Michael Matz <matzmich@cs.tu-berlin.de>
* dominance.c: New file. * Makefile.in (OBJS): Add dominance.o. * flow.c (compute_flow_dominators): Remove. (compute_immediate_dominators): Remove. (compute_immediate_postdominators): Remove. * basic-block.h: Remove their prototypes. (calculate_dominance_info): Add prototype. * dce.c (eliminate_dead_code): Change calls to above functions. Don't compute dominators but only immediate dominators. * flow.c (flow_loops_find): Change callers. * gcse.c (compute_code_hoist_data): Likewise. * haifa-sched.c (schedule_insns): Likewise. * ifcvt.c (if_convert): Likewise. * ssa.c (convert_to_ssa): Likewise, and only compute immediate dominators. From-SVN: r37449
This commit is contained in:
parent
6f1225504f
commit
f80326884c
@ -1,3 +1,23 @@
|
||||
2000-11-14 Michael Matz <matzmich@cs.tu-berlin.de>
|
||||
|
||||
* dominance.c: New file.
|
||||
* Makefile.in (OBJS): Add dominance.o.
|
||||
|
||||
* flow.c (compute_flow_dominators): Remove.
|
||||
(compute_immediate_dominators): Remove.
|
||||
(compute_immediate_postdominators): Remove.
|
||||
* basic-block.h: Remove their prototypes.
|
||||
(calculate_dominance_info): Add prototype.
|
||||
|
||||
* dce.c (eliminate_dead_code): Change calls to above functions.
|
||||
Don't compute dominators but only immediate dominators.
|
||||
* flow.c (flow_loops_find): Change callers.
|
||||
* gcse.c (compute_code_hoist_data): Likewise.
|
||||
* haifa-sched.c (schedule_insns): Likewise.
|
||||
* ifcvt.c (if_convert): Likewise.
|
||||
* ssa.c (convert_to_ssa): Likewise, and only compute immediate
|
||||
dominators.
|
||||
|
||||
2000-11-14 Richard Henderson <rth@redhat.com>
|
||||
|
||||
* stmt.c (warn_if_unused_value): Don't warn if the expression
|
||||
|
@ -735,7 +735,7 @@ OBJS = diagnostic.o version.o tree.o print-tree.o stor-layout.o fold-const.o \
|
||||
profile.o insn-attrtab.o $(out_object_file) $(EXTRA_OBJS) convert.o \
|
||||
mbchar.o splay-tree.o graph.o sbitmap.o resource.o hash.o predict.o \
|
||||
lists.o ggc-common.o $(GGC) simplify-rtx.o ssa.o bb-reorder.o \
|
||||
sibcall.o conflict.o timevar.o ifcvt.o dependence.o dce.o
|
||||
sibcall.o conflict.o timevar.o ifcvt.o dominance.o dependence.o dce.o
|
||||
|
||||
BACKEND = toplev.o libbackend.a
|
||||
|
||||
@ -1403,6 +1403,8 @@ unroll.o : unroll.c $(CONFIG_H) system.h $(RTL_H) insn-config.h function.h \
|
||||
flow.o : flow.c $(CONFIG_H) system.h $(RTL_H) $(TREE_H) flags.h insn-config.h \
|
||||
$(BASIC_BLOCK_H) $(REGS_H) hard-reg-set.h output.h toplev.h $(RECOG_H) \
|
||||
insn-flags.h function.h except.h $(EXPR_H) ssa.h $(GGC_H)
|
||||
dominance.o : dominance.c $(CONFIG_H) system.h $(RTL_H) hard-reg-set.h \
|
||||
$(BASIC_BLOCK_H)
|
||||
combine.o : combine.c $(CONFIG_H) system.h $(RTL_H) flags.h function.h \
|
||||
insn-config.h insn-flags.h insn-codes.h $(INSN_ATTR_H) $(REGS_H) $(EXPR_H) \
|
||||
$(BASIC_BLOCK_H) $(RECOG_H) real.h hard-reg-set.h toplev.h
|
||||
|
@ -458,10 +458,6 @@ void verify_edge_list PARAMS ((FILE *, struct edge_list *));
|
||||
int find_edge_index PARAMS ((struct edge_list *,
|
||||
basic_block, basic_block));
|
||||
|
||||
extern void compute_flow_dominators PARAMS ((sbitmap *, sbitmap *));
|
||||
extern void compute_immediate_dominators PARAMS ((int *, sbitmap *));
|
||||
extern void compute_immediate_postdominators PARAMS ((int *, sbitmap *));
|
||||
|
||||
|
||||
enum update_life_extent
|
||||
{
|
||||
@ -565,4 +561,15 @@ extern conflict_graph conflict_graph_compute
|
||||
PARAMS ((regset,
|
||||
partition));
|
||||
|
||||
/* In dominance.c */
|
||||
|
||||
enum cdi_direction
|
||||
{
|
||||
CDI_DOMINATORS,
|
||||
CDI_POST_DOMINATORS
|
||||
};
|
||||
|
||||
extern void calculate_dominance_info PARAMS ((int *, sbitmap *,
|
||||
enum cdi_direction));
|
||||
|
||||
#endif /* _BASIC_BLOCK_H */
|
||||
|
@ -485,7 +485,6 @@ eliminate_dead_code ()
|
||||
/* Map element (b,e) is nonzero if the block is control dependent on
|
||||
edge. "cdbte" abbreviates control dependent block to edge. */
|
||||
control_dependent_block_to_edge_map cdbte;
|
||||
sbitmap *postdominators;
|
||||
/* Element I is the immediate postdominator of block I. */
|
||||
int *pdom;
|
||||
struct edge_list *el;
|
||||
@ -504,17 +503,14 @@ eliminate_dead_code ()
|
||||
compute_bb_for_insn (max_insn_uid);
|
||||
|
||||
/* Compute control dependence. */
|
||||
postdominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||||
compute_flow_dominators (NULL, postdominators);
|
||||
pdom = (int *) xmalloc (n_basic_blocks * sizeof (int));
|
||||
for (i = 0; i < n_basic_blocks; ++i)
|
||||
pdom[i] = INVALID_BLOCK;
|
||||
compute_immediate_postdominators (pdom, postdominators);
|
||||
calculate_dominance_info (pdom, NULL, CDI_POST_DOMINATORS);
|
||||
/* Assume there is a path from each node to the exit block. */
|
||||
for (i = 0; i < n_basic_blocks; ++i)
|
||||
if (pdom[i] == INVALID_BLOCK)
|
||||
pdom[i] = EXIT_BLOCK;
|
||||
sbitmap_vector_free (postdominators);
|
||||
el = create_edge_list();
|
||||
find_all_control_dependences (el, pdom, cdbte);
|
||||
|
||||
|
622
gcc/dominance.c
Normal file
622
gcc/dominance.c
Normal file
@ -0,0 +1,622 @@
|
||||
/* Calculate (post)dominators in slightly super-linear time.
|
||||
Copyright (C) 2000 Free Software Foundation, Inc.
|
||||
Contributed by Michael Matz (matz@ifh.de).
|
||||
|
||||
This file is part of GNU CC.
|
||||
|
||||
GNU CC is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2, or (at your option)
|
||||
any later version.
|
||||
|
||||
GNU CC is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GNU CC; see the file COPYING. If not, write to
|
||||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||||
Boston, MA 02111-1307, USA. */
|
||||
|
||||
/* This file implements the well known algorithm from Lengauer and Tarjan
|
||||
to compute the dominators in a control flow graph. A basic block D is said
|
||||
to dominate another block X, when all paths from the entry node of the CFG
|
||||
to X go also over D. The dominance relation is a transitive reflexive
|
||||
relation and its minimal transitive reduction is a tree, called the
|
||||
dominator tree. So for each block X besides the entry block exists a
|
||||
block I(X), called the immediate dominator of X, which is the parent of X
|
||||
in the dominator tree.
|
||||
|
||||
The algorithm computes this dominator tree implicitely by computing for
|
||||
each block its immediate dominator. We use tree balancing and path
|
||||
compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
|
||||
slowly growing functional inverse of the Ackerman function. */
|
||||
|
||||
#include "config.h"
|
||||
#include "system.h"
|
||||
#include "rtl.h"
|
||||
#include "hard-reg-set.h"
|
||||
#include "basic-block.h"
|
||||
|
||||
|
||||
/* We name our nodes with integers, beginning with 1. Zero is reserved for
|
||||
'undefined' or 'end of list'. The name of each node is given by the dfs
|
||||
number of the corresponding basic block. Please note, that we include the
|
||||
artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
|
||||
support multiple entry points. As it has no real basic block index we use
|
||||
'n_basic_blocks' for that. Its dfs number is of course 1. */
|
||||
|
||||
/* Type of Basic Block aka. TBB */
|
||||
typedef unsigned int TBB;
|
||||
|
||||
/* We work in a poor-mans object oriented fashion, and carry an instance of
|
||||
this structure through all our 'methods'. It holds various arrays
|
||||
reflecting the (sub)structure of the flowgraph. Most of them are of type
|
||||
TBB and are also indexed by TBB. */
|
||||
|
||||
struct dom_info
|
||||
{
|
||||
/* The parent of a node in the DFS tree. */
|
||||
TBB *dfs_parent;
|
||||
/* For a node x key[x] is roughly the node nearest to the root from which
|
||||
exists a way to x only over nodes behind x. Such a node is also called
|
||||
semidominator. */
|
||||
TBB *key;
|
||||
/* The value in path_min[x] is the node y on the path from x to the root of
|
||||
the tree x is in with the smallest key[y]. */
|
||||
TBB *path_min;
|
||||
/* bucket[x] points to the first node of the set of nodes having x as key. */
|
||||
TBB *bucket;
|
||||
/* And next_bucket[x] points to the next node. */
|
||||
TBB *next_bucket;
|
||||
/* After the algorithm is done, dom[x] contains the immediate dominator
|
||||
of x. */
|
||||
TBB *dom;
|
||||
|
||||
/* The following few fields implement the structures needed for disjoint
|
||||
sets. */
|
||||
/* set_chain[x] is the next node on the path from x to the representant
|
||||
of the set containing x. If set_chain[x]==0 then x is a root. */
|
||||
TBB *set_chain;
|
||||
/* set_size[x] is the number of elements in the set named by x. */
|
||||
unsigned int *set_size;
|
||||
/* set_child[x] is used for balancing the tree representing a set. It can
|
||||
be understood as the next sibling of x. */
|
||||
TBB *set_child;
|
||||
|
||||
/* If b is the number of a basic block (BB->index), dfs_order[b] is the
|
||||
number of that node in DFS order counted from 1. This is an index
|
||||
into most of the other arrays in this structure. */
|
||||
TBB *dfs_order;
|
||||
/* If x is the DFS-index of a node which correspondends with an basic block,
|
||||
dfs_to_bb[x] is that basic block. Note, that in our structure there are
|
||||
more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
|
||||
is true for every basic block bb, but not the opposite. */
|
||||
basic_block *dfs_to_bb;
|
||||
|
||||
/* This is the next free DFS number when creating the DFS tree or forest. */
|
||||
unsigned int dfsnum;
|
||||
/* The number of nodes in the DFS tree (==dfsnum-1). */
|
||||
unsigned int nodes;
|
||||
};
|
||||
|
||||
static void init_dom_info PARAMS ((struct dom_info *));
|
||||
static void free_dom_info PARAMS ((struct dom_info *));
|
||||
static void calc_dfs_tree_nonrec PARAMS ((struct dom_info *,
|
||||
basic_block,
|
||||
enum cdi_direction));
|
||||
static void calc_dfs_tree PARAMS ((struct dom_info *,
|
||||
enum cdi_direction));
|
||||
static void compress PARAMS ((struct dom_info *, TBB));
|
||||
static TBB eval PARAMS ((struct dom_info *, TBB));
|
||||
static void link_roots PARAMS ((struct dom_info *, TBB, TBB));
|
||||
static void calc_idoms PARAMS ((struct dom_info *,
|
||||
enum cdi_direction));
|
||||
static void idoms_to_doms PARAMS ((struct dom_info *,
|
||||
sbitmap *));
|
||||
|
||||
/* Helper macro for allocating and initializing an array,
|
||||
for aesthetic reasons. */
|
||||
#define init_ar(var, type, num, content) \
|
||||
do { \
|
||||
unsigned int i = 1; /* Catch content == i. */ \
|
||||
if (! (content)) \
|
||||
(var) = (type *) xcalloc ((num), sizeof (type)); \
|
||||
else \
|
||||
{ \
|
||||
(var) = (type *) xmalloc ((num) * sizeof (type)); \
|
||||
for (i = 0; i < num; i++) \
|
||||
(var)[i] = (content); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* Allocate all needed memory in a pessimistic fashion (so we round up).
|
||||
This initialises the contents of DI, which already must be allocated. */
|
||||
|
||||
static void
|
||||
init_dom_info (di)
|
||||
struct dom_info *di;
|
||||
{
|
||||
/* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
|
||||
EXIT_BLOCK. */
|
||||
unsigned int num = n_basic_blocks + 1 + 1;
|
||||
init_ar (di->dfs_parent, TBB, num, 0);
|
||||
init_ar (di->path_min, TBB, num, i);
|
||||
init_ar (di->key, TBB, num, i);
|
||||
init_ar (di->dom, TBB, num, 0);
|
||||
|
||||
init_ar (di->bucket, TBB, num, 0);
|
||||
init_ar (di->next_bucket, TBB, num, 0);
|
||||
|
||||
init_ar (di->set_chain, TBB, num, 0);
|
||||
init_ar (di->set_size, unsigned int, num, 1);
|
||||
init_ar (di->set_child, TBB, num, 0);
|
||||
|
||||
init_ar (di->dfs_order, TBB, (unsigned int) n_basic_blocks + 1, 0);
|
||||
init_ar (di->dfs_to_bb, basic_block, num, 0);
|
||||
|
||||
di->dfsnum = 1;
|
||||
di->nodes = 0;
|
||||
}
|
||||
|
||||
#undef init_ar
|
||||
|
||||
/* Free all allocated memory in DI, but not DI itself. */
|
||||
|
||||
static void
|
||||
free_dom_info (di)
|
||||
struct dom_info *di;
|
||||
{
|
||||
free (di->dfs_parent);
|
||||
free (di->path_min);
|
||||
free (di->key);
|
||||
free (di->dom);
|
||||
free (di->bucket);
|
||||
free (di->next_bucket);
|
||||
free (di->set_chain);
|
||||
free (di->set_size);
|
||||
free (di->set_child);
|
||||
free (di->dfs_order);
|
||||
free (di->dfs_to_bb);
|
||||
}
|
||||
|
||||
/* The nonrecursive variant of creating a DFS tree. DI is our working
|
||||
structure, BB the starting basic block for this tree and REVERSE
|
||||
is true, if predecessors should be visited instead of successors of a
|
||||
node. After this is done all nodes reachable from BB were visited, have
|
||||
assigned their dfs number and are linked together to form a tree. */
|
||||
|
||||
static void
|
||||
calc_dfs_tree_nonrec (di, bb, reverse)
|
||||
struct dom_info *di;
|
||||
basic_block bb;
|
||||
enum cdi_direction reverse;
|
||||
{
|
||||
/* We never call this with bb==EXIT_BLOCK_PTR (ENTRY_BLOCK_PTR if REVERSE). */
|
||||
/* We call this _only_ if bb is not already visited. */
|
||||
edge e;
|
||||
TBB child_i, my_i = 0;
|
||||
edge *stack;
|
||||
int sp;
|
||||
/* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
|
||||
problem). */
|
||||
basic_block en_block;
|
||||
/* Ending block. */
|
||||
basic_block ex_block;
|
||||
|
||||
stack = (edge *) xmalloc ((n_basic_blocks + 3) * sizeof (edge));
|
||||
sp = 0;
|
||||
|
||||
/* Initialize our border blocks, and the first edge. */
|
||||
if (reverse)
|
||||
{
|
||||
e = bb->pred;
|
||||
en_block = EXIT_BLOCK_PTR;
|
||||
ex_block = ENTRY_BLOCK_PTR;
|
||||
}
|
||||
else
|
||||
{
|
||||
e = bb->succ;
|
||||
en_block = ENTRY_BLOCK_PTR;
|
||||
ex_block = EXIT_BLOCK_PTR;
|
||||
}
|
||||
|
||||
/* When the stack is empty we break out of this loop. */
|
||||
while (1)
|
||||
{
|
||||
basic_block bn;
|
||||
|
||||
/* This loop traverses edges e in depth first manner, and fills the
|
||||
stack. */
|
||||
while (e)
|
||||
{
|
||||
edge e_next;
|
||||
|
||||
/* Deduce from E the current and the next block (BB and BN), and the
|
||||
next edge. */
|
||||
if (reverse)
|
||||
{
|
||||
bn = e->src;
|
||||
|
||||
/* If the next node BN is either already visited or a border
|
||||
block the current edge is useless, and simply overwritten
|
||||
with the next edge out of the current node. */
|
||||
if (di->dfs_order[bn->index] || bn == ex_block)
|
||||
{
|
||||
e = e->pred_next;
|
||||
continue;
|
||||
}
|
||||
bb = e->dest;
|
||||
e_next = bn->pred;
|
||||
}
|
||||
else
|
||||
{
|
||||
bn = e->dest;
|
||||
if (di->dfs_order[bn->index] || bn == ex_block)
|
||||
{
|
||||
e = e->succ_next;
|
||||
continue;
|
||||
}
|
||||
bb = e->src;
|
||||
e_next = bn->succ;
|
||||
}
|
||||
|
||||
if (bn == en_block)
|
||||
abort ();
|
||||
|
||||
/* Fill the DFS tree info calculatable _before_ recursing. */
|
||||
if (bb != en_block)
|
||||
my_i = di->dfs_order[bb->index];
|
||||
else
|
||||
my_i = di->dfs_order[n_basic_blocks];
|
||||
child_i = di->dfs_order[bn->index] = di->dfsnum++;
|
||||
di->dfs_to_bb[child_i] = bn;
|
||||
di->dfs_parent[child_i] = my_i;
|
||||
|
||||
/* Save the current point in the CFG on the stack, and recurse. */
|
||||
stack[sp++] = e;
|
||||
e = e_next;
|
||||
}
|
||||
|
||||
if (!sp)
|
||||
break;
|
||||
e = stack[--sp];
|
||||
|
||||
/* OK. The edge-list was exhausted, meaning normally we would
|
||||
end the recursion. After returning from the recursive call,
|
||||
there were (may be) other statements which were run after a
|
||||
child node was completely considered by DFS. Here is the
|
||||
point to do it in the non-recursive variant.
|
||||
E.g. The block just completed is in e->dest for forward DFS,
|
||||
the block not yet completed (the parent of the one above)
|
||||
in e->src. This could be used e.g. for computing the number of
|
||||
descendants or the tree depth. */
|
||||
if (reverse)
|
||||
e = e->pred_next;
|
||||
else
|
||||
e = e->succ_next;
|
||||
}
|
||||
free (stack);
|
||||
}
|
||||
|
||||
/* The main entry for calculating the DFS tree or forest. DI is our working
|
||||
structure and REVERSE is true, if we are interested in the reverse flow
|
||||
graph. In that case the result is not necessarily a tree but a forest,
|
||||
because there may be nodes from which the EXIT_BLOCK is unreachable. */
|
||||
|
||||
static void
|
||||
calc_dfs_tree (di, reverse)
|
||||
struct dom_info *di;
|
||||
enum cdi_direction reverse;
|
||||
{
|
||||
/* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
|
||||
basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
|
||||
di->dfs_order[n_basic_blocks] = di->dfsnum;
|
||||
di->dfs_to_bb[di->dfsnum] = begin;
|
||||
di->dfsnum++;
|
||||
|
||||
calc_dfs_tree_nonrec (di, begin, reverse);
|
||||
|
||||
if (reverse)
|
||||
{
|
||||
/* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
|
||||
They are reverse-unreachable. In the dom-case we disallow such
|
||||
nodes, but in post-dom we have to deal with them, so we simply
|
||||
include them in the DFS tree which actually becomes a forest. */
|
||||
int i;
|
||||
for (i = n_basic_blocks - 1; i >= 0; i--)
|
||||
{
|
||||
basic_block b = BASIC_BLOCK (i);
|
||||
if (di->dfs_order[b->index])
|
||||
continue;
|
||||
di->dfs_order[b->index] = di->dfsnum;
|
||||
di->dfs_to_bb[di->dfsnum] = b;
|
||||
di->dfsnum++;
|
||||
calc_dfs_tree_nonrec (di, b, reverse);
|
||||
}
|
||||
}
|
||||
|
||||
di->nodes = di->dfsnum - 1;
|
||||
|
||||
/* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
|
||||
if (di->nodes != (unsigned int) n_basic_blocks + 1)
|
||||
abort ();
|
||||
}
|
||||
|
||||
/* Compress the path from V to the root of its set and update path_min at the
|
||||
same time. After compress(di, V) set_chain[V] is the root of the set V is
|
||||
in and path_min[V] is the node with the smallest key[] value on the path
|
||||
from V to that root. */
|
||||
|
||||
static void
|
||||
compress (di, v)
|
||||
struct dom_info *di;
|
||||
TBB v;
|
||||
{
|
||||
/* Btw. It's not worth to unrecurse compress() as the depth is usually not
|
||||
greater than 5 even for huge graphs (I've not seen call depth > 4).
|
||||
Also performance wise compress() ranges _far_ behind eval(). */
|
||||
TBB parent = di->set_chain[v];
|
||||
if (di->set_chain[parent])
|
||||
{
|
||||
compress (di, parent);
|
||||
if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
|
||||
di->path_min[v] = di->path_min[parent];
|
||||
di->set_chain[v] = di->set_chain[parent];
|
||||
}
|
||||
}
|
||||
|
||||
/* Compress the path from V to the set root of V if needed (when the root has
|
||||
changed since the last call). Returns the node with the smallest key[]
|
||||
value on the path from V to the root. */
|
||||
|
||||
static inline TBB
|
||||
eval (di, v)
|
||||
struct dom_info *di;
|
||||
TBB v;
|
||||
{
|
||||
/* The representant of the set V is in, also called root (as the set
|
||||
representation is a tree). */
|
||||
TBB rep = di->set_chain[v];
|
||||
|
||||
/* V itself is the root. */
|
||||
if (!rep)
|
||||
return di->path_min[v];
|
||||
|
||||
/* Compress only if necessary. */
|
||||
if (di->set_chain[rep])
|
||||
{
|
||||
compress (di, v);
|
||||
rep = di->set_chain[v];
|
||||
}
|
||||
|
||||
if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
|
||||
return di->path_min[v];
|
||||
else
|
||||
return di->path_min[rep];
|
||||
}
|
||||
|
||||
/* This essentially merges the two sets of V and W, giving a single set with
|
||||
the new root V. The internal representation of these disjoint sets is a
|
||||
balanced tree. Currently link(V,W) is only used with V being the parent
|
||||
of W. */
|
||||
|
||||
static void
|
||||
link_roots (di, v, w)
|
||||
struct dom_info *di;
|
||||
TBB v, w;
|
||||
{
|
||||
TBB s = w;
|
||||
|
||||
/* Rebalance the tree. */
|
||||
while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
|
||||
{
|
||||
if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
|
||||
>= 2 * di->set_size[di->set_child[s]])
|
||||
{
|
||||
di->set_chain[di->set_child[s]] = s;
|
||||
di->set_child[s] = di->set_child[di->set_child[s]];
|
||||
}
|
||||
else
|
||||
{
|
||||
di->set_size[di->set_child[s]] = di->set_size[s];
|
||||
s = di->set_chain[s] = di->set_child[s];
|
||||
}
|
||||
}
|
||||
|
||||
di->path_min[s] = di->path_min[w];
|
||||
di->set_size[v] += di->set_size[w];
|
||||
if (di->set_size[v] < 2 * di->set_size[w])
|
||||
{
|
||||
TBB tmp = s;
|
||||
s = di->set_child[v];
|
||||
di->set_child[v] = tmp;
|
||||
}
|
||||
|
||||
/* Merge all subtrees. */
|
||||
while (s)
|
||||
{
|
||||
di->set_chain[s] = v;
|
||||
s = di->set_child[s];
|
||||
}
|
||||
}
|
||||
|
||||
/* This calculates the immediate dominators (or post-dominators if REVERSE is
|
||||
true). DI is our working structure and should hold the DFS forest.
|
||||
On return the immediate dominator to node V is in di->dom[V]. */
|
||||
|
||||
static void
|
||||
calc_idoms (di, reverse)
|
||||
struct dom_info *di;
|
||||
enum cdi_direction reverse;
|
||||
{
|
||||
TBB v, w, k, par;
|
||||
basic_block en_block;
|
||||
if (reverse)
|
||||
en_block = EXIT_BLOCK_PTR;
|
||||
else
|
||||
en_block = ENTRY_BLOCK_PTR;
|
||||
|
||||
/* Go backwards in DFS order, to first look at the leafs. */
|
||||
v = di->nodes;
|
||||
while (v > 1)
|
||||
{
|
||||
basic_block bb = di->dfs_to_bb[v];
|
||||
edge e, e_next;
|
||||
|
||||
par = di->dfs_parent[v];
|
||||
k = v;
|
||||
if (reverse)
|
||||
e = bb->succ;
|
||||
else
|
||||
e = bb->pred;
|
||||
|
||||
/* Search all direct predecessors for the smallest node with a path
|
||||
to them. That way we have the smallest node with also a path to
|
||||
us only over nodes behind us. In effect we search for our
|
||||
semidominator. */
|
||||
for (; e; e = e_next)
|
||||
{
|
||||
TBB k1;
|
||||
basic_block b;
|
||||
|
||||
if (reverse)
|
||||
{
|
||||
b = e->dest;
|
||||
e_next = e->succ_next;
|
||||
}
|
||||
else
|
||||
{
|
||||
b = e->src;
|
||||
e_next = e->pred_next;
|
||||
}
|
||||
if (b == en_block)
|
||||
k1 = di->dfs_order[n_basic_blocks];
|
||||
else
|
||||
k1 = di->dfs_order[b->index];
|
||||
|
||||
/* Call eval() only if really needed. If k1 is above V in DFS tree,
|
||||
then we know, that eval(k1) == k1 and key[k1] == k1. */
|
||||
if (k1 > v)
|
||||
k1 = di->key[eval (di, k1)];
|
||||
if (k1 < k)
|
||||
k = k1;
|
||||
}
|
||||
|
||||
di->key[v] = k;
|
||||
link_roots (di, par, v);
|
||||
di->next_bucket[v] = di->bucket[k];
|
||||
di->bucket[k] = v;
|
||||
|
||||
/* Transform semidominators into dominators. */
|
||||
for (w = di->bucket[par]; w; w = di->next_bucket[w])
|
||||
{
|
||||
k = eval (di, w);
|
||||
if (di->key[k] < di->key[w])
|
||||
di->dom[w] = k;
|
||||
else
|
||||
di->dom[w] = par;
|
||||
}
|
||||
/* We don't need to cleanup next_bucket[]. */
|
||||
di->bucket[par] = 0;
|
||||
v--;
|
||||
}
|
||||
|
||||
/* Explicitely define the dominators. */
|
||||
di->dom[1] = 0;
|
||||
for (v = 2; v <= di->nodes; v++)
|
||||
if (di->dom[v] != di->key[v])
|
||||
di->dom[v] = di->dom[di->dom[v]];
|
||||
}
|
||||
|
||||
/* Convert the information about immediate dominators (in DI) to sets of all
|
||||
dominators (in DOMINATORS). */
|
||||
|
||||
static void
|
||||
idoms_to_doms (di, dominators)
|
||||
struct dom_info *di;
|
||||
sbitmap *dominators;
|
||||
{
|
||||
TBB i, e_index;
|
||||
int bb, bb_idom;
|
||||
sbitmap_vector_zero (dominators, n_basic_blocks);
|
||||
/* We have to be careful, to not include the ENTRY_BLOCK or EXIT_BLOCK
|
||||
in the list of (post)-doms, so remember that in e_index. */
|
||||
e_index = di->dfs_order[n_basic_blocks];
|
||||
|
||||
for (i = 1; i <= di->nodes; i++)
|
||||
{
|
||||
if (i == e_index)
|
||||
continue;
|
||||
bb = di->dfs_to_bb[i]->index;
|
||||
|
||||
if (di->dom[i] && (di->dom[i] != e_index))
|
||||
{
|
||||
bb_idom = di->dfs_to_bb[di->dom[i]]->index;
|
||||
sbitmap_copy (dominators[bb], dominators[bb_idom]);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* It has no immediate dom or only ENTRY_BLOCK or EXIT_BLOCK.
|
||||
If it is a child of ENTRY_BLOCK that's OK, and it's only
|
||||
dominated by itself; if it's _not_ a child of ENTRY_BLOCK, it
|
||||
means, it is unreachable. That case has been disallowed in the
|
||||
building of the DFS tree, so we are save here. For the reverse
|
||||
flow graph it means, it has no children, so, to be compatible
|
||||
with the old code, we set the post_dominators to all one. */
|
||||
if (!di->dom[i])
|
||||
{
|
||||
sbitmap_ones (dominators[bb]);
|
||||
}
|
||||
}
|
||||
SET_BIT (dominators[bb], bb);
|
||||
}
|
||||
}
|
||||
|
||||
/* The main entry point into this module. IDOM is an integer array with room
|
||||
for n_basic_blocks integers, DOMS is a preallocated sbitmap array having
|
||||
room for n_basic_blocks^2 bits, and POST is true if the caller wants to
|
||||
know post-dominators.
|
||||
|
||||
On return IDOM[i] will be the BB->index of the immediate (post) dominator
|
||||
of basic block i, and DOMS[i] will have set bit j if basic block j is a
|
||||
(post)dominator for block i.
|
||||
|
||||
Either IDOM or DOMS may be NULL (meaning the caller is not interested in
|
||||
immediate resp. all dominators). */
|
||||
|
||||
void
|
||||
calculate_dominance_info (idom, doms, reverse)
|
||||
int *idom;
|
||||
sbitmap *doms;
|
||||
enum cdi_direction reverse;
|
||||
{
|
||||
struct dom_info di;
|
||||
|
||||
if (!doms && !idom)
|
||||
return;
|
||||
init_dom_info (&di);
|
||||
calc_dfs_tree (&di, reverse);
|
||||
calc_idoms (&di, reverse);
|
||||
|
||||
if (idom)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < n_basic_blocks; i++)
|
||||
{
|
||||
basic_block b = BASIC_BLOCK (i);
|
||||
TBB d = di.dom[di.dfs_order[b->index]];
|
||||
|
||||
/* The old code didn't modify array elements of nodes having only
|
||||
itself as dominator (d==0) or only ENTRY_BLOCK (resp. EXIT_BLOCK)
|
||||
(d==1). */
|
||||
if (d > 1)
|
||||
idom[i] = di.dfs_to_bb[d]->index;
|
||||
}
|
||||
}
|
||||
if (doms)
|
||||
idoms_to_doms (&di, doms);
|
||||
|
||||
free_dom_info (&di);
|
||||
}
|
246
gcc/flow.c
246
gcc/flow.c
@ -6247,250 +6247,6 @@ print_rtl_with_bb (outf, rtx_first)
|
||||
}
|
||||
}
|
||||
|
||||
/* Compute dominator relationships using new flow graph structures. */
|
||||
|
||||
void
|
||||
compute_flow_dominators (dominators, post_dominators)
|
||||
sbitmap *dominators;
|
||||
sbitmap *post_dominators;
|
||||
{
|
||||
int bb;
|
||||
sbitmap *temp_bitmap;
|
||||
edge e;
|
||||
basic_block *worklist, *workend, *qin, *qout;
|
||||
int qlen;
|
||||
|
||||
/* Allocate a worklist array/queue. Entries are only added to the
|
||||
list if they were not already on the list. So the size is
|
||||
bounded by the number of basic blocks. */
|
||||
worklist = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
|
||||
workend = &worklist[n_basic_blocks];
|
||||
|
||||
temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||||
sbitmap_vector_zero (temp_bitmap, n_basic_blocks);
|
||||
|
||||
if (dominators)
|
||||
{
|
||||
/* The optimistic setting of dominators requires us to put every
|
||||
block on the work list initially. */
|
||||
qin = qout = worklist;
|
||||
for (bb = 0; bb < n_basic_blocks; bb++)
|
||||
{
|
||||
*qin++ = BASIC_BLOCK (bb);
|
||||
BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
|
||||
}
|
||||
qlen = n_basic_blocks;
|
||||
qin = worklist;
|
||||
|
||||
/* We want a maximal solution, so initially assume everything dominates
|
||||
everything else. */
|
||||
sbitmap_vector_ones (dominators, n_basic_blocks);
|
||||
|
||||
/* Mark successors of the entry block so we can identify them below. */
|
||||
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
|
||||
e->dest->aux = ENTRY_BLOCK_PTR;
|
||||
|
||||
/* Iterate until the worklist is empty. */
|
||||
while (qlen)
|
||||
{
|
||||
/* Take the first entry off the worklist. */
|
||||
basic_block b = *qout++;
|
||||
if (qout >= workend)
|
||||
qout = worklist;
|
||||
qlen--;
|
||||
|
||||
bb = b->index;
|
||||
|
||||
/* Compute the intersection of the dominators of all the
|
||||
predecessor blocks.
|
||||
|
||||
If one of the predecessor blocks is the ENTRY block, then the
|
||||
intersection of the dominators of the predecessor blocks is
|
||||
defined as the null set. We can identify such blocks by the
|
||||
special value in the AUX field in the block structure. */
|
||||
if (b->aux == ENTRY_BLOCK_PTR)
|
||||
{
|
||||
/* Do not clear the aux field for blocks which are
|
||||
successors of the ENTRY block. That way we never add
|
||||
them to the worklist again.
|
||||
|
||||
The intersect of dominators of the preds of this block is
|
||||
defined as the null set. */
|
||||
sbitmap_zero (temp_bitmap[bb]);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear the aux field of this block so it can be added to
|
||||
the worklist again if necessary. */
|
||||
b->aux = NULL;
|
||||
sbitmap_intersection_of_preds (temp_bitmap[bb], dominators, bb);
|
||||
}
|
||||
|
||||
/* Make sure each block always dominates itself. */
|
||||
SET_BIT (temp_bitmap[bb], bb);
|
||||
|
||||
/* If the out state of this block changed, then we need to
|
||||
add the successors of this block to the worklist if they
|
||||
are not already on the worklist. */
|
||||
if (sbitmap_a_and_b (dominators[bb], dominators[bb], temp_bitmap[bb]))
|
||||
{
|
||||
for (e = b->succ; e; e = e->succ_next)
|
||||
{
|
||||
if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
|
||||
{
|
||||
*qin++ = e->dest;
|
||||
if (qin >= workend)
|
||||
qin = worklist;
|
||||
qlen++;
|
||||
|
||||
e->dest->aux = e;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (post_dominators)
|
||||
{
|
||||
/* The optimistic setting of dominators requires us to put every
|
||||
block on the work list initially. */
|
||||
qin = qout = worklist;
|
||||
for (bb = 0; bb < n_basic_blocks; bb++)
|
||||
{
|
||||
*qin++ = BASIC_BLOCK (bb);
|
||||
BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
|
||||
}
|
||||
qlen = n_basic_blocks;
|
||||
qin = worklist;
|
||||
|
||||
/* We want a maximal solution, so initially assume everything post
|
||||
dominates everything else. */
|
||||
sbitmap_vector_ones (post_dominators, n_basic_blocks);
|
||||
|
||||
/* Mark predecessors of the exit block so we can identify them below. */
|
||||
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
|
||||
e->src->aux = EXIT_BLOCK_PTR;
|
||||
|
||||
/* Iterate until the worklist is empty. */
|
||||
while (qlen)
|
||||
{
|
||||
/* Take the first entry off the worklist. */
|
||||
basic_block b = *qout++;
|
||||
if (qout >= workend)
|
||||
qout = worklist;
|
||||
qlen--;
|
||||
|
||||
bb = b->index;
|
||||
|
||||
/* Compute the intersection of the post dominators of all the
|
||||
successor blocks.
|
||||
|
||||
If one of the successor blocks is the EXIT block, then the
|
||||
intersection of the dominators of the successor blocks is
|
||||
defined as the null set. We can identify such blocks by the
|
||||
special value in the AUX field in the block structure. */
|
||||
if (b->aux == EXIT_BLOCK_PTR)
|
||||
{
|
||||
/* Do not clear the aux field for blocks which are
|
||||
predecessors of the EXIT block. That way we we never
|
||||
add them to the worklist again.
|
||||
|
||||
The intersect of dominators of the succs of this block is
|
||||
defined as the null set. */
|
||||
sbitmap_zero (temp_bitmap[bb]);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear the aux field of this block so it can be added to
|
||||
the worklist again if necessary. */
|
||||
b->aux = NULL;
|
||||
sbitmap_intersection_of_succs (temp_bitmap[bb],
|
||||
post_dominators, bb);
|
||||
}
|
||||
|
||||
/* Make sure each block always post dominates itself. */
|
||||
SET_BIT (temp_bitmap[bb], bb);
|
||||
|
||||
/* If the out state of this block changed, then we need to
|
||||
add the successors of this block to the worklist if they
|
||||
are not already on the worklist. */
|
||||
if (sbitmap_a_and_b (post_dominators[bb],
|
||||
post_dominators[bb],
|
||||
temp_bitmap[bb]))
|
||||
{
|
||||
for (e = b->pred; e; e = e->pred_next)
|
||||
{
|
||||
if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
|
||||
{
|
||||
*qin++ = e->src;
|
||||
if (qin >= workend)
|
||||
qin = worklist;
|
||||
qlen++;
|
||||
|
||||
e->src->aux = e;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free (worklist);
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Given DOMINATORS, compute the immediate dominators into IDOM. If a
|
||||
block dominates only itself, its entry remains as INVALID_BLOCK. */
|
||||
|
||||
void
|
||||
compute_immediate_dominators (idom, dominators)
|
||||
int *idom;
|
||||
sbitmap *dominators;
|
||||
{
|
||||
sbitmap *tmp;
|
||||
int b;
|
||||
|
||||
tmp = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||||
|
||||
/* Begin with tmp(n) = dom(n) - { n }. */
|
||||
for (b = n_basic_blocks; --b >= 0;)
|
||||
{
|
||||
sbitmap_copy (tmp[b], dominators[b]);
|
||||
RESET_BIT (tmp[b], b);
|
||||
}
|
||||
|
||||
/* Subtract out all of our dominator's dominators. */
|
||||
for (b = n_basic_blocks; --b >= 0;)
|
||||
{
|
||||
sbitmap tmp_b = tmp[b];
|
||||
int s;
|
||||
|
||||
for (s = n_basic_blocks; --s >= 0;)
|
||||
if (TEST_BIT (tmp_b, s))
|
||||
sbitmap_difference (tmp_b, tmp_b, tmp[s]);
|
||||
}
|
||||
|
||||
/* Find the one bit set in the bitmap and put it in the output array. */
|
||||
for (b = n_basic_blocks; --b >= 0;)
|
||||
{
|
||||
int t;
|
||||
EXECUTE_IF_SET_IN_SBITMAP (tmp[b], 0, t, { idom[b] = t; });
|
||||
}
|
||||
|
||||
sbitmap_vector_free (tmp);
|
||||
}
|
||||
|
||||
/* Given POSTDOMINATORS, compute the immediate postdominators into
|
||||
IDOM. If a block is only dominated by itself, its entry remains as
|
||||
INVALID_BLOCK. */
|
||||
|
||||
void
|
||||
compute_immediate_postdominators (idom, postdominators)
|
||||
int *idom;
|
||||
sbitmap *postdominators;
|
||||
{
|
||||
compute_immediate_dominators (idom, postdominators);
|
||||
}
|
||||
|
||||
/* Recompute register set/reference counts immediately prior to register
|
||||
allocation.
|
||||
|
||||
@ -8151,7 +7907,7 @@ flow_loops_find (loops, flags)
|
||||
|
||||
/* Compute the dominators. */
|
||||
dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||||
compute_flow_dominators (dom, NULL);
|
||||
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
|
||||
|
||||
/* Count the number of loop edges (back edges). This should be the
|
||||
same as the number of natural loops. */
|
||||
|
@ -5292,7 +5292,7 @@ compute_code_hoist_data ()
|
||||
compute_local_properties (transp, comp, antloc, 0);
|
||||
compute_transpout ();
|
||||
compute_code_hoist_vbeinout ();
|
||||
compute_flow_dominators (dominators, NULL);
|
||||
calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
|
||||
if (gcse_file)
|
||||
fprintf (gcse_file, "\n");
|
||||
}
|
||||
|
@ -7001,10 +7001,8 @@ schedule_insns (dump_file)
|
||||
so may even be beneficial. */
|
||||
edge_list = create_edge_list ();
|
||||
|
||||
/* Compute the dominators and post dominators. We don't
|
||||
currently use post dominators, but we should for
|
||||
speculative motion analysis. */
|
||||
compute_flow_dominators (dom, NULL);
|
||||
/* Compute the dominators and post dominators. */
|
||||
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
|
||||
|
||||
/* build_control_flow will return nonzero if it detects unreachable
|
||||
blocks or any other irregularity with the cfg which prevents
|
||||
|
@ -2104,7 +2104,7 @@ if_convert (life_data_ok)
|
||||
if (HAVE_conditional_execution || life_data_ok)
|
||||
{
|
||||
post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||||
compute_flow_dominators (NULL, post_dominators);
|
||||
calculate_dominance_info (NULL, post_dominators, CDI_POST_DOMINATORS);
|
||||
}
|
||||
|
||||
/* Record initial block numbers. */
|
||||
|
@ -1148,7 +1148,6 @@ convert_to_ssa ()
|
||||
sbitmap *evals;
|
||||
|
||||
/* Dominator bitmaps. */
|
||||
sbitmap *dominators;
|
||||
sbitmap *dfs;
|
||||
sbitmap *idfs;
|
||||
|
||||
@ -1164,15 +1163,9 @@ convert_to_ssa ()
|
||||
/* Need global_live_at_{start,end} up to date. */
|
||||
life_analysis (get_insns (), NULL, PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE);
|
||||
|
||||
/* Compute dominators. */
|
||||
dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||||
compute_flow_dominators (dominators, NULL);
|
||||
|
||||
idom = (int *) alloca (n_basic_blocks * sizeof (int));
|
||||
memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
|
||||
compute_immediate_dominators (idom, dominators);
|
||||
|
||||
sbitmap_vector_free (dominators);
|
||||
calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
|
||||
|
||||
if (rtl_dump_file)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user