_file, ")"); + } + } + } + else + { + /* Handle self edges. Self edge is split with a normalization + vertex. Here i=j. */ + pfedge = find_fixup_edge (fixup_graph, j, i + 1); + pfedge_n = + find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index); + e->count += pfedge_n->flow; + bb->count += pfedge_n->flow; + if (dump_file) + { + fprintf (dump_file, "(self edge)"); + fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(", + pfedge_n->flow); + print_edge (dump_file, fixup_graph, i + 1, + pfedge->norm_vertex_index); + fprintf (dump_file, ")"); + } + } + + if (bb->count) + e->probability = REG_BR_PROB_BASE * e->count / bb->count; + if (dump_file) + fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\t(%.1f%%)\n", + e->count, e->probability * 100.0 / REG_BR_PROB_BASE); + } + } + + ENTRY_BLOCK_PTR->count = sum_edge_counts (ENTRY_BLOCK_PTR->succs); + EXIT_BLOCK_PTR->count = sum_edge_counts (EXIT_BLOCK_PTR->preds); + + /* Compute edge probabilities. */ + FOR_ALL_BB (bb) + { + if (bb->count) + { + FOR_EACH_EDGE (e, ei, bb->succs) + e->probability = REG_BR_PROB_BASE * e->count / bb->count; + } + else + { + int total = 0; + FOR_EACH_EDGE (e, ei, bb->succs) + if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) + total++; + if (total) + { + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) + e->probability = REG_BR_PROB_BASE / total; + else + e->probability = 0; + } + } + else + { + total += EDGE_COUNT (bb->succs); + FOR_EACH_EDGE (e, ei, bb->succs) + e->probability = REG_BR_PROB_BASE / total; + } + } + } + + if (dump_file) + { + fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n", + lang_hooks.decl_printable_name (current_function_decl, 2)); + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb) + { + if ((bb->count != sum_edge_counts (bb->preds)) + || (bb->count != sum_edge_counts (bb->succs))) + { + fprintf (dump_file, + "BB%d(" HOST_WIDEST_INT_PRINT_DEC ") **INVALID**: ", + bb->index, bb->count); + fprintf (stderr, + "******** BB%d(" HOST_WIDEST_INT_PRINT_DEC + ") **INVALID**: \n", bb->index, bb->count); + fprintf (dump_file, "in_edges=" HOST_WIDEST_INT_PRINT_DEC " ", + sum_edge_counts (bb->preds)); + fprintf (dump_file, "out_edges=" HOST_WIDEST_INT_PRINT_DEC "\n", + sum_edge_counts (bb->succs)); + } + } + } +} + + +/* Implements the negative cycle canceling algorithm to compute a minimum cost + flow. +Algorithm: +1. Find maximal flow. +2. Form residual network +3. Repeat: + While G contains a negative cost cycle C, reverse the flow on the found cycle + by the minimum residual capacity in that cycle. +4. Form the minimal cost flow + f(u,v) = rf(v, u) +Input: + FIXUP_GRAPH - Initial fixup graph. + The flow field is modified to represent the minimum cost flow. */ + +static void +find_minimum_cost_flow (fixup_graph_type *fixup_graph) +{ + /* Holds the index of predecessor in path. */ + int *pred; + /* Used to hold the minimum cost cycle. */ + int *cycle; + /* Used to record the number of iterations of cancel_negative_cycle. */ + int iteration; + /* Vector d[i] holds the minimum cost of path from i to sink. */ + gcov_type *d; + int fnum_vertices; + int new_exit_index; + int new_entry_index; + + gcc_assert (fixup_graph); + fnum_vertices = fixup_graph->num_vertices; + new_exit_index = fixup_graph->new_exit_index; + new_entry_index = fixup_graph->new_entry_index; + + find_max_flow (fixup_graph, new_entry_index, new_exit_index); + + /* Initialize the structures for find_negative_cycle(). */ + pred = (int *) xcalloc (fnum_vertices, sizeof (int)); + d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type)); + cycle = (int *) xcalloc (fnum_vertices, sizeof (int)); + + /* Repeatedly find and cancel negative cost cycles, until + no more negative cycles exist. This also updates the flow field + to represent the minimum cost flow so far. */ + iteration = 0; + while (cancel_negative_cycle (fixup_graph, pred, d, cycle)) + { + iteration++; + if (iteration > MAX_ITER (fixup_graph->num_vertices, + fixup_graph->num_edges)) + break; + } + + if (dump_file) + dump_fixup_graph (dump_file, fixup_graph, + "After find_minimum_cost_flow()"); + + /* Cleanup structures. */ + free (pred); + free (d); + free (cycle); +} + + +/* Compute the sum of the edge counts in TO_EDGES. */ + +gcov_type +sum_edge_counts (VEC (edge, gc) *to_edges) +{ + gcov_type sum = 0; + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, to_edges) + { + if (EDGE_INFO (e) && EDGE_INFO (e)->ignore) + continue; + sum += e->count; + } + return sum; +} + + +/* Main routine. Smoothes the intial assigned basic block and edge counts using + a minimum cost flow algorithm, to ensure that the flow consistency rule is + obeyed: sum of outgoing edges = sum of incoming edges for each basic + block. */ + +void +mcf_smooth_cfg (void) +{ + fixup_graph_type fixup_graph; + memset (&fixup_graph, 0, sizeof (fixup_graph)); + create_fixup_graph (&fixup_graph); + find_minimum_cost_flow (&fixup_graph); + adjust_cfg_counts (&fixup_graph); + delete_fixup_graph (&fixup_graph); +}