Add 'libgomp.oacc-c-c++-common/static-variable-1.c' [PR84991, PR84992, PR90779]

libgomp/
	PR middle-end/84991
	PR middle-end/84992
	PR middle-end/90779
	* testsuite/libgomp.oacc-c-c++-common/static-variable-1.c: New.
This commit is contained in:
Thomas Schwinge 2021-04-09 16:03:32 +02:00
parent 625dadaf5d
commit ffa0ae6eee

View File

@ -0,0 +1,460 @@
/* "Function scope" (top-level block scope) 'static' variables
... inside OpenACC compute construct regions as well as OpenACC 'routine'.
This is to document/verify aspects of GCC's observed behavior, not
necessarily as it's (intended to be?) restricted by the OpenACC
specification. See also PR84991, PR84992, PR90779 etc., and
<https://github.com/OpenACC/openacc-spec/issues/372> "C/C++ 'static'
variables" (only visible to members of the GitHub OpenACC organization).
*/
#undef NDEBUG
#include <assert.h>
#include <string.h>
#include <openacc.h>
#include <gomp-constants.h>
#define IF_DEBUG if (0)
/* Without explicit 'num_gangs'. */
static void t0_c(void)
{
IF_DEBUG
__builtin_printf ("%s\n", __FUNCTION__);
const int i_limit = 11;
const int var_init = 16;
for (int i = 0; i < i_limit; ++i)
{
int result = 0;
int num_gangs_actual = -1;
#pragma acc parallel \
reduction(max:num_gangs_actual) \
reduction(max:result)
{
num_gangs_actual = 1 + __builtin_goacc_parlevel_id(GOMP_DIM_GANG);
static int var = var_init;
#pragma acc atomic capture
result = ++var;
/* Irrespective of the order in which the gang-redundant threads
execute, 'var' has now been incremented 'num_gangs_actual' times, and
the final value captured as 'result'. */
}
/* Without an explicit 'num_gangs' clause GCC assigns 'num_gangs(1)'
because it doesn't see any use of gang-level parallelism inside the
region. */
assert(num_gangs_actual == 1);
assert(result == var_init + num_gangs_actual * (1 + i));
}
}
/* Call a gang-level routine. */
static const int t0_r_var_init = 61;
#pragma acc routine gang
__attribute__((noinline))
static int t0_r_r(void)
{
static int var = t0_r_var_init;
int tmp;
#pragma acc atomic capture
tmp = ++var;
return tmp;
}
static void t0_r(void)
{
IF_DEBUG
__builtin_printf ("%s\n", __FUNCTION__);
const int i_limit = 11;
for (int i = 0; i < i_limit; ++i)
{
int result = 0;
int num_gangs_actual = -1;
#pragma acc parallel \
reduction(max:num_gangs_actual) \
reduction(max:result)
{
num_gangs_actual = 1 + __builtin_goacc_parlevel_id(GOMP_DIM_GANG);
result = t0_r_r();
/* Irrespective of the order in which the gang-redundant threads
execute, 'var' has now been incremented 'num_gangs_actual' times, and
the final value captured as 'result'. */
}
/* The number of gangs selected by the implemention ought to but must not
be bigger than one. */
IF_DEBUG
__builtin_printf ("%d: num_gangs_actual: %d\n", i, num_gangs_actual);
assert(num_gangs_actual >= 1);
assert(result == t0_r_var_init + num_gangs_actual * (1 + i));
}
}
/* Explicit 'num_gangs'. */
static void t1_c(void)
{
IF_DEBUG
__builtin_printf ("%s\n", __FUNCTION__);
const int i_limit = 22;
const int num_gangs_request = 444;
const int var_init = 5;
for (int i = 0; i < i_limit; ++i)
{
int result = 0;
int num_gangs_actual = -1;
#pragma acc parallel \
num_gangs(num_gangs_request) \
reduction(max:num_gangs_actual) \
reduction(max:result)
{
num_gangs_actual = 1 + __builtin_goacc_parlevel_id(GOMP_DIM_GANG);
static int var = var_init;
#pragma acc atomic capture
result = ++var;
/* Irrespective of the order in which the gang-redundant threads
execute, 'var' has now been incremented 'num_gangs_actual' times, and
the final value captured as 'result'. */
}
if (acc_get_device_type() == acc_device_host)
assert(num_gangs_actual == 1);
else
assert(num_gangs_actual == num_gangs_request);
assert(result == var_init + num_gangs_actual * (1 + i));
}
}
/* Check the same routine called from two compute constructs. */
static const int t1_r2_var_init = 166;
#pragma acc routine gang
__attribute__((noinline))
static int t1_r2_r(void)
{
static int var = t1_r2_var_init;
int tmp;
#pragma acc atomic capture
tmp = ++var;
return tmp;
}
static void t1_r2(void)
{
IF_DEBUG
__builtin_printf ("%s\n", __FUNCTION__);
const int i_limit = 71;
/* The checking assumes the same 'num_gangs' for all compute constructs. */
const int num_gangs_request = 333;
int num_gangs_actual = -1;
if (acc_get_device_type() == acc_device_host)
num_gangs_actual = 1;
else
{
/* We're assuming that the implementation is able to accomodate the
'num_gangs' requested (which really ought to be true for
'num_gangs'). */
num_gangs_actual = num_gangs_request;
}
for (int i = 0; i < i_limit; ++i)
{
int result_1 = 0;
#pragma acc parallel \
num_gangs(num_gangs_request) \
reduction(max:result_1)
{
result_1 = t1_r2_r();
/* Irrespective of the order in which the gang-redundant threads
execute, 'var' has now been incremented 'num_gangs_actual' times, and
the final value captured as 'result_1'. */
}
IF_DEBUG
__builtin_printf ("%d: result_1: %d\n", i, result_1);
assert(result_1 == t1_r2_var_init + num_gangs_actual * (1 + (i * 3 + 0)));
int result_2 = 0;
#pragma acc parallel \
num_gangs(num_gangs_request) \
reduction(max:result_2)
{
result_2 = t1_r2_r() + t1_r2_r();
/* Irrespective of the order in which the gang-redundant threads
execute, 'var' has now been incremented '2 * num_gangs_actual' times.
However, the order of the two 't1_r2_r' function calls is not
synchronized (between different gang-redundant threads). We thus
cannot verify the actual 'result_2' values in this case. */
}
IF_DEBUG
__builtin_printf ("%d: result_2: %d\n", i, result_2);
if (num_gangs_actual == 1)
/* Per the rationale above, only in this case we can check the actual
result. */
assert(result_2 == (t1_r2_var_init + num_gangs_actual * (1 + (i * 3 + 1))
+ t1_r2_var_init + num_gangs_actual * (1 + (i * 3 + 2))));
/* But we can generally check low and high limits. */
{
/* Must be bigger than '2 * result_1'. */
int c = 2 * result_1;
IF_DEBUG
__builtin_printf (" > %d\n", c);
assert(result_2 > c);
}
{
/* ..., but limited by the base value for next 'i'. */
int c = 2 * (t1_r2_var_init + num_gangs_actual * (0 + ((i + 1) * 3 + 0)));
IF_DEBUG
__builtin_printf (" < %d\n", c);
assert(result_2 < c);
}
}
}
/* Asynchronous execution. */
static const int t2_var_init_2 = -55;
#pragma acc routine gang
__attribute__((noinline))
static int t2_r(void)
{
static int var = t2_var_init_2;
int tmp;
#pragma acc atomic capture
tmp = ++var;
return tmp;
}
static void t2(void)
{
IF_DEBUG
__builtin_printf ("%s\n", __FUNCTION__);
const int i_limit = 12;
const int num_gangs_request_1 = 14;
const int var_init_1 = 5;
int results_1[i_limit][num_gangs_request_1];
memset (results_1, 0, sizeof results_1);
const int num_gangs_request_2 = 5;
int results_2[i_limit][num_gangs_request_2];
memset (results_2, 0, sizeof results_2);
const int num_gangs_request_3 = 34;
const int var_init_3 = 1250;
int results_3[i_limit][num_gangs_request_3];
memset (results_3, 0, sizeof results_3);
#pragma acc data \
copy(results_1, results_2, results_3)
{
for (int i = 0; i < i_limit; ++i)
{
/* The following 'async' clauses effect asynchronous execution, but
using the same async-argument for each compute construct implies that
the respective compute constructs' execution is synchronized with
itself, meaning that all 'i = 0' execution has finished (on the
device) before 'i = 1' is started (on the device), etc. */
#pragma acc parallel \
present(results_1) \
num_gangs(num_gangs_request_1) \
async(1)
{
static int var = var_init_1;
int tmp;
#pragma acc atomic capture
tmp = ++var;
results_1[i][__builtin_goacc_parlevel_id(GOMP_DIM_GANG)] += tmp;
}
#pragma acc parallel \
present(results_2) \
num_gangs(num_gangs_request_2) \
async(2)
{
results_2[i][__builtin_goacc_parlevel_id(GOMP_DIM_GANG)] += t2_r();
}
#pragma acc parallel \
present(results_3) \
num_gangs(num_gangs_request_3) \
async(3)
{
static int var = var_init_3;
int tmp;
#pragma acc atomic capture
tmp = ++var;
results_3[i][__builtin_goacc_parlevel_id(GOMP_DIM_GANG)] += tmp;
}
}
#pragma acc wait
}
int num_gangs_actual_1;
int num_gangs_actual_2;
int num_gangs_actual_3;
if (acc_get_device_type() == acc_device_host)
{
num_gangs_actual_1 = 1;
num_gangs_actual_2 = 1;
num_gangs_actual_3 = 1;
}
else
{
/* We're assuming that the implementation is able to accomodate the
'num_gangs' requested (which really ought to be true for
'num_gangs'). */
num_gangs_actual_1 = num_gangs_request_1;
num_gangs_actual_2 = num_gangs_request_2;
num_gangs_actual_3 = num_gangs_request_3;
}
/* For 'i = 0', 'results_*[i][0..num_gangs_actual_*]' are expected to each
contain one value of '(1 + var_init_*)..(var_init_* + num_gangs_actual_*)',
and so on for increasing 'i'. Their order however is unspecified due to
the gang-redundant execution. (Thus checking that their sums match.) */
int result_1 = 0;
int result_2 = 0;
int result_3 = 0;
for (int i = 0; i < i_limit; ++i)
{
int result_1_ = 0;
for (int g = 0; g < num_gangs_actual_1; ++g)
{
IF_DEBUG
__builtin_printf ("results_1[%d][%d]: %d\n", i, g, results_1[i][g]);
result_1_ += results_1[i][g];
}
IF_DEBUG
__builtin_printf ("%d result_1_: %d\n", i, result_1_);
assert (result_1_ == (((var_init_1 + num_gangs_actual_1 * (1 + i)) * (1 + var_init_1 + num_gangs_actual_1 * (1 + i)) / 2)
- ((var_init_1 + num_gangs_actual_1 * (0 + i)) * (1 + var_init_1 + num_gangs_actual_1 * (0 + i)) / 2)));
result_1 += result_1_;
int result_2_ = 0;
for (int g = 0; g < num_gangs_actual_2; ++g)
{
IF_DEBUG
__builtin_printf ("results_2[%d][%d]: %d\n", i, g, results_2[i][g]);
result_2_ += results_2[i][g];
}
IF_DEBUG
__builtin_printf ("%d result_2_: %d\n", i, result_2_);
assert (result_2_ == (((t2_var_init_2 + num_gangs_actual_2 * (1 + i)) * (1 + t2_var_init_2 + num_gangs_actual_2 * (1 + i)) / 2)
- ((t2_var_init_2 + num_gangs_actual_2 * (0 + i)) * (1 + t2_var_init_2 + num_gangs_actual_2 * (0 + i)) / 2)));
result_2 += result_2_;
int result_3_ = 0;
for (int g = 0; g < num_gangs_actual_3; ++g)
{
IF_DEBUG
__builtin_printf ("results_3[%d][%d]: %d\n", i, g, results_3[i][g]);
result_3_ += results_3[i][g];
}
IF_DEBUG
__builtin_printf ("%d result_3_: %d\n", i, result_3_);
assert (result_3_ == (((var_init_3 + num_gangs_actual_3 * (1 + i)) * (1 + var_init_3 + num_gangs_actual_3 * (1 + i)) / 2)
- ((var_init_3 + num_gangs_actual_3 * (0 + i)) * (1 + var_init_3 + num_gangs_actual_3 * (0 + i)) / 2)));
result_3 += result_3_;
}
IF_DEBUG
__builtin_printf ("result_1: %d\n", result_1);
assert (result_1 == (((var_init_1 + num_gangs_actual_1 * i_limit) * (1 + var_init_1 + num_gangs_actual_1 * i_limit) / 2)
- (var_init_1 * (var_init_1 + 1) / 2)));
IF_DEBUG
__builtin_printf ("result_2: %d\n", result_2);
assert (result_2 == (((t2_var_init_2 + num_gangs_actual_2 * i_limit) * (1 + t2_var_init_2 + num_gangs_actual_2 * i_limit) / 2)
- (t2_var_init_2 * (t2_var_init_2 + 1) / 2)));
IF_DEBUG
__builtin_printf ("result_3: %d\n", result_3);
assert (result_3 == (((var_init_3 + num_gangs_actual_3 * i_limit) * (1 + var_init_3 + num_gangs_actual_3 * i_limit) / 2)
- (var_init_3 * (var_init_3 + 1) / 2)));
}
#pragma acc routine seq
__attribute__((noinline))
static int pr84991_1_r_s(int n)
{
static const int test[] = {1,2,3,4};
return test[n];
}
static void pr84991_1(void)
{
int n[1];
n[0] = 3;
#pragma acc parallel copy(n)
{
n[0] = pr84991_1_r_s(n[0]);
}
assert(n[0] == 4);
}
static void pr84992_1(void)
{
int n[1];
n[0] = 3;
#pragma acc parallel copy(n)
{
static const int test[] = {1,2,3,4};
n[0] = test[n[0]];
}
assert(n[0] == 4);
}
int main(void)
{
t0_c();
t0_r();
t1_c();
t1_r2();
t2();
pr84991_1();
pr84992_1();
return 0;
}