/* Implementation of the BESSEL_JN and BESSEL_YN transformational function using a recurrence algorithm. Copyright (C) 2010-2017 Free Software Foundation, Inc. Contributed by Tobias Burnus This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "liblfortran.h" #define MATHFUNC(funcname) funcname ## f #if defined (HAVE_GFC_REAL_4) #if defined (HAVE_JNF) extern void bessel_jn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2, GFC_REAL_4 x); export_proto(bessel_jn_r4); void bessel_jn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2, GFC_REAL_4 x) { int i; index_type stride; GFC_REAL_4 last1, last2, x2rev; stride = GFC_DESCRIPTOR_STRIDE(ret,0); if (ret->base_addr == NULL) { size_t size = n2 < n1 ? 0 : n2-n1+1; GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1); ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_4)); ret->offset = 0; } if (unlikely (n2 < n1)) return; if (unlikely (compile_options.bounds_check) && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1)) runtime_error("Incorrect extent in return value of BESSEL_JN (%ld vs. %ld)", (long int) n2-n1, (long int) GFC_DESCRIPTOR_EXTENT(ret,0)); stride = GFC_DESCRIPTOR_STRIDE(ret,0); if (unlikely (x == 0)) { ret->base_addr[0] = 1; for (i = 1; i <= n2-n1; i++) ret->base_addr[i*stride] = 0; return; } last1 = MATHFUNC(jn) (n2, x); ret->base_addr[(n2-n1)*stride] = last1; if (n1 == n2) return; last2 = MATHFUNC(jn) (n2 - 1, x); ret->base_addr[(n2-n1-1)*stride] = last2; if (n1 + 1 == n2) return; x2rev = GFC_REAL_4_LITERAL(2.)/x; for (i = n2-n1-2; i >= 0; i--) { ret->base_addr[i*stride] = x2rev * (i+1+n1) * last2 - last1; last1 = last2; last2 = ret->base_addr[i*stride]; } } #endif #if defined (HAVE_YNF) extern void bessel_yn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2, GFC_REAL_4 x); export_proto(bessel_yn_r4); void bessel_yn_r4 (gfc_array_r4 * const restrict ret, int n1, int n2, GFC_REAL_4 x) { int i; index_type stride; GFC_REAL_4 last1, last2, x2rev; stride = GFC_DESCRIPTOR_STRIDE(ret,0); if (ret->base_addr == NULL) { size_t size = n2 < n1 ? 0 : n2-n1+1; GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1); ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_4)); ret->offset = 0; } if (unlikely (n2 < n1)) return; if (unlikely (compile_options.bounds_check) && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1)) runtime_error("Incorrect extent in return value of BESSEL_JN (%ld vs. %ld)", (long int) n2-n1, (long int) GFC_DESCRIPTOR_EXTENT(ret,0)); stride = GFC_DESCRIPTOR_STRIDE(ret,0); if (unlikely (x == 0)) { for (i = 0; i <= n2-n1; i++) #if defined(GFC_REAL_4_INFINITY) ret->base_addr[i*stride] = -GFC_REAL_4_INFINITY; #else ret->base_addr[i*stride] = -GFC_REAL_4_HUGE; #endif return; } last1 = MATHFUNC(yn) (n1, x); ret->base_addr[0] = last1; if (n1 == n2) return; last2 = MATHFUNC(yn) (n1 + 1, x); ret->base_addr[1*stride] = last2; if (n1 + 1 == n2) return; x2rev = GFC_REAL_4_LITERAL(2.)/x; for (i = 2; i <= n2 - n1; i++) { #if defined(GFC_REAL_4_INFINITY) if (unlikely (last2 == -GFC_REAL_4_INFINITY)) { ret->base_addr[i*stride] = -GFC_REAL_4_INFINITY; } else #endif { ret->base_addr[i*stride] = x2rev * (i-1+n1) * last2 - last1; last1 = last2; last2 = ret->base_addr[i*stride]; } } } #endif #endif