After the Fortran changes we can mark it as implemented...
2021-11-16 Jakub Jelinek <jakub@redhat.com>
* libgomp.texi (OpenMP 5.1): Mark thread_limit clause to target
construct as implemented.
OpenMP 5.1 says that thread_limit clause can also appear on target,
and similarly to teams should affect the thread-limit-var ICV.
On combined target teams, the clause goes to both.
We actually passed thread_limit internally on target already before,
but only used it for gcn/ptx offloading to hint how many threads should be
created and for ptx didn't set thread_limit_var in that case.
Similarly for host fallback.
Also, I found that we weren't copying the args array that contains encoded
thread_limit and num_teams clause for target (etc.) for async target.
2021-11-15 Jakub Jelinek <jakub@redhat.com>
gcc/
* gimplify.c (optimize_target_teams): Only add OMP_CLAUSE_THREAD_LIMIT
to OMP_TARGET_CLAUSES if it isn't there already.
gcc/c-family/
* c-omp.c (c_omp_split_clauses) <case OMP_CLAUSE_THREAD_LIMIT>:
Duplicate to both OMP_TARGET and OMP_TEAMS.
gcc/c/
* c-parser.c (OMP_TARGET_CLAUSE_MASK): Add
PRAGMA_OMP_CLAUSE_THREAD_LIMIT.
gcc/cp/
* parser.c (OMP_TARGET_CLAUSE_MASK): Add
PRAGMA_OMP_CLAUSE_THREAD_LIMIT.
libgomp/
* task.c (gomp_create_target_task): Copy args array as well.
* target.c (gomp_target_fallback): Add args argument.
Set gomp_icv (true)->thread_limit_var if thread_limit is present.
(GOMP_target): Adjust gomp_target_fallback caller.
(GOMP_target_ext): Likewise.
(gomp_target_task_fn): Likewise.
* config/nvptx/team.c (gomp_nvptx_main): Set
gomp_global_icv.thread_limit_var.
* testsuite/libgomp.c-c++-common/thread-limit-1.c: New test.
Here is a PTX implementation of what I was talking about, that for
num_teams_upper 0 or whenever num_teams_lower <= num_blocks, the current
implementation is fine but if the user explicitly asks for more
teams than we can provide in hardware, we need to stop assuming that
omp_get_team_num () is equal to the hw team id, but instead need to use some
team specific memory (it is .shared for PTX), or if none is
provided, array indexed by the hw team id and run some teams serially within
the same hw thread.
2021-11-15 Jakub Jelinek <jakub@redhat.com>
* config/nvptx/team.c (__gomp_team_num): Define as
__attribute__((shared)) var.
(gomp_nvptx_main): Initialize __gomp_team_num to 0.
* config/nvptx/target.c (__gomp_team_num): Declare as
extern __attribute__((shared)) var.
(GOMP_teams4): Use __gomp_team_num as the team number instead of
%ctaid.x. If first, initialize it to %ctaid.x. If num_teams_lower
is bigger than num_blocks, use num_teams_lower teams and arrange for
bumping of __gomp_team_num if !first and returning false once we run
out of teams.
* config/nvptx/teams.c (__gomp_team_num): Declare as
extern __attribute__((shared)) var.
(omp_get_team_num): Return __gomp_team_num value instead of %ctaid.x.
This is https://github.com/OpenMP/spec/issues/3183
There is an agreement that we should return 1 team inside of target,
even if that target is inside of host teams. We were doing that
when offloading and not during host fallback, r12-5151 should fix that
even for host fallback.
2021-11-15 Jakub Jelinek <jakub@redhat.com>
* testsuite/libgomp.c/teams-5.c: New test.
My recent libgomp change apparently broke libgomp build for gcn offloading.
The problem is that gcn, unlike nvptx, doesn't override teams.c source file
and the patch I've committed assumed all the non-LIBGOMP_USE_PTHREADS targets
do not use it. My understanding is that gcn included omp_get_num_teams
and omp_get_team_num definitions in both icv-device.o and teams.o,
with the definitions only in the former working correctly.
This patch brings gcn into sync with how nvptx does it, that teams.c
is overridden, provides a dummy GOMP_teams_reg and omp_get_{num_teams,team_num}
definitions and icv-device.c doesn't provide those.
2021-11-12 Jakub Jelinek <jakub@redhat.com>
PR target/103201
* config/gcn/icv-device.c (omp_get_num_teams, omp_get_team_num): Move
to ...
* config/gcn/teams.c: ... here. New file.
This patch implements relaxing the requirements when a map with the implicit
attribute encounters an overlapping existing map. As the OpenMP 5.0 spec
describes on page 320, lines 18-27 (and 5.1 spec, page 352, lines 13-22):
"If a single contiguous part of the original storage of a list item with an
implicit data-mapping attribute has corresponding storage in the device data
environment prior to a task encountering the construct that is associated with
the map clause, only that part of the original storage will have corresponding
storage in the device data environment as a result of the map clause."
2021-11-12 Chung-Lin Tang <cltang@codesourcery.com>
include/ChangeLog:
* gomp-constants.h (GOMP_MAP_FLAG_SPECIAL_3): Define special bit macro.
(GOMP_MAP_IMPLICIT): New special map kind bits value.
(GOMP_MAP_FLAG_SPECIAL_BITS): Define helper mask for whole set of
special map kind bits.
(GOMP_MAP_IMPLICIT_P): New predicate macro for implicit map kinds.
gcc/ChangeLog:
* tree.h (OMP_CLAUSE_MAP_RUNTIME_IMPLICIT_P): New access macro for
'implicit' bit, using 'base.deprecated_flag' field of tree_node.
* tree-pretty-print.c (dump_omp_clause): Add support for printing
implicit attribute in tree dumping.
* gimplify.c (gimplify_adjust_omp_clauses_1):
Set OMP_CLAUSE_MAP_RUNTIME_IMPLICIT_P to 1 if map clause is implicitly
created.
(gimplify_adjust_omp_clauses): Adjust place of adding implicitly created
clauses, from simple append, to starting of list, after non-map clauses.
* omp-low.c (lower_omp_target): Add GOMP_MAP_IMPLICIT bits into kind
values passed to libgomp for implicit maps.
gcc/testsuite/ChangeLog:
* c-c++-common/gomp/target-implicit-map-1.c: New test.
* c-c++-common/goacc/combined-reduction.c: Adjust scan test pattern.
* c-c++-common/goacc/firstprivate-mappings-1.c: Likewise.
* c-c++-common/goacc/mdc-1.c: Likewise.
* g++.dg/goacc/firstprivate-mappings-1.C: Likewise.
libgomp/ChangeLog:
* target.c (gomp_map_vars_existing): Add 'bool implicit' parameter, add
implicit map handling to allow a "superset" existing map as valid case.
(get_kind): Adjust to filter out GOMP_MAP_IMPLICIT bits in return value.
(get_implicit): New function to extract implicit status.
(gomp_map_fields_existing): Adjust arguments in calls to
gomp_map_vars_existing, and add uses of get_implicit.
(gomp_map_vars_internal): Likewise.
* testsuite/libgomp.c-c++-common/target-implicit-map-1.c: New test.
The following patch implements what I've been talking about earlier,
honor that for explicit num_teams clause we create at least the
lower-bound (if not specified, upper-bound) teams in the league.
For host fallback, it still means we only have one thread doing all the
teams, sequentially one after another.
For PTX and GCN, I think the new teams-2.c test and maybe teams-4.c too
will or might fail.
For these offloads, I think it is ok to remove symbols no longer used
from libgomp.a.
If num_teams_lower is bigger than the provided num_blocks or num_workgroups,
we should arrange for gomp_num_teams_var to be num_teams_lower - 1,
stop using the %ctaid.x or __builtin_gcn_dim_pos (0) for omp_get_team_num ()
and instead use for it some .shared var that GOMP_teams4 initializes to
%ctaid.x or __builtin_gcn_dim_pos (0) when first and for !first
increment that by num_blocks or num_workgroups each time and only
return false when we are above num_teams_lower.
Any help with actually implementing this for the 2 architectures highly
appreciated.
2021-11-12 Jakub Jelinek <jakub@redhat.com>
gcc/
* omp-builtins.def (BUILT_IN_GOMP_TEAMS): Remove.
(BUILT_IN_GOMP_TEAMS4): New.
* builtin-types.def (BT_FN_VOID_UINT_UINT): Remove.
(BT_FN_BOOL_UINT_UINT_UINT_BOOL): New.
* omp-low.c (lower_omp_teams): Use GOMP_teams4 instead of
GOMP_teams, pass to it also num_teams lower-bound expression
or a dup of upper-bound if it is missing and a flag whether
it is the first call or not.
gcc/fortran/
* types.def (BT_FN_VOID_UINT_UINT): Remove.
(BT_FN_BOOL_UINT_UINT_UINT_BOOL): New.
libgomp/
* libgomp_g.h (GOMP_teams4): Declare.
* libgomp.map (GOMP_5.1): Export GOMP_teams4.
* target.c (GOMP_teams4): New function.
* config/nvptx/target.c (GOMP_teams): Remove.
(GOMP_teams4): New function.
* config/gcn/target.c (GOMP_teams): Remove.
(GOMP_teams4): New function.
* testsuite/libgomp.c/teams-4.c (main): Expect exactly 2
teams instead of <= 2.
* testsuite/libgomp.c-c++-common/teams-2.c: New test.
When thinking about GOMP_teams3, I've realized that using global variables
for the values returned by omp_get_num_teams()/omp_get_team_num() calls
is incorrect even with our right now dumb way of implementing host teams.
The problems are two, one is if host teams is used from multiple pthread_create
created threads - the spec says that host teams can't be nested inside of
explicit parallel or other teams constructs, but with pthread_create the
standard says obviously nothing about it. Another more important thing
is host fallback, right now we don't do anything for omp_get_num_teams()
or omp_get_team_num() which was fine before host teams was introduced and
the 5.1 requirement that num_teams clause specifies minimum of teams, but
with the global vars it means inside of target teams num_teams (2) we happily
return omp_get_num_teams() == 4 if the target teams is inside of host teams
with num_teams(4). With target fallback being invoked from parallel
regions global vars simply can't work right on the host.
So, this patch moves them to struct gomp_thread and propagates those for
parallel to child threads. For host fallback, the implicit zeroing of
*thr results in us returning omp_get_num_teams () == 1 and
omp_get_team_num () == 0 which is fine for target teams without num_teams
clause, for target teams with num_teams clause something to work on and
for target without teams nested in it I've asked on omp-lang what should
be done.
2021-11-11 Jakub Jelinek <jakub@redhat.com>
* libgomp.h (struct gomp_thread): Add num_teams and team_num members.
* team.c (struct gomp_thread_start_data): Likewise.
(gomp_thread_start): Initialize thr->num_teams and thr->team_num.
(gomp_team_start): Initialize start_data->num_teams and
start_data->team_num. Update nthr->num_teams and nthr->team_num.
* teams.c (gomp_num_teams, gomp_team_num): Remove.
(GOMP_teams_reg): Set and restore thr->num_teams and thr->team_num
instead of gomp_num_teams and gomp_team_num.
(omp_get_num_teams): Use thr->num_teams + 1 instead of gomp_num_teams.
(omp_get_team_num): Use thr->team_num instead of gomp_team_num.
* testsuite/libgomp.c/teams-4.c: New test.
In OpenMP 5.1, num_teams clause can accept either one expression as before,
but it in that case changed meaning, rather than create <= expression
teams it is now create == expression teams. Or it accepts two expressions
separated by :, with the meaning that the first is low bound and second upper
bound on how many teams should be created. The other ways to set number of
teams are upper bounds with lower bound of 1.
The following patch does parsing of this for C/C++. For host teams, we
actually don't need to do anything further right now, we always create
(pretend to create) exactly the requested number of teams, so we can just
evaluate and throw away the lower bound for now.
For teams nested in target, we don't guarantee that though and further
work will be needed.
In particular, omplower now turns the teams part of:
struct S { S (); S (const S &); ~S (); int s; };
void bar (S &, S &);
int baz ();
_Pragma ("omp declare target to (baz)");
void
foo (void)
{
S a, b;
#pragma omp target private (a) map (b)
{
#pragma omp teams firstprivate (b) num_teams (baz ())
{
bar (a, b);
}
}
}
into:
retval.0 = baz ();
retval.1 = retval.0;
{
unsigned int retval.3;
struct S * D.2549;
struct S b;
retval.3 = (unsigned int) retval.1;
D.2549 = .omp_data_i->b;
S::S (&b, D.2549);
#pragma omp teams num_teams(retval.1) firstprivate(b) shared(a)
__builtin_GOMP_teams (retval.3, 0);
{
bar (&a, &b);
}
S::~S (&b);
#pragma omp return(nowait)
}
IMHO we want a new API, say GOMP_teams3 which will take 3 arguments
instead of 2 (the lower and upper bounds from num_teams and thread_limit)
and will return a bool whether it should do the teams body or not.
And, we should add right before outermost {} above
while (__builtin_GOMP_teams3 ((unsigned) retval.1, (unsigned) retval.1, 0))
and remove the __builtin_GOMP_teams call. The current function performs
exit equivalent (at least on NVPTX) which seems bad because that means
the destructors of e.g. private variables on target aren't invoked, and
at the current placement neither destructors of the already constructed
privatized variables in teams.
I'll do this next on the compiler side, but I'm afraid I'll need help
with the nvptx and amdgcn implementations. E.g. for nvptx, we won't be
able to use %ctaid.x . I think ideal would be to use a .shared
integer variable for the omp_get_team_num value, but I don't have any
experience with that, are .shared variables zero initialized by default,
or do they have random value at start? PTX docs say they aren't initializable.
2021-11-11 Jakub Jelinek <jakub@redhat.com>
gcc/
* tree.h (OMP_CLAUSE_NUM_TEAMS_EXPR): Rename to ...
(OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR): ... this.
(OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR): Define.
* tree.c (omp_clause_num_ops): Increase num ops for
OMP_CLAUSE_NUM_TEAMS to 2.
* tree-pretty-print.c (dump_omp_clause): Print optional lower bound
for OMP_CLAUSE_NUM_TEAMS.
* gimplify.c (gimplify_scan_omp_clauses): Gimplify
OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR if non-NULL.
(optimize_target_teams): Use OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR instead
of OMP_CLAUSE_NUM_TEAMS_EXPR. Handle OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR.
* omp-low.c (lower_omp_teams): Use OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR
instead of OMP_CLAUSE_NUM_TEAMS_EXPR.
* omp-expand.c (expand_teams_call, get_target_arguments): Likewise.
gcc/c/
* c-parser.c (c_parser_omp_clause_num_teams): Parse optional
lower-bound and store it into OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR.
Use OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR instead of
OMP_CLAUSE_NUM_TEAMS_EXPR.
(c_parser_omp_target): For OMP_CLAUSE_NUM_TEAMS evaluate before
combined target teams even lower-bound expression.
gcc/cp/
* parser.c (cp_parser_omp_clause_num_teams): Parse optional
lower-bound and store it into OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR.
Use OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR instead of
OMP_CLAUSE_NUM_TEAMS_EXPR.
(cp_parser_omp_target): For OMP_CLAUSE_NUM_TEAMS evaluate before
combined target teams even lower-bound expression.
* semantics.c (finish_omp_clauses): Handle
OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR of OMP_CLAUSE_NUM_TEAMS clause.
* pt.c (tsubst_omp_clauses): Likewise.
(tsubst_expr): For OMP_CLAUSE_NUM_TEAMS evaluate before
combined target teams even lower-bound expression.
gcc/fortran/
* trans-openmp.c (gfc_trans_omp_clauses): Use
OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR instead of OMP_CLAUSE_NUM_TEAMS_EXPR.
gcc/testsuite/
* c-c++-common/gomp/clauses-1.c (bar): Supply lower-bound expression
to half of the num_teams clauses.
* c-c++-common/gomp/num-teams-1.c: New test.
* c-c++-common/gomp/num-teams-2.c: New test.
* g++.dg/gomp/attrs-1.C (bar): Supply lower-bound expression
to half of the num_teams clauses.
* g++.dg/gomp/attrs-2.C (bar): Likewise.
* g++.dg/gomp/num-teams-1.C: New test.
* g++.dg/gomp/num-teams-2.C: New test.
libgomp/
* testsuite/libgomp.c-c++-common/teams-1.c: New test.
... that got broken by recent commit c057ed9c52
"openmp: Fix up strtoul and strtoull uses in libgomp", resulting in spurious
FAILs for tests specifying 'dg-set-target-env-var "GOMP_OPENACC_DIM" "[...]"'.
libgomp/
* env.c (parse_gomp_openacc_dim): Restore parsing.
The teams construct only permits omp_get_num_teams and omp_get_team_num
as API call in strictly nested regions - check for it.
Additionally, for Fortran, using DECL_NAME does not show the mangled
name, hence, DECL_ASSEMBLER_NAME had to be used to.
Finally, 'target device(ancestor:1)' wrongly rejected non-API calls
as well.
PR middle-end/102972
gcc/ChangeLog:
* omp-low.c (omp_runtime_api_call): Use DECL_ASSEMBLER_NAME to get
internal Fortran name; new permit_num_teams arg to permit
omp_get_num_teams and omp_get_team_num.
(scan_omp_1_stmt): Update call to it, add missing call for
reverse offload, and check for strictly nested API calls in teams.
gcc/testsuite/ChangeLog:
* c-c++-common/gomp/target-device-ancestor-3.c: Add non-API
routine test.
* gfortran.dg/gomp/order-6.f90: Add missing bind(C).
* c-c++-common/gomp/teams-3.c: New test.
* gfortran.dg/gomp/teams-3.f90: New test.
* gfortran.dg/gomp/teams-4.f90: New test.
libgomp/ChangeLog:
* testsuite/libgomp.c-c++-common/icv-3.c: Nest API calls inside
parallel construct.
* testsuite/libgomp.c-c++-common/icv-4.c: Likewise.
* testsuite/libgomp.c/target-3.c: Likewise.
* testsuite/libgomp.c/target-5.c: Likewise.
* testsuite/libgomp.c/target-6.c: Likewise.
* testsuite/libgomp.c/target-teams-1.c: Likewise.
* testsuite/libgomp.c/teams-1.c: Likewise.
* testsuite/libgomp.c/thread-limit-2.c: Likewise.
* testsuite/libgomp.c/thread-limit-3.c: Likewise.
* testsuite/libgomp.c/thread-limit-4.c: Likewise.
* testsuite/libgomp.c/thread-limit-5.c: Likewise.
* testsuite/libgomp.fortran/icv-3.f90: Likewise.
* testsuite/libgomp.fortran/icv-4.f90: Likewise.
* testsuite/libgomp.fortran/teams1.f90: Likewise.
This patch upgrades the pre-VRP threading passes to fully resolving
backward threaders, and removes the post-VRP threading passes altogether.
With it, we reduce the number of threaders in our pipeline from 9 to 7.
This will leave DOM as the only forward threader client. When the ranger
can handle floats, we should be able to upgrade the pre-DOM threaders to
fully resolving threaders and kill the embedded DOM threader.
The numbers are as follows:
prev: # threads in backward + vrp-threaders = 92624
now: # threads in backward threaders = 94275
Gain: +1.78%
prev: # total threads: 189495
now: # total threads: 193714
Gain: +2.22%
The numbers are not as great as my initial proposal, but I've
recently pushed all the work that got us to this point ;-).
And... the compilation improves by 1.32%!
There's a regression on uninit-pred-7_a.c that I've yet to look at. I
want to make sure it's not a missing thread. If it is, I'll create a PR
and own it.
Also, the tree-ssa/phi_on_compare-*.c tests have all regressed. This
seems to be some special case the forward threader handles that the
backward threader does not (edge_forwards_cmp_to_conditional_jump*).
I haven't dug deep to see if this is solveable within our
infrastructure, but a cursory look shows that even though the VRP
threader threads this, the *.optimized dump ends with more conditional
jumps than without the optimization. I'd like to punt on this for
now, because DOM actually catches this through its lone use of the
forward threader (I've adjusted the tests). However, we will need to
address this sooner or later, if indeed it's still improving the final
assembly.
gcc/ChangeLog:
* passes.def: Replace the pass_thread_jumps before VRP* with
pass_thread_jumps_full. Remove all pass_vrp_threader instances.
* tree-ssa-threadbackward.c (pass_data_thread_jumps_full):
Remove hyphen from "thread-full" name.
libgomp/ChangeLog:
* testsuite/libgomp.graphite/force-parallel-4.c: Adjust for threading changes.
* testsuite/libgomp.graphite/force-parallel-8.c: Same.
gcc/testsuite/ChangeLog:
* gcc.dg/loop-unswitch-2.c: Adjust for threading changes.
* gcc.dg/old-style-asm-1.c: Same.
* gcc.dg/tree-ssa/phi_on_compare-1.c: Same.
* gcc.dg/tree-ssa/phi_on_compare-2.c: Same.
* gcc.dg/tree-ssa/phi_on_compare-3.c: Same.
* gcc.dg/tree-ssa/phi_on_compare-4.c: Same.
* gcc.dg/tree-ssa/pr20701.c: Same.
* gcc.dg/tree-ssa/pr21001.c: Same.
* gcc.dg/tree-ssa/pr21294.c: Same.
* gcc.dg/tree-ssa/pr21417.c: Same.
* gcc.dg/tree-ssa/pr21559.c: Same.
* gcc.dg/tree-ssa/pr21563.c: Same.
* gcc.dg/tree-ssa/pr49039.c: Same.
* gcc.dg/tree-ssa/pr59597.c: Same.
* gcc.dg/tree-ssa/pr61839_1.c: Same.
* gcc.dg/tree-ssa/pr61839_3.c: Same.
* gcc.dg/tree-ssa/pr66752-3.c: Same.
* gcc.dg/tree-ssa/pr68198.c: Same.
* gcc.dg/tree-ssa/pr77445-2.c: Same.
* gcc.dg/tree-ssa/pr77445.c: Same.
* gcc.dg/tree-ssa/ranger-threader-1.c: Same.
* gcc.dg/tree-ssa/ranger-threader-2.c: Same.
* gcc.dg/tree-ssa/ranger-threader-4.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-1.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-11.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-12.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-14.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-16.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-2b.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-7.c: Same.
* gcc.dg/tree-ssa/ssa-thread-14.c: Same.
* gcc.dg/tree-ssa/ssa-thread-backedge.c: Same.
* gcc.dg/tree-ssa/ssa-vrp-thread-1.c: Same.
* gcc.dg/tree-ssa/vrp02.c: Same.
* gcc.dg/tree-ssa/vrp03.c: Same.
* gcc.dg/tree-ssa/vrp05.c: Same.
* gcc.dg/tree-ssa/vrp06.c: Same.
* gcc.dg/tree-ssa/vrp07.c: Same.
* gcc.dg/tree-ssa/vrp08.c: Same.
* gcc.dg/tree-ssa/vrp09.c: Same.
* gcc.dg/tree-ssa/vrp33.c: Same.
* gcc.dg/uninit-pred-9_b.c: Same.
* gcc.dg/uninit-pred-7_a.c: xfail.
I've found we claim to support non-rectangular loops, but don't actually
support those in Fortran, as can be seen on:
integer i, j
!$omp parallel do collapse(2)
do i = 0, 10
do j = 0, i
end do
end do
end
To support this, the Fortran FE needs to allow the valid forms of
non-rectangular loops and disallow others, so mainly it needs its
updated version of c-omp.c c_omp_check_loop_iv etc., plus for non-rectangular
lb or ub expressions emit a TREE_VEC instead of normal expression as the C/C++ FE
do, plus testsuite coverage.
2021-10-27 Jakub Jelinek <jakub@redhat.com>
* libgomp.texi (OpenMP 5.0): Mention that Non-rectangular loop nests
aren't implemented for Fortran yet.
This patch handles pointer iterators for non-rectangular loops. They are
more limited than integral iterators of non-rectangular loops, in particular
only var-outer, var-outer + a2, a2 + var-outer or var-outer - a2 can appear
in lb or ub where a2 is some integral loop invariant expression, so no e.g.
multiplication etc.
2021-10-27 Jakub Jelinek <jakub@redhat.com>
gcc/
* omp-expand.c (expand_omp_for_init_counts): Handle non-rectangular
iterators with pointer types.
(expand_omp_for_init_vars, extract_omp_for_update_vars): Likewise.
gcc/c-family/
* c-omp.c (c_omp_check_loop_iv_r): Don't clear 3rd bit for
POINTER_PLUS_EXPR.
(c_omp_check_nonrect_loop_iv): Handle POINTER_PLUS_EXPR.
(c_omp_check_loop_iv): Set kind even if the iterator is non-integral.
gcc/testsuite/
* c-c++-common/gomp/loop-8.c: New test.
* c-c++-common/gomp/loop-9.c: New test.
libgomp/
* testsuite/libgomp.c/loop-26.c: New test.
* testsuite/libgomp.c/loop-27.c: New test.
Some systems do not have <alloca.h> but provide alloca differently, e.g.
via stdlib.h. Do it like other testcases do and use __builtin_alloca.
libgomp/ChangeLog:
PR testsuite/102910
* testsuite/libgomp.oacc-c-c++-common/loop-gwv-2.c: Use __builtin_alloca
instead of #include <alloca.h> + alloca.
This implements strictly-structured blocks support for Fortran, as specified in
OpenMP 5.2. This now allows using a Fortran BLOCK construct as the body of most
OpenMP constructs, with a "!$omp end ..." ending directive optional for that
form.
gcc/fortran/ChangeLog:
* decl.c (gfc_match_end): Add COMP_OMP_STRICTLY_STRUCTURED_BLOCK case
together with COMP_BLOCK.
* parse.c (parse_omp_structured_block): Change return type to
'gfc_statement', add handling for strictly-structured block case, adjust
recursive calls to parse_omp_structured_block.
(parse_executable): Adjust calls to parse_omp_structured_block.
* parse.h (enum gfc_compile_state): Add
COMP_OMP_STRICTLY_STRUCTURED_BLOCK.
* trans-openmp.c (gfc_trans_omp_workshare): Add EXEC_BLOCK case
handling.
gcc/testsuite/ChangeLog:
* gfortran.dg/gomp/cancel-1.f90: Adjust testcase.
* gfortran.dg/gomp/nesting-3.f90: Adjust testcase.
* gfortran.dg/gomp/strictly-structured-block-1.f90: New test.
* gfortran.dg/gomp/strictly-structured-block-2.f90: New test.
* gfortran.dg/gomp/strictly-structured-block-3.f90: New test.
libgomp/ChangeLog:
* libgomp.texi (Support of strictly structured blocks in Fortran):
Adjust to 'Y'.
* testsuite/libgomp.fortran/task-reduction-16.f90: Adjust testcase.
This patch implements support for the in_reduction clause for Fortran.
It also includes more completion of the taskgroup construct inside the
Fortran front-end, thus allowing task_reduction to work for task and
target constructs.
gcc/fortran/ChangeLog:
* openmp.c (gfc_match_omp_clause_reduction): Add 'openmp_target' default
false parameter. Add 'always,tofrom' map for OMP_LIST_IN_REDUCTION case.
(gfc_match_omp_clauses): Add 'openmp_target' default false parameter,
adjust call to gfc_match_omp_clause_reduction.
(match_omp): Adjust call to gfc_match_omp_clauses
* trans-openmp.c (gfc_trans_omp_taskgroup): Add call to
gfc_match_omp_clause, create and return block.
gcc/ChangeLog:
* omp-low.c (omp_copy_decl_2): For !ctx, use record_vars to add new copy
as local variable.
(scan_sharing_clauses): Place copy of OMP_CLAUSE_IN_REDUCTION decl in
ctx->outer instead of ctx.
gcc/testsuite/ChangeLog:
* gfortran.dg/gomp/reduction4.f90: Adjust omp target in_reduction' scan
pattern.
libgomp/ChangeLog:
* testsuite/libgomp.fortran/target-in-reduction-1.f90: New test.
* testsuite/libgomp.fortran/target-in-reduction-2.f90: New test.
If GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC is not defined, the intent was to
treat the split of the structure between first cacheline (64 bytes)
as mostly write-once, use afterwards and second cacheline as rw just
as an optimization. But as has been reported, with vectorization enabled
at -O2 it can now result in aligned vector 16-byte or larger stores.
When not having posix_memalign/aligned_alloc/memalign or other similar API,
alloc.c emulates it but it needs to allocate extra memory for the dynamic
realignment.
So, for the GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC not defined case, this patch
stops using aligned (64) attribute in the middle of the structure and instead
inserts padding that puts the second half of the structure at offset 64 bytes.
And when GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC is defined, usually it was allocated
as aligned, but for the orphaned case it could still be allocated just with
gomp_malloc without guaranteed proper alignment.
2021-10-20 Jakub Jelinek <jakub@redhat.com>
PR libgomp/102838
* libgomp.h (struct gomp_work_share_1st_cacheline): New type.
(struct gomp_work_share): Only use aligned(64) attribute if
GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC is defined, otherwise just
add padding before lock to ensure lock is at offset 64 bytes
into the structure.
(gomp_workshare_struct_check1, gomp_workshare_struct_check2):
New poor man's static assertions.
* work.c (gomp_work_share_start): Use gomp_aligned_alloc instead of
gomp_malloc if GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC.
There is a lot of fall-out from this patch, as there were many threading
tests that assumed the restrictions introduced by this patch were valid.
Some tests have merely shifted the threading to after loop
optimizations, but others ended up with no threading opportunities at
all. Surprisingly some tests ended up with more total threads. It was
a crapshoot all around.
On a postive note, there are 6 tests that no longer XFAIL, and one
guality test which now passes.
I felt a bit queasy about such a fundamental change wrt threading, so I
ran it through my callgrind test harness (.ii files from a bootstrap).
There was no change in overall compilation, DOM, or the VRP threaders.
However, there was a slight increase of 1.63% in the backward threader.
I'm pretty sure we could reduce this if we incorporated the restrictions
into their profitability code. This way we could stop the search when
we ran into one of these restrictions. Not sure it's worth it at this
point.
Tested on x86-64 Linux.
Co-authored-by: Richard Biener <rguenther@suse.de>
gcc/ChangeLog:
* tree-ssa-threadupdate.c (cancel_thread): Dump threading reason
on the same line as the threading cancellation.
(jt_path_registry::cancel_invalid_paths): Avoid rotating loops.
Avoid threading through loop headers where the path remains in the
loop.
libgomp/ChangeLog:
* testsuite/libgomp.graphite/force-parallel-5.c: Remove xfail.
gcc/testsuite/ChangeLog:
* gcc.dg/Warray-bounds-87.c: Remove xfail.
* gcc.dg/analyzer/pr94851-2.c: Remove xfail.
* gcc.dg/graphite/pr69728.c: Remove xfail.
* gcc.dg/graphite/scop-dsyr2k.c: Remove xfail.
* gcc.dg/graphite/scop-dsyrk.c: Remove xfail.
* gcc.dg/shrink-wrap-loop.c: Remove xfail.
* gcc.dg/loop-8.c: Adjust for new threading restrictions.
* gcc.dg/tree-ssa/ifc-20040816-1.c: Same.
* gcc.dg/tree-ssa/pr21559.c: Same.
* gcc.dg/tree-ssa/pr59597.c: Same.
* gcc.dg/tree-ssa/pr71437.c: Same.
* gcc.dg/tree-ssa/pr77445-2.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-4.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-7.c: Same.
* gcc.dg/vect/bb-slp-16.c: Same.
* gcc.dg/tree-ssa/ssa-dom-thread-6.c: Remove.
* gcc.dg/tree-ssa/ssa-dom-thread-18.c: Remove.
* gcc.dg/tree-ssa/ssa-dom-thread-2a.c: Remove.
* gcc.dg/tree-ssa/ssa-thread-invalid.c: New test.
If numa-domains is used with num-places count, sometimes the function
could create more places than requested and crash. This depended on the
content of /sys/devices/system/node/online file, e.g. if the file
contains
0-1,16-17
and all NUMA nodes contain at least one CPU in the cpuset of the program,
then numa_domains(2) or numa_domains(4) (or 5+) work fine while
numa_domains(1) or numa_domains(3) misbehave. I.e. the function was able
to stop after reaching limit on the , separators (or trivially at the end),
but not within in the ranges.
2021-10-18 Jakub Jelinek <jakub@redhat.com>
* config/linux/affinity.c (gomp_affinity_init_numa_domains): Add
&& gomp_places_list_len < count after nfirst <= nlast loop condition.
gfortran uses internally a different array descriptor ("gfc") as
Fortran 2018 alias TS291113 defines for C interoperability via
ISO_Fortran_binding.h ("CFI"). Hence, when calling a C function
from Fortran, it has to be converted in the callee - and if a
BIND(C) procedure is written in Fortran, the CFI argument has
to be converted to gfc in order work with the rest of the FE
code and the library calls.
Before this patch, part was handled in the FE generated code and
other parts in libgfortran. With this patch, all code is generated
and CFI is defined as proper type - visible in the debugger and to
the middle end - avoiding both alias issues and missed optimization
issues.
This patch also fixes issues like: intent(out) deallocation in
the bind(C) callee, using the CFI descriptor also for allocatable
and pointer scalars and for len=* character strings.
For 'select rank', it also optimizes the code + avoid accessing
uninitialized memory if the dummy argument is allocatable/a pointer.
It additionally rejects passing a descriptorless type(*) to an
assumed-rank dummy argument. [F2018:C711]
PR fortran/102086
PR fortran/92189
PR fortran/92621
PR fortran/101308
PR fortran/101309
PR fortran/101635
PR fortran/92482
gcc/fortran/ChangeLog:
* decl.c (gfc_verify_c_interop_param): Remove 'sorry' for
scalar allocatable/pointer and len=*.
* expr.c (is_CFI_desc): Return true for for those.
* gfortran.h (CFI_type_kind_shift, CFI_type_mask,
CFI_type_from_type_kind, CFI_VERSION, CFI_MAX_RANK,
CFI_attribute_pointer, CFI_attribute_allocatable,
CFI_attribute_other, CFI_type_Integer, CFI_type_Logical,
CFI_type_Real, CFI_type_Complex, CFI_type_Character,
CFI_type_ucs4_char, CFI_type_struct, CFI_type_cptr,
CFI_type_cfunptr, CFI_type_other): New #define.
* trans-array.c (CFI_FIELD_BASE_ADDR, CFI_FIELD_ELEM_LEN,
CFI_FIELD_VERSION, CFI_FIELD_RANK, CFI_FIELD_ATTRIBUTE,
CFI_FIELD_TYPE, CFI_FIELD_DIM, CFI_DIM_FIELD_LOWER_BOUND,
CFI_DIM_FIELD_EXTENT, CFI_DIM_FIELD_SM,
gfc_get_cfi_descriptor_field, gfc_get_cfi_desc_base_addr,
gfc_get_cfi_desc_elem_len, gfc_get_cfi_desc_version,
gfc_get_cfi_desc_rank, gfc_get_cfi_desc_type,
gfc_get_cfi_desc_attribute, gfc_get_cfi_dim_item,
gfc_get_cfi_dim_lbound, gfc_get_cfi_dim_extent, gfc_get_cfi_dim_sm):
New define/functions to access the CFI array descriptor.
(gfc_conv_descriptor_type): New function for the GFC descriptor.
(gfc_get_array_span): Handle expr of CFI descriptors and
assumed-type descriptors.
(gfc_trans_array_bounds): Remove 'static'.
(gfc_conv_expr_descriptor): For assumed type, use the dtype of
the actual argument.
(structure_alloc_comps): Remove ' ' inside tabs.
* trans-array.h (gfc_trans_array_bounds, gfc_conv_descriptor_type,
gfc_get_cfi_desc_base_addr, gfc_get_cfi_desc_elem_len,
gfc_get_cfi_desc_version, gfc_get_cfi_desc_rank,
gfc_get_cfi_desc_type, gfc_get_cfi_desc_attribute,
gfc_get_cfi_dim_lbound, gfc_get_cfi_dim_extent, gfc_get_cfi_dim_sm):
New prototypes.
* trans-decl.c (gfor_fndecl_cfi_to_gfc, gfor_fndecl_gfc_to_cfi):
Remove global vars.
(gfc_build_builtin_function_decls): Remove their initialization.
(gfc_get_symbol_decl, create_function_arglist,
gfc_trans_deferred_vars): Update for CFI.
(convert_CFI_desc): Remove and replace by ...
(gfc_conv_cfi_to_gfc): ... this function
(gfc_generate_function_code): Call it; create local GFC var for CFI.
* trans-expr.c (gfc_maybe_dereference_var): Handle CFI.
(gfc_conv_subref_array_arg): Handle the if-noncontigous-only copy in
when the result should be a descriptor.
(gfc_conv_gfc_desc_to_cfi_desc): Completely rewritten.
(gfc_conv_procedure_call): CFI fixes.
* trans-openmp.c (gfc_omp_is_optional_argument,
gfc_omp_check_optional_argument): Handle optional
CFI.
* trans-stmt.c (gfc_trans_select_rank_cases): Cleanup, avoid invalid
code for allocatable/pointer dummies, which cannot be assumed size.
* trans-types.c (gfc_cfi_descriptor_base): New global var.
(gfc_get_dtype_rank_type): Skip rank init for rank < 0.
(gfc_sym_type): Handle CFI dummies.
(gfc_get_function_type): Update call.
(gfc_get_cfi_dim_type, gfc_get_cfi_type): New.
* trans-types.h (gfc_sym_type): Update prototype.
(gfc_get_cfi_type): New prototype.
* trans.c (gfc_trans_runtime_check): Make conditions more consistent
to avoid '<logical> AND_THEN <long int>' in conditions.
* trans.h (gfor_fndecl_cfi_to_gfc, gfor_fndecl_gfc_to_cfi): Remove
global-var declaration.
libgfortran/ChangeLog:
* ISO_Fortran_binding.h (CFI_type_cfunptr): Make unique type again.
* runtime/ISO_Fortran_binding.c (cfi_desc_to_gfc_desc,
gfc_desc_to_cfi_desc): Add comment that those are no longer called
by new code.
libgomp/ChangeLog:
* testsuite/libgomp.fortran/optional-bind-c.f90: New test.
gcc/testsuite/ChangeLog:
* gfortran.dg/ISO_Fortran_binding_4.f90: Extend testcase.
* gfortran.dg/PR100914.f90: Remove xfail.
* gfortran.dg/PR100915.c: Expect CFI_type_cfunptr.
* gfortran.dg/PR100915.f90: Handle CFI_type_cfunptr != CFI_type_cptr.
* gfortran.dg/PR93963.f90: Extend select-rank tests.
* gfortran.dg/bind-c-intent-out.f90: Change to dg-do run,
update scan-dump.
* gfortran.dg/bind_c_array_params_2.f90: Update/extend scan-dump.
* gfortran.dg/bind_c_char_10.f90: Update scan-dump.
* gfortran.dg/bind_c_char_8.f90: Remove dg-error "sorry".
* gfortran.dg/c-interop/allocatable-dummy.f90: Remove xfail.
* gfortran.dg/c-interop/c1255-1.f90: Likewise.
* gfortran.dg/c-interop/c407c-1.f90: Update dg-error.
* gfortran.dg/c-interop/cf-descriptor-5.f90: Remove xfail.
* gfortran.dg/c-interop/cf-out-descriptor-3.f90: Likewise.
* gfortran.dg/c-interop/cf-out-descriptor-4.f90: Likewise.
* gfortran.dg/c-interop/cf-out-descriptor-5.f90: Likewise.
* gfortran.dg/c-interop/contiguous-2.f90: Likewise.
* gfortran.dg/c-interop/contiguous-3.f90: Likewise.
* gfortran.dg/c-interop/deferred-character-1.f90: Likewise.
* gfortran.dg/c-interop/deferred-character-2.f90: Likewise.
* gfortran.dg/c-interop/fc-descriptor-3.f90: Likewise.
* gfortran.dg/c-interop/fc-descriptor-5.f90: Likewise.
* gfortran.dg/c-interop/fc-descriptor-6.f90: Likewise.
* gfortran.dg/c-interop/fc-out-descriptor-3.f90: Likewise.
* gfortran.dg/c-interop/fc-out-descriptor-4.f90: Likewise.
* gfortran.dg/c-interop/fc-out-descriptor-5.f90: Likewise.
* gfortran.dg/c-interop/fc-out-descriptor-6.f90: Likewise.
* gfortran.dg/c-interop/ff-descriptor-5.f90: Likewise.
* gfortran.dg/c-interop/ff-descriptor-6.f90: Likewise.
* gfortran.dg/c-interop/fc-descriptor-7.f90: Remove xfail + extend.
* gfortran.dg/c-interop/fc-descriptor-7-c.c: Update for changes.
* gfortran.dg/c-interop/shape.f90: Add implicit none.
* gfortran.dg/c-interop/typecodes-array-char-c.c: Add kind=4 char.
* gfortran.dg/c-interop/typecodes-array-char.f90: Likewise.
* gfortran.dg/c-interop/typecodes-array-float128.f90: Remove xfail.
* gfortran.dg/c-interop/typecodes-scalar-basic.f90: Likewise.
* gfortran.dg/c-interop/typecodes-scalar-float128.f90: Likewise.
* gfortran.dg/c-interop/typecodes-scalar-int128.f90: Likewise.
* gfortran.dg/c-interop/typecodes-scalar-longdouble.f90: Likewise.
* gfortran.dg/iso_c_binding_char_1.f90: Remove dg-error "sorry".
* gfortran.dg/pr93792.f90: Turn XFAIL into PASS.
* gfortran.dg/ISO_Fortran_binding_19.f90: New test.
* gfortran.dg/assumed_type_12.f90: New test.
* gfortran.dg/assumed_type_13.c: New test.
* gfortran.dg/assumed_type_13.f90: New test.
* gfortran.dg/bind-c-char-descr.f90: New test.
* gfortran.dg/bind-c-contiguous-1.c: New test.
* gfortran.dg/bind-c-contiguous-1.f90: New test.
* gfortran.dg/bind-c-contiguous-2.f90: New test.
* gfortran.dg/bind-c-contiguous-3.c: New test.
* gfortran.dg/bind-c-contiguous-3.f90: New test.
* gfortran.dg/bind-c-contiguous-4.c: New test.
* gfortran.dg/bind-c-contiguous-4.f90: New test.
* gfortran.dg/bind-c-contiguous-5.c: New test.
* gfortran.dg/bind-c-contiguous-5.f90: New test.
I've noticed that while I have added hopefully sufficient test coverage
for the case where one uses simple number or !number as p-interval,
I haven't added any coverage for number:len:stride or number:len.
This patch adds that.
2021-10-15 Jakub Jelinek <jakub@redhat.com>
* testsuite/libgomp.c/affinity-1.c (struct places): Change name field
type from char [50] to const char *.
(places_array): Add a testcase for simplified syntax place followed
by length or length and stride.
In addition to adding ll_caches and numa_domain abstract names
to OMP_PLACES syntax, OpenMP 5.1 also added one syntax simplification:
https://github.com/OpenMP/spec/issues/2080https://github.com/OpenMP/spec/pull/2081
in particular that in the grammar place non-terminal is now
not only { res-list } but also res (i.e. a non-negative integer),
which stands as a shortcut for { res }
So, one can specify OMP_PLACES=0,4,8,12 with the meaning
OMP_PLACES={0},{4},{8},{12} or OMP_PLACES=0:4 instead of OMP_PLACES={0}:4
or OMP_PLACES={0},{1},{2},{3} etc.
This patch implements that.
2021-10-15 Jakub Jelinek <jakub@redhat.com>
* env.c (parse_one_place): Handle non-negative-number the same
as { non-negative-number }. Reject even !number:1 and
!number:1:stride or !place:1 or !place:1:stride instead of just
length other than 1.
* libgomp.texi (OpenMP 5.1): Document OMP_PLACES syntax extensions
and OMP_NUM_TEAMS/OMP_TEAMS_THREAD_LIMIT and
omp_{set_num,get_max}_teams/omp_{s,g}et_teams_thread_limit features
as implemented.
* testsuite/libgomp.c/affinity-1.c: Add a test for the 5.1 place
simplified syntax.
Yesterday when working on numa_domains, I've noticed because of a bug
in my patch a hang on a large NUMA machine. I've fixed the bug, but
also discovered that the hang was a result of making wrong assumptions
about strtoul/strtoull. All the uses were for portability setting
errno = 0 before the calls and treating non-zero errno after the call
as invalid input, but for the case where there are no valid digits at
all strtoul may set errno to EINVAL, but doesn't have to and with
glibc doesn't do that. So, this patch goes through all the strtoul calls
and next to errno != 0 checks adds also endptr == startptr check.
Haven't done it in places where we immediately reject strtoul returning 0
the same as we reject errno != 0, because strtoul must return 0 in the
case where it sets endptr to the start pointer. In some spots the code
was using errno = 0; x = strtoul (p, &p, 10); if (errno) { /*invalid*/ }
and those spots had to be changed to
errno = 0; x = strtoul (p, &end, 10); if (errno || end == p) { /*invalid*/ }
p = end;
2021-10-15 Jakub Jelinek <jakub@redhat.com>
* env.c (parse_schedule): For strtoul or strtoull calls which don't
clearly reject return value 0 as invalid handle the case where end
pointer is the same as first argument as invalid.
(parse_unsigned_long_1): Likewise.
(parse_one_place): Likewise.
(parse_places_var): Likewise.
(parse_stacksize): Likewise.
(parse_spincount): Likewise.
(parse_affinity): Likewise.
(parse_gomp_openacc_dim): Likewise. Avoid strict aliasing violation.
Make code valid C89.
* config/linux/affinity.c (gomp_affinity_find_last_cache_level):
For strtoul calls which don't clearly reject return value 0 as
invalid handle the case where end pointer is the same as first
argument as invalid.
(gomp_affinity_init_level_1): Likewise.
(gomp_affinity_init_numa_domains): Likewise.
* config/rtems/proc.c (parse_thread_pools): Likewise.
When writing the places-*.c tests, I've noticed that we mishandle threads
abstract name with specified num-places if num-places isn't a multiple of
number of hw threads in a core. It then happily ignores the maximum count
and overwrites for the remaining hw threads in a core further places that
haven't been allocated.
2021-10-15 Jakub Jelinek <jakub@redhat.com>
* config/linux/affinity.c (gomp_affinity_init_level_1): For level 1
after creating count places clean up and return immediately.
* testsuite/libgomp.c/places-6.c: New test.
* testsuite/libgomp.c/places-7.c: New test.
* testsuite/libgomp.c/places-8.c: New test.
* testsuite/libgomp.c/places-9.c: New test.
* testsuite/libgomp.c/places-10.c: New test.
This adds support for numa_domains abstract name in OMP_PLACES, also new
in OpenMP 5.1.
Way to test this is
OMP_PLACES=numa_domains OMP_DISPLAY_ENV=true LD_PRELOAD=.libs/libgomp.so.1 /bin/true
and see what it prints on OMP_PLACES line.
For non-NUMA machines it should print a single place that covers all CPUs,
for NUMA machine one place for each NUMA node with corresponding CPUs.
2021-10-15 Jakub Jelinek <jakub@redhat.com>
* env.c (parse_places_var): Handle numa_domains as level 5.
* config/linux/affinity.c (gomp_affinity_init_numa_domains): New
function.
(gomp_affinity_init_level): Use it instead of
gomp_affinity_init_level_1 for level == 5.
* testsuite/libgomp.c/places-5.c: New test.
This patch implements support for ll_caches abstract name in OMP_PLACES,
which stands for places where logical cpus in each place share the last
level cache.
This seems to work fine for me on x86 and kernel sources show that it is
in common code, but on some machines on CompileFarm the files I'm using,
i.e.
/sys/devices/system/cpu/cpuN/cache/indexN/level
/sys/devices/system/cpu/cpuN/cache/indexN/shared_cpu_list
don't exist, is that because they have too old kernel and newer kernels
are fine or should I implement some fallback methods (which)?
E.g. on gcc112.fsffrance.org I see just shared_cpu_map and not shared_cpu_list
(with shared_cpu_map being harder to parse) and on another box I didn't even
see the cache subdirectories.
Way to test this is
OMP_PLACES=ll_caches OMP_DISPLAY_ENV=true LD_PRELOAD=.libs/libgomp.so.1 /bin/true
and see what it prints on OMP_PLACES line.
2021-10-15 Jakub Jelinek <jakub@redhat.com>
* env.c (parse_places_var): Handle ll_caches as level 4.
* config/linux/affinity.c (gomp_affinity_find_last_cache_level): New
function.
(gomp_affinity_init_level_1): Handle level 4 as logical cpus sharing
last level cache.
(gomp_affinity_init_level): Likewise.
* testsuite/libgomp.c/places-1.c: New test.
* testsuite/libgomp.c/places-2.c: New test.
* testsuite/libgomp.c/places-3.c: New test.
* testsuite/libgomp.c/places-4.c: New test.
This patch releases the device lock on a sanity-checking error path in
transfer combining (cbuf) handling in libgomp:target.c. This shouldn't
happen when handling well-formed mapping clauses, but erroneous clauses
can currently cause a hang if the condition triggers.
2021-12-10 Julian Brown <julian@codesourcery.com>
libgomp/
* target.c (gomp_copy_host2dev): Release device lock on cbuf
error path.
This adds the Fortran testsuite coverage of
omp_{get_max,set_num}_threads and omp_{s,g}et_teams_thread_limit
libgomp/
* testsuite/libgomp.fortran/icv-3.f90: New.
* testsuite/libgomp.fortran/icv-4.f90: New.
This patch adds documentation for these new OpenMP 5.1 APIs as well as
two new environment variables - OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT.
2021-10-12 Jakub Jelinek <jakub@redhat.com>
* libgomp.texi (omp_get_max_teams, omp_get_teams_thread_limit,
omp_set_num_teams, omp_set_teams_thread_limit, OMP_NUM_TEAMS,
OMP_TEAMS_THREAD_LIMIT): Document.
When building libgomp documentation, I see
makeinfo --split-size=5000000 -I ../../../libgomp/../gcc/doc/include -I ../../../libgomp -o libgomp.info ../../../libgomp/libgomp.texi
../../../libgomp/libgomp.texi:503: warning: node next `omp_get_default_device' in menu `omp_get_device_num' and in sectioning `omp_get_dynamic' differ
../../../libgomp/libgomp.texi:528: warning: node prev `omp_get_dynamic' in menu `omp_get_device_num' and in sectioning `omp_get_default_device' differ
../../../libgomp/libgomp.texi:560: warning: node next `omp_get_initial_device' in menu `omp_get_level' and in sectioning `omp_get_device_num' differ
../../../libgomp/libgomp.texi:587: warning: node next `omp_get_device_num' in menu `omp_get_dynamic' and in sectioning `omp_get_level' differ
../../../libgomp/libgomp.texi:587: warning: node prev `omp_get_device_num' in menu `omp_get_default_device' and in sectioning `omp_get_initial_device' differ
../../../libgomp/libgomp.texi:615: warning: node prev `omp_get_level' in menu `omp_get_initial_device' and in sectioning `omp_get_device_num' differ
warnings. This patch fixes those.
2021-10-12 Jakub Jelinek <jakub@redhat.com>
* libgomp.texi (omp_get_device_num): Move @node before omp_get_dynamic
to avoid makeinfo warnings.