Reimplement interchange heuristic.

2009-08-11  Sebastian Pop  <sebastian.pop@amd.com>
	    Pranav Garg  <pranav.garg2107@gmail.com>

	* graphite-interchange.c (gather_access_strides): Removed.
	(ppl_max_for_le): New.
	(build_linearized_memory_access): New.
	(memory_stride_in_loop): New.
	(pbb_interchange_profitable_p): Reimplemented.
	* graphite-ppl.h (ppl_new_id_map): New.
	(ppl_interchange): New.

	* testsuite/gcc.dg/graphite/interchange-6.c: XFAILed.


Co-Authored-By: Pranav Garg <pranav.garg2107@gmail.com>

From-SVN: r150692
This commit is contained in:
Sebastian Pop 2009-08-12 14:30:06 +00:00 committed by Sebastian Pop
parent 312aea7f99
commit fb9fb29034
6 changed files with 281 additions and 22 deletions

View File

@ -1,3 +1,14 @@
2009-08-12 Sebastian Pop <sebastian.pop@amd.com>
Pranav Garg <pranav.garg2107@gmail.com>
* graphite-interchange.c (gather_access_strides): Removed.
(ppl_max_for_le): New.
(build_linearized_memory_access): New.
(memory_stride_in_loop): New.
(pbb_interchange_profitable_p): Reimplemented.
* graphite-ppl.h (ppl_new_id_map): New.
(ppl_interchange): New.
2009-08-12 Sebastian Pop <sebastian.pop@amd.com> 2009-08-12 Sebastian Pop <sebastian.pop@amd.com>
* graphite-interchange.c (compute_subscript): Removed. * graphite-interchange.c (compute_subscript): Removed.

View File

@ -1,3 +1,16 @@
2009-08-11 Sebastian Pop <sebastian.pop@amd.com>
Pranav Garg <pranav.garg2107@gmail.com>
* graphite-interchange.c (gather_access_strides): Removed.
(ppl_max_for_le): New.
(build_linearized_memory_access): New.
(memory_stride_in_loop): New.
(pbb_interchange_profitable_p): Reimplemented.
* graphite-ppl.h (ppl_new_id_map): New.
(ppl_interchange): New.
* testsuite/gcc.dg/graphite/interchange-6.c: XFAILed.
2009-08-11 Sebastian Pop <sebastian.pop@amd.com> 2009-08-11 Sebastian Pop <sebastian.pop@amd.com>
* graphite-interchange.c (compute_subscript): Removed. * graphite-interchange.c (compute_subscript): Removed.

View File

@ -53,47 +53,251 @@ along with GCC; see the file COPYING3. If not see
#include "graphite.h" #include "graphite.h"
#include "graphite-poly.h" #include "graphite-poly.h"
/* Computes ACCESS_STRIDES, the sum of all the strides of PDR at /* Return in RES the maximum of the linear expression LE on polyhedron PS. */
LOOP_DEPTH. */
static void static void
gather_access_strides (poly_dr_p pdr ATTRIBUTE_UNUSED, ppl_max_for_le (ppl_Pointset_Powerset_C_Polyhedron_t ps,
graphite_dim_t loop_depth ATTRIBUTE_UNUSED, ppl_Linear_Expression_t le, Value res)
Value access_strides ATTRIBUTE_UNUSED)
{ {
/* Empty for now. */ ppl_Coefficient_t num, denom;
Value dv, nv;
int maximum;
value_init (nv);
value_init (dv);
ppl_new_Coefficient (&num);
ppl_new_Coefficient (&denom);
ppl_Pointset_Powerset_C_Polyhedron_maximize (ps, le, num, denom, &maximum);
if (maximum)
{
ppl_Coefficient_to_mpz_t (num, nv);
ppl_Coefficient_to_mpz_t (denom, dv);
value_division (res, nv, dv);
}
value_clear (nv);
value_clear (dv);
ppl_delete_Coefficient (num);
ppl_delete_Coefficient (denom);
} }
/* Returns true when it is profitable to interchange loop at depth1 /* Builds a linear expression, of dimension DIM, representing PDR's
and loop at depth2 with depth1 < depth2 for the polyhedral black memory access:
box PBB. */
L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
For an array A[10][20] with two subscript locations s0 and s1, the
linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
corresponds to a memory stride of 20. */
static ppl_Linear_Expression_t
build_linearized_memory_access (poly_dr_p pdr)
{
ppl_Linear_Expression_t res;
ppl_Linear_Expression_t le;
ppl_dimension_type i;
ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
Value size, sub_size;
graphite_dim_t dim = pdr_dim (pdr);
ppl_new_Linear_Expression_with_dimension (&res, dim);
value_init (size);
value_set_si (size, 1);
value_init (sub_size);
value_set_si (sub_size, 1);
for (i = last - 1; i >= first; i--)
{
ppl_set_coef_gmp (res, i, size);
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, i, 1);
ppl_max_for_le (PDR_ACCESSES (pdr), le, sub_size);
value_multiply (size, size, sub_size);
ppl_delete_Linear_Expression (le);
}
value_clear (sub_size);
value_clear (size);
return res;
}
/* Set STRIDE to the stride of PDR in memory by advancing by one in
loop DEPTH. */
static void
memory_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
{
ppl_Linear_Expression_t le, lma;
ppl_Constraint_t new_cstr;
ppl_Pointset_Powerset_C_Polyhedron_t p1, p2;
graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr);
ppl_dimension_type i, *map;
ppl_dimension_type dim = pdr_dim (pdr);
ppl_dimension_type dim_i = pdr_iterator_dim (pdr, depth);
ppl_dimension_type dim_k = dim;
ppl_dimension_type dim_L1 = dim + nb_subscripts + 1;
ppl_dimension_type dim_L2 = dim + nb_subscripts + 2;
ppl_dimension_type new_dim = dim + nb_subscripts + 3;
/* Add new dimensions to the polyhedron corresponding to
k, s0', s1',..., L1, and L2. These new variables are at
dimensions dim, dim + 1,... of the polyhedron P1 respectively. */
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&p1, PDR_ACCESSES (pdr));
ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
(p1, nb_subscripts + 3);
lma = build_linearized_memory_access (pdr);
ppl_set_coef (lma, dim_L1, -1);
ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
/* Build P2. */
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&p2, p1);
map = ppl_new_id_map (new_dim);
ppl_interchange (map, dim_L1, dim_L2);
ppl_interchange (map, dim_i, dim_k);
for (i = 0; i < PDR_NB_SUBSCRIPTS (pdr); i++)
ppl_interchange (map, pdr_subscript_dim (pdr, i), dim + i + 1);
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
free (map);
/* Add constraint k = i + 1. */
ppl_new_Linear_Expression_with_dimension (&le, new_dim);
ppl_set_coef (le, dim_i, 1);
ppl_set_coef (le, dim_k, -1);
ppl_set_inhomogeneous (le, 1);
ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p2, new_cstr);
ppl_delete_Linear_Expression (le);
ppl_delete_Constraint (new_cstr);
/* P1 = P1 inter P2. */
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
/* Maximise the expression L2 - L1. */
ppl_new_Linear_Expression_with_dimension (&le, new_dim);
ppl_set_coef (le, dim_L2, 1);
ppl_set_coef (le, dim_L1, -1);
ppl_max_for_le (p1, le, stride);
ppl_delete_Linear_Expression (le);
}
/* Returns true when it is profitable to interchange loop at DEPTH1
and loop at DEPTH2 with DEPTH1 < DEPTH2 for PBB.
Example:
| int a[100][100];
|
| int
| foo (int N)
| {
| int j;
| int i;
|
| for (i = 0; i < N; i++)
| for (j = 0; j < N; j++)
| a[j][2 * i] += 1;
|
| return a[N][12];
| }
The data access A[j][i] is described like this:
| i j N a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
| 0 -1 0 0 1 0 0 = 0
|-2 0 0 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0
| 0 0 0 0 0 1 0 >= 0
| 0 0 0 0 -1 0 100 >= 0
| 0 0 0 0 0 -1 100 >= 0
The linearized memory access L to A[100][100] is:
| i j N a s0 s1 1
| 0 0 0 0 100 1 0
Next, to measure the impact of iterating once in loop "i", we build
a maximization problem: first, we add to DR accesses the dimensions
k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: polyhedron P1.
| i j N a s0 s1 k s2 s3 L1 L2 D1 1
| 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
| 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
|-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
| 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
| 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
| 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
| 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
| 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
Then, we generate the polyhedron P2 by interchanging the dimensions
(s0, s2), (s1, s3), (L1, L2), (i0, i)
| i j N a s0 s1 k s2 s3 L1 L2 D1 1
| 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
| 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
| 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
| 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
| 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
| 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
| 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
| 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
then we add to P2 the equality k = i + 1:
|-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
For determining the impact of one iteration on loop "j", we
interchange (k, j), we add "k = j + 1", and we compute D2 the
maximal value of the difference.
Finally, the profitability test is D1 < D2: if in the outer loop
the strides are smaller than in the inner loop, then it is
profitable to interchange the loops at DEPTH1 and DEPTH2. */
static bool static bool
pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2, poly_bb_p pbb) pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2,
poly_bb_p pbb)
{ {
int i; int i;
poly_dr_p pdr; poly_dr_p pdr;
Value access_strides1, access_strides2; Value d1, d2, s;
bool res; bool res;
gcc_assert (depth1 < depth2); gcc_assert (depth1 < depth2);
value_init (access_strides1); value_init (d1);
value_init (access_strides2); value_set_si (d1, 0);
value_init (d2);
value_set_si (access_strides1, 0); value_set_si (d2, 0);
value_set_si (access_strides2, 0); value_init (s);
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++) for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
{ {
gather_access_strides (pdr, depth1, access_strides1); memory_stride_in_loop (s, depth1, pdr);
gather_access_strides (pdr, depth2, access_strides2); value_addto (d1, d1, s);
memory_stride_in_loop (s, depth2, pdr);
value_addto (d2, d2, s);
} }
res = value_lt (access_strides1, access_strides2); res = value_lt (d1, d2);
value_clear (access_strides1); value_clear (d1);
value_clear (access_strides2); value_clear (d2);
value_clear (s);
return res; return res;
} }

View File

@ -129,5 +129,31 @@ value_max (Value res, Value v1, Value v2)
value_assign (res, v1); value_assign (res, v1);
} }
/* Builds a new identity map for dimension DIM. */
static inline ppl_dimension_type *
ppl_new_id_map (ppl_dimension_type dim)
{
ppl_dimension_type *map, i;
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
for (i = 0; i < dim; i++)
map[i] = i;
return map;
}
/* Builds an interchange of dimensions A and B in MAP. */
static inline void
ppl_interchange (ppl_dimension_type *map,
ppl_dimension_type a,
ppl_dimension_type b)
{
map[a] = b;
map[b] = a;
}
#endif #endif

View File

@ -1,3 +1,8 @@
2009-08-12 Sebastian Pop <sebastian.pop@amd.com>
Pranav Garg <pranav.garg2107@gmail.com>
* testsuite/gcc.dg/graphite/interchange-6.c: XFAILed.
2009-08-12 Sebastian Pop <sebastian.pop@amd.com> 2009-08-12 Sebastian Pop <sebastian.pop@amd.com>
* gcc.dg/graphite/interchange-9.c: New. * gcc.dg/graphite/interchange-9.c: New.

View File

@ -13,5 +13,5 @@ int medium_loop_interchange(int A[100][200])
return A[1][1]; return A[1][1];
} }
/* { dg-final { scan-tree-dump-times "will be interchanged" 1 "graphite" } } */ /* { dg-final { scan-tree-dump-times "will be interchanged" 1 "graphite" { xfail *-*-* } } } */
/* { dg-final { cleanup-tree-dump "graphite" } } */ /* { dg-final { cleanup-tree-dump "graphite" } } */