/* Copyright (c) 2014-2016 Intel Corporation. All Rights Reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "offload_engine.h" #include #include #include #include #include #include #include "offload_host.h" #include "offload_table.h" #include "offload_iterator.h" #if defined(HOST_WINNT) #define PATH_SEPARATOR ";" #else #define PATH_SEPARATOR ":" #endif // Static members of Stream class must be described somewhere. // This members describe the list of all streams defined in programm // via call to _Offload_stream_create. uint64_t Stream::m_streams_count = 0; StreamMap Stream::all_streams; mutex_t Stream::m_stream_lock; char* mic_library_path = 0; const char* Engine::m_func_names[Engine::c_funcs_total] = { "server_compute", #ifdef MYO_SUPPORT "server_myoinit", "server_myofini", #endif // MYO_SUPPORT "server_init", "server_var_table_size", "server_var_table_copy", "server_set_stream_affinity" }; // Symbolic representation of system signals. Fix for CQ233593 const char* Engine::c_signal_names[Engine::c_signal_max] = { "Unknown SIGNAL", "SIGHUP", /* 1, Hangup (POSIX). */ "SIGINT", /* 2, Interrupt (ANSI). */ "SIGQUIT", /* 3, Quit (POSIX). */ "SIGILL", /* 4, Illegal instruction (ANSI). */ "SIGTRAP", /* 5, Trace trap (POSIX). */ "SIGABRT", /* 6, Abort (ANSI). */ "SIGBUS", /* 7, BUS error (4.2 BSD). */ "SIGFPE", /* 8, Floating-point exception (ANSI). */ "SIGKILL", /* 9, Kill, unblockable (POSIX). */ "SIGUSR1", /* 10, User-defined signal 1 (POSIX). */ "SIGSEGV", /* 11, Segmentation violation (ANSI). */ "SIGUSR2", /* 12, User-defined signal 2 (POSIX). */ "SIGPIPE", /* 13, Broken pipe (POSIX). */ "SIGALRM", /* 14, Alarm clock (POSIX). */ "SIGTERM", /* 15, Termination (ANSI). */ "SIGSTKFLT", /* 16, Stack fault. */ "SIGCHLD", /* 17, Child status has changed (POSIX). */ "SIGCONT", /* 18, Continue (POSIX). */ "SIGSTOP", /* 19, Stop, unblockable (POSIX). */ "SIGTSTP", /* 20, Keyboard stop (POSIX). */ "SIGTTIN", /* 21, Background read from tty (POSIX). */ "SIGTTOU", /* 22, Background write to tty (POSIX). */ "SIGURG", /* 23, Urgent condition on socket (4.2 BSD). */ "SIGXCPU", /* 24, CPU limit exceeded (4.2 BSD). */ "SIGXFSZ", /* 25, File size limit exceeded (4.2 BSD). */ "SIGVTALRM", /* 26, Virtual alarm clock (4.2 BSD). */ "SIGPROF", /* 27, Profiling alarm clock (4.2 BSD). */ "SIGWINCH", /* 28, Window size change (4.3 BSD, Sun). */ "SIGIO", /* 29, I/O now possible (4.2 BSD). */ "SIGPWR", /* 30, Power failure restart (System V). */ "SIGSYS" /* 31, Bad system call. */ }; void Engine::init(void) { if (!m_ready) { mutex_locker_t locker(m_lock); if (!m_ready) { // start process if not done yet if (m_process == 0) { init_process(); } // load penging images load_libraries(); // and (re)build pointer table init_ptr_data(); // it is ready now m_ready = true; // Inform the debugger if (__dbg_is_attached) { __dbg_target_so_loaded(); } } } } void Engine::print_stream_cpu_list(const char * str) { int count = 0; char buffer[1024]; CpuEl* cpu_el = m_cpu_head; OFFLOAD_DEBUG_TRACE(3, "%s : cpu list as Index(Count) for the streams is :\n", str); buffer[0] = 0; for (int i = 0; i < m_num_threads; i++) { cpu_el = m_cpus + i; if (m_assigned_cpus == 0 || (*m_assigned_cpus)[i]) { count++; sprintf(buffer + strlen(buffer), "%d(%d) ", CPU_INDEX(cpu_el), cpu_el->count); if (count % 20 == 0) { OFFLOAD_DEBUG_TRACE(3, "%s\n", buffer); buffer[0] = 0; } } } if (count % 20 != 0) { OFFLOAD_DEBUG_TRACE(3, "%s\n", buffer); } } void Engine::init_process(void) { COIENGINE engine; COIRESULT res; const char **environ; char buf[4096]; // For exe path name char* mic_device_main = 0; // create environment for the target process environ = (const char**) mic_env_vars.create_environ_for_card(m_index); if (environ != 0) { for (const char **p = environ; *p != 0; p++) { OFFLOAD_DEBUG_TRACE(3, "Env Var for card %d: %s\n", m_index, *p); } } // Create execution context in the specified device OFFLOAD_DEBUG_TRACE(2, "Getting device %d (engine %d) handle\n", m_index, m_physical_index); res = COI::EngineGetHandle(COI_ISA_MIC, m_physical_index, &engine); check_result(res, c_get_engine_handle, m_index, res); // Get engine info on threads and cores. // The values of core number and thread number will be used later at stream // creation by call to _Offload_stream_create(device,number_of_cpus). COI_ENGINE_INFO engine_info; res = COI::EngineGetInfo(engine, sizeof(COI_ENGINE_INFO), &engine_info); check_result(res, c_get_engine_info, m_index, res); if (mic_library_path == 0 ) { if (engine_info.ISA == COI_DEVICE_KNC) { mic_library_path = knc_library_path; } else if (engine_info.ISA == COI_DEVICE_KNL) { mic_library_path = knl_library_path; } else { LIBOFFLOAD_ERROR(c_unknown_mic_device_type); } } // m_cpus is the list of all available threads. // At the begining all threads made available through OFFLOAD_DEVICES // or all threads existed at the engine if OFFLOAD_DEVICES isn't set. // m_cpu_head points to the head of the m_cpus list. // m_cpus is ordered by number of streams using the thread. // m_cpu_head points to the least used thread. // After creating and destroying a stream the m_cpus list must be fixed // to be ordered. m_cpus = (CpuEl*)malloc(engine_info.NumThreads * sizeof(CpuEl)); if (m_cpus == NULL) LIBOFFLOAD_ERROR(c_malloc); memset(m_cpus, 0, engine_info.NumThreads * sizeof(CpuEl)); CpuEl* prev_cpu = NULL; for (int i = 0; i < engine_info.NumThreads; i++) { if (m_assigned_cpus == 0 || (*m_assigned_cpus)[i]) { if (prev_cpu) { prev_cpu->next = m_cpus + i; } else { m_cpu_head = m_cpus + i; } m_cpus[i].prev = prev_cpu; m_cpus[i].count = 0; prev_cpu = m_cpus + i; } } // The following values will be used at pipeline creation for streams m_num_cores = engine_info.NumCores; m_num_threads = engine_info.NumThreads; print_stream_cpu_list("init_process"); // Check if OFFLOAD_DMA_CHANNEL_COUNT is set to 2 // Only the value 2 is supported in 16.0 if (mic_dma_channel_count == 2) { if (COI::ProcessConfigureDMA) { // Set DMA channels using COI API COI::ProcessConfigureDMA(2, COI::DMA_MODE_READ_WRITE); } else { // Set environment variable COI_DMA_CHANNEL_COUNT // use putenv instead of setenv as Windows has no setenv. // Note: putenv requires its argument can't be freed or modified. // So no free after call to putenv or elsewhere. char * env_var = strdup("COI_DMA_CHANNEL_COUNT=2"); if (env_var == NULL) LIBOFFLOAD_ERROR(c_malloc); putenv(env_var); } } // Target executable is not available then use compiler provided offload_main if (__target_exe == 0) { // find target executable to be used if main application is not an // offload build application. const char *base_name = "offload_main"; if (mic_library_path != 0) { char *buf = strdup(mic_library_path); if (buf == NULL) LIBOFFLOAD_ERROR(c_malloc); char *try_name = (char*) alloca(strlen(mic_library_path) + strlen(base_name) + 2); char *dir, *ptr; for (dir = strtok_r(buf, PATH_SEPARATOR, &ptr); dir != 0; dir = strtok_r(0, PATH_SEPARATOR, &ptr)) { // compose a full path sprintf(try_name, "%s/%s", dir, base_name); // check if such file exists struct stat st; if (stat(try_name, &st) == 0 && S_ISREG(st.st_mode)) { mic_device_main = strdup(try_name); if (mic_device_main == NULL) LIBOFFLOAD_ERROR(c_malloc); break; } } free(buf); } if (mic_device_main == 0) { LIBOFFLOAD_ERROR(c_report_no_target_exe, "offload_main"); exit(1); } OFFLOAD_DEBUG_TRACE(2, "Loading target executable %s\n",mic_device_main); res = COI::ProcessCreateFromFile( engine, // in_Engine mic_device_main, // in_pBinaryName 0, // in_Argc 0, // in_ppArgv environ == 0, // in_DupEnv environ, // in_ppAdditionalEnv mic_proxy_io, // in_ProxyActive mic_proxy_fs_root, // in_ProxyfsRoot mic_buffer_size, // in_BufferSpace mic_library_path, // in_LibrarySearchPath &m_process // out_pProcess ); } else { // Target executable should be available by the time when we // attempt to initialize the device // Need the full path of the FAT exe for VTUNE { #ifndef TARGET_WINNT ssize_t len = readlink("/proc/self/exe", buf,1000); #else int len = GetModuleFileName(NULL, buf,1000); #endif // TARGET_WINNT if (len == -1) { LIBOFFLOAD_ERROR(c_report_no_host_exe); exit(1); } else if (len > 999) { LIBOFFLOAD_ERROR(c_report_path_buff_overflow); exit(1); } buf[len] = '\0'; } OFFLOAD_DEBUG_TRACE(2, "Loading target executable \"%s\" from %p, size %lld, host file %s\n", __target_exe->name, __target_exe->data, __target_exe->size, buf); res = COI::ProcessCreateFromMemory( engine, // in_Engine __target_exe->name, // in_pBinaryName __target_exe->data, // in_pBinaryBuffer __target_exe->size, // in_BinaryBufferLength, 0, // in_Argc 0, // in_ppArgv environ == 0, // in_DupEnv environ, // in_ppAdditionalEnv mic_proxy_io, // in_ProxyActive mic_proxy_fs_root, // in_ProxyfsRoot mic_buffer_size, // in_BufferSpace mic_library_path, // in_LibrarySearchPath buf, // in_FileOfOrigin -1, // in_FileOfOriginOffset use -1 to indicate to // COI that is is a FAT binary &m_process // out_pProcess ); } check_result(res, c_process_create, m_index, res); if ((mic_4k_buffer_size != 0) || (mic_2m_buffer_size !=0)) { // available only in MPSS 4.2 and greater if (COI::ProcessSetCacheSize != 0 ) { int flags; // Need compiler to use MPSS 3.2 or greater to get these // definition so currently hardcoding it // COI_CACHE_ACTION_GROW_NOW && COI_CACHE_MODE_ONDEMAND_SYNC; flags = 0x00020002; res = COI::ProcessSetCacheSize( m_process, // in_Process mic_2m_buffer_size, // in_HugePagePoolSize flags, // inHugeFlags mic_4k_buffer_size, // in_SmallPagePoolSize flags, // inSmallFlags 0, // in_NumDependencies 0, // in_pDependencies 0 // out_PCompletion ); OFFLOAD_DEBUG_TRACE(2, "Reserve target buffers 4K pages = %d 2M pages = %d\n", mic_4k_buffer_size, mic_2m_buffer_size); check_result(res, c_process_set_cache_size, m_index, res); } else { OFFLOAD_DEBUG_TRACE(2, "Reserve target buffers not supported in current MPSS\n"); } } // get function handles res = COI::ProcessGetFunctionHandles(m_process, c_funcs_total, m_func_names, m_funcs); check_result(res, c_process_get_func_handles, m_index, res); // initialize device side pid_t pid = init_device(); // For IDB if (__dbg_is_attached) { // TODO: we have in-memory executable now. // Check with IDB team what should we provide them now? if (__target_exe == 0) { strcpy(__dbg_target_exe_name, "offload_main"); } else { if (strlen(__target_exe->name) < MAX_TARGET_NAME) { strcpy(__dbg_target_exe_name, __target_exe->name); } } __dbg_target_so_pid = pid; __dbg_target_id = m_physical_index; // The call to __dbg_target_so_loaded() is moved // to Engine:init so all the libraries are loaded before // informing debugger so debugger can access them. // __dbg_target_so_loaded(); } } void Engine::fini_process(bool verbose) { if (m_process != 0) { uint32_t sig; int8_t ret; // destroy target process OFFLOAD_DEBUG_TRACE(2, "Destroying process on the device %d\n", m_index); COIRESULT res = COI::ProcessDestroy(m_process, -1, 0, &ret, &sig); m_process = 0; if (res == COI_SUCCESS) { OFFLOAD_DEBUG_TRACE(3, "Device process: signal %d, exit code %d\n", sig, ret); if (verbose) { if (sig != 0) { LIBOFFLOAD_ERROR( c_mic_process_exit_sig, m_index, sig, c_signal_names[sig >= c_signal_max ? 0 : sig]); } else { LIBOFFLOAD_ERROR(c_mic_process_exit_ret, m_index, ret); } } // for idb if (__dbg_is_attached) { __dbg_target_so_unloaded(); } } else { if (verbose) { LIBOFFLOAD_ERROR(c_mic_process_exit, m_index); } } } } void Engine::load_libraries() { // load libraries collected so far for (TargetImageList::iterator it = m_images.begin(); it != m_images.end(); it++) { OFFLOAD_DEBUG_TRACE(2, "Loading library \"%s\" from %p, size %llu, host file %s\n", it->name, it->data, it->size, it->origin); // load library to the device COILIBRARY lib; COIRESULT res; res = COI::ProcessLoadLibraryFromMemory(m_process, it->data, it->size, it->name, mic_library_path, it->origin, (it->origin) ? -1 : 0, COI_LOADLIBRARY_V1_FLAGS, &lib); m_dyn_libs.push_front(DynLib(it->name, it->data, lib)); if (res != COI_SUCCESS && res != COI_ALREADY_EXISTS) { check_result(res, c_load_library, it->origin, m_index, res); } } m_images.clear(); } void Engine::unload_library(const void *data, const char *name) { if (m_process == 0) { return; } for (DynLibList::iterator it = m_dyn_libs.begin(); it != m_dyn_libs.end(); it++) { if (it->data == data) { COIRESULT res; OFFLOAD_DEBUG_TRACE(2, "Unloading library \"%s\"\n",name); res = COI::ProcessUnloadLibrary(m_process,it->lib); m_dyn_libs.erase(it); if (res != COI_SUCCESS) { check_result(res, c_unload_library, m_index, res); } return; } } } static bool target_entry_cmp( const VarList::BufEntry &l, const VarList::BufEntry &r ) { const char *l_name = reinterpret_cast(l.name); const char *r_name = reinterpret_cast(r.name); return strcmp(l_name, r_name) < 0; } static bool host_entry_cmp( const VarTable::Entry *l, const VarTable::Entry *r ) { return strcmp(l->name, r->name) < 0; } void Engine::init_ptr_data(void) { COIRESULT res; COIEVENT event; // Prepare table of host entries std::vector host_table( Iterator(__offload_vars.get_head()), Iterator()); // no need to do anything further is host table is empty if (host_table.size() <= 0) { return; } // Get var table entries from the target. // First we need to get size for the buffer to copy data struct { int64_t nelems; int64_t length; } params; res = COI::PipelineRunFunction(get_pipeline(), m_funcs[c_func_var_table_size], 0, 0, 0, 0, 0, 0, 0, ¶ms, sizeof(params), &event); check_result(res, c_pipeline_run_func, m_index, res); res = COI::EventWait(1, &event, -1, 1, 0, 0); check_result(res, c_event_wait, res); if (params.length == 0) { return; } // create buffer for target entries and copy data to host COIBUFFER buffer; res = COI::BufferCreate(params.length, COI_BUFFER_NORMAL, 0, 0, 1, &m_process, &buffer); check_result(res, c_buf_create, m_index, res); COI_ACCESS_FLAGS flags = COI_SINK_WRITE; res = COI::PipelineRunFunction(get_pipeline(), m_funcs[c_func_var_table_copy], 1, &buffer, &flags, 0, 0, ¶ms.nelems, sizeof(params.nelems), 0, 0, &event); check_result(res, c_pipeline_run_func, m_index, res); res = COI::EventWait(1, &event, -1, 1, 0, 0); check_result(res, c_event_wait, res); // patch names in target data VarList::BufEntry *target_table; COIMAPINSTANCE map_inst; res = COI::BufferMap(buffer, 0, params.length, COI_MAP_READ_ONLY, 0, 0, 0, &map_inst, reinterpret_cast(&target_table)); check_result(res, c_buf_map, res); VarList::table_patch_names(target_table, params.nelems); // and sort entries std::sort(target_table, target_table + params.nelems, target_entry_cmp); std::sort(host_table.begin(), host_table.end(), host_entry_cmp); // merge host and target entries and enter matching vars map std::vector::const_iterator hi = host_table.begin(); std::vector::const_iterator he = host_table.end(); const VarList::BufEntry *ti = target_table; const VarList::BufEntry *te = target_table + params.nelems; while (hi != he && ti != te) { int res = strcmp((*hi)->name, reinterpret_cast(ti->name)); if (res == 0) { bool is_new; // add matching entry to var map PtrData *ptr = insert_ptr_data((*hi)->addr, (*hi)->size, is_new); // store address for new entries if (is_new) { ptr->mic_addr = ti->addr; ptr->is_static = true; ptr->var_alloc_type = (*hi)->var_alloc_type; } ptr->alloc_ptr_data_lock.unlock(); hi++; ti++; } else if (res < 0) { hi++; } else { ti++; } } // cleanup res = COI::BufferUnmap(map_inst, 0, 0, 0); check_result(res, c_buf_unmap, res); res = COI::BufferDestroy(buffer); check_result(res, c_buf_destroy, res); } COIRESULT Engine::compute( _Offload_stream stream, const std::list &buffers, const void* data, uint16_t data_size, void* ret, uint16_t ret_size, uint32_t num_deps, const COIEVENT* deps, COIEVENT* event ) /* const */ { COIBUFFER *bufs; COI_ACCESS_FLAGS *flags; COIRESULT res; // convert buffers list to array int num_bufs = buffers.size(); if (num_bufs > 0) { bufs = (COIBUFFER*) alloca(num_bufs * sizeof(COIBUFFER)); flags = (COI_ACCESS_FLAGS*) alloca(num_bufs * sizeof(COI_ACCESS_FLAGS)); int i = 0; for (std::list::const_iterator it = buffers.begin(); it != buffers.end(); it++) { bufs[i] = *it; // TODO: this should be fixed flags[i++] = COI_SINK_WRITE; } } else { bufs = 0; flags = 0; } COIPIPELINE pipeline = (stream == no_stream) ? get_pipeline() : get_pipeline(stream); // start computation res = COI::PipelineRunFunction(pipeline, m_funcs[c_func_compute], num_bufs, bufs, flags, num_deps, deps, data, data_size, ret, ret_size, event); return res; } pid_t Engine::init_device(void) { struct init_data { int device_index; int devices_total; int console_level; int offload_report_level; } data; COIRESULT res; COIEVENT event; pid_t pid; OFFLOAD_DEBUG_TRACE_1(2, 0, c_offload_init, "Initializing device with logical index %d " "and physical index %d\n", m_index, m_physical_index); // setup misc data data.device_index = m_index; data.devices_total = mic_engines_total; data.console_level = console_enabled; data.offload_report_level = offload_report_level; res = COI::PipelineRunFunction(get_pipeline(), m_funcs[c_func_init], 0, 0, 0, 0, 0, &data, sizeof(data), &pid, sizeof(pid), &event); check_result(res, c_pipeline_run_func, m_index, res); res = COI::EventWait(1, &event, -1, 1, 0, 0); check_result(res, c_event_wait, res); OFFLOAD_DEBUG_TRACE(2, "Device process pid is %d\n", pid); return pid; } // data associated with each thread struct Thread { Thread(long* addr_coipipe_counter) { m_addr_coipipe_counter = addr_coipipe_counter; memset(m_pipelines, 0, sizeof(m_pipelines)); } ~Thread() { #ifndef TARGET_WINNT __sync_sub_and_fetch(m_addr_coipipe_counter, 1); #else // TARGET_WINNT _InterlockedDecrement(m_addr_coipipe_counter); #endif // TARGET_WINNT for (int i = 0; i < mic_engines_total; i++) { if (m_pipelines[i] != 0) { COI::PipelineDestroy(m_pipelines[i]); } } } COIPIPELINE get_pipeline(int index) const { return m_pipelines[index]; } void set_pipeline(int index, COIPIPELINE pipeline) { m_pipelines[index] = pipeline; } AutoSet& get_auto_vars() { return m_auto_vars; } private: long* m_addr_coipipe_counter; AutoSet m_auto_vars; COIPIPELINE m_pipelines[MIC_ENGINES_MAX]; }; COIPIPELINE Engine::get_pipeline(void) { Thread* thread = (Thread*) thread_getspecific(mic_thread_key); if (thread == 0) { thread = new Thread(&m_proc_number); thread_setspecific(mic_thread_key, thread); } COIPIPELINE pipeline = thread->get_pipeline(m_index); if (pipeline == 0) { COIRESULT res; int proc_num; #ifndef TARGET_WINNT proc_num = __sync_fetch_and_add(&m_proc_number, 1); #else // TARGET_WINNT proc_num = _InterlockedIncrement(&m_proc_number); #endif // TARGET_WINNT if (proc_num > COI_PIPELINE_MAX_PIPELINES) { LIBOFFLOAD_ERROR(c_coipipe_max_number, COI_PIPELINE_MAX_PIPELINES); LIBOFFLOAD_ABORT; } // Create pipeline for this thread if (m_assigned_cpus == 0) { // If m_assigned_cpus is NULL, it implies all threads // Create the pipeline with no CPU mask res = COI::PipelineCreate(m_process, 0, mic_stack_size, &pipeline); } else { // Create COI CPU mask COI_CPU_MASK in_Mask; res = COI::PipelineClearCPUMask(in_Mask); check_result(res, c_clear_cpu_mask, m_index, res); int threads_per_core = m_num_threads / m_num_cores; // Available threads are defined by examining of m_assigned_cpus bitset. // We skip thread 0. for (int i = 1; i < m_num_threads; i++) { // For available thread i m_assigned_cpus[i] is equal to 1 if ((*m_assigned_cpus)[i]) { COI_CPU_MASK_SET(i, in_Mask); } } OFFLOAD_DEBUG_TRACE(2, "COIPipelineCreate Mask for this CPU thread\n" "%016lx %016lx %016lx %016lx\n%016lx %016lx %016lx %016lx\n" "%016lx %016lx %016lx %016lx\n%016lx %016lx %016lx %016lx\n", in_Mask[0], in_Mask[1], in_Mask[2], in_Mask[3], in_Mask[4], in_Mask[5], in_Mask[6], in_Mask[7], in_Mask[8], in_Mask[9], in_Mask[10], in_Mask[11], in_Mask[12], in_Mask[13], in_Mask[14], in_Mask[15]); // Create the pipeline with allowable CPUs res = COI::PipelineCreate(m_process, in_Mask, mic_stack_size, &pipeline); } check_result(res, c_pipeline_create, m_index, res); thread->set_pipeline(m_index, pipeline); } return pipeline; } Stream* Stream::find_stream(uint64_t handle, bool remove) { Stream *stream = 0; m_stream_lock.lock(); { StreamMap::iterator it = all_streams.find(handle); if (it != all_streams.end()) { stream = it->second; if (remove) { all_streams.erase(it); } } } m_stream_lock.unlock(); return stream; } void Engine::move_cpu_el_after(CpuEl* cpu_what, CpuEl* cpu_after) { if (cpu_what == cpu_after) { return; } CpuEl* cpu_prev = cpu_what->prev; // remove cpu_what if (!cpu_prev) { m_cpu_head = cpu_what->next; } else { cpu_prev->next = cpu_what->next; } if (cpu_what->next) { cpu_what->next->prev = cpu_prev; } // insert cpu_what after cpu_after cpu_what->prev = cpu_after; cpu_what->next = cpu_after->next; if (cpu_after->next) { cpu_after->next->prev = cpu_what; } cpu_after->next = cpu_what; } COIPIPELINE Engine::get_pipeline(_Offload_stream handle) { Stream * stream = Stream::find_stream(handle, false); if (!stream) { LIBOFFLOAD_ERROR(c_offload_no_stream, m_index); LIBOFFLOAD_ABORT; } COIPIPELINE pipeline = stream->get_pipeline(); if (pipeline == 0) { COIRESULT res; int proc_num; COI_CPU_MASK in_Mask ; #ifndef TARGET_WINNT proc_num = __sync_fetch_and_add(&m_proc_number, 1); #else // TARGET_WINNT proc_num = _InterlockedIncrement(&m_proc_number); #endif // TARGET_WINNT if (proc_num > COI_PIPELINE_MAX_PIPELINES) { LIBOFFLOAD_ERROR(c_coipipe_max_number, COI_PIPELINE_MAX_PIPELINES); LIBOFFLOAD_ABORT; } m_stream_lock.lock(); // start process if not done yet if (m_process == 0) { init_process(); } // create CPUmask res = COI::PipelineClearCPUMask(in_Mask); check_result(res, c_clear_cpu_mask, m_index, res); int stream_cpu_num = stream->get_cpu_number(); stream->m_stream_cpus.reset(); int threads_per_core = m_num_threads / m_num_cores; // Available threads is taken from m_cpus list. // m_cpu_head points to the head of m_cpus. // the elements of m_cpus is ordered by the number of usage in streams. CpuEl *cpu_el = m_cpu_head; CpuEl *cpu_used_el, *cpu_used_prev, *cpu_prev; for (int i = 0; i < stream_cpu_num; i++) { COI_CPU_MASK_SET(CPU_INDEX(cpu_el), in_Mask); stream->m_stream_cpus.set(CPU_INDEX(cpu_el)); //If the number of availabale threads is less than stream_cpu_num, // the stream_cpu_num is restricted to this number. if (!cpu_el->next) { break; } if (i + 1 < stream_cpu_num) { cpu_el = cpu_el->next; } } // assertion : cpu_el points to the last used thread cpu_used_el = cpu_el; while (cpu_used_el) { cpu_used_el->count++; cpu_el = cpu_prev = cpu_used_el; cpu_used_prev = cpu_used_el->prev; if (!cpu_el->next) { cpu_used_el = cpu_used_prev; continue; } while (cpu_el) { if (cpu_used_el->count < cpu_el->count) { break; } // Equal used threads are ordered by thread number to // assign to a stream as contiguous threads as possible. else if (cpu_used_el->count == cpu_el->count && CPU_INDEX(cpu_used_el) < CPU_INDEX(cpu_el)) { break; } cpu_prev = cpu_el; cpu_el = cpu_el->next; } if (cpu_used_el != cpu_prev) { move_cpu_el_after(cpu_used_el, cpu_prev); } cpu_used_el = cpu_used_prev; } print_stream_cpu_list("get_pipeline"); // create pipeline for this thread OFFLOAD_DEBUG_TRACE(2, "COIPipelineCreate Mask for this Stream\n" "%016lx %016lx %016lx %016lx\n%016lx %016lx %016lx %016lx\n" "%016lx %016lx %016lx %016lx\n%016lx %016lx %016lx %016lx\n", in_Mask[0], in_Mask[1], in_Mask[2], in_Mask[3], in_Mask[4], in_Mask[5], in_Mask[6], in_Mask[7], in_Mask[8], in_Mask[9], in_Mask[10], in_Mask[11], in_Mask[12], in_Mask[13], in_Mask[14], in_Mask[15]); res = COI::PipelineCreate(m_process, in_Mask, mic_stack_size, &pipeline); check_result(res, c_pipeline_create, m_index, res); // Set stream's affinities { struct affinity_spec affinity_spec; char* affinity_type; int i; // "compact" by default affinity_spec.affinity_type = affinity_compact; // Check if user has specified type of affinity if ((affinity_type = getenv("OFFLOAD_STREAM_AFFINITY")) != NULL) { char affinity_str[16]; int affinity_str_len; OFFLOAD_DEBUG_TRACE(2, "User has specified OFFLOAD_STREAM_AFFINITY=%s\n", affinity_type); // Set type of affinity requested affinity_str_len = strlen(affinity_type); for (i=0; iset_pipeline(pipeline); } return pipeline; } void Engine::stream_destroy(_Offload_stream handle) { // get stream Stream * stream = Stream::find_stream(handle, true); if (stream) { // return cpus for future use for (int i = 0; i < m_num_threads; i++) { if (stream->m_stream_cpus.test(i)) { CpuEl *cpu_el = m_cpus + i; CpuEl *cpu_first_el = cpu_el; // decrease count of thread "i" and move its CpuEl to the // proper place into the ordered list cpu_el->count--; while (cpu_el->prev) { if (cpu_first_el->count > cpu_el->prev->count) { break; } else if (cpu_first_el->count == cpu_el->prev->count && CPU_INDEX(cpu_first_el) > CPU_INDEX(cpu_el->prev)) { break; } cpu_el = cpu_el->prev; } cpu_el = cpu_el->prev; // If cpu_el for thread "i" must be moved in the list if (cpu_first_el != cpu_el) { // Thread "i" is used the least times. It must be set as // the m_cpu_head. if (!cpu_el) { if (!cpu_first_el->prev) { continue; } // remove cpu_el. cpu_first_el->prev->next = cpu_first_el->next; if (cpu_first_el->next) { cpu_first_el->next->prev = cpu_first_el->prev; } // make cpu_first_el as new m_cpu_head cpu_first_el->prev = NULL; cpu_first_el->next = m_cpu_head; m_cpu_head->prev = cpu_first_el; m_cpu_head = cpu_first_el; } else { move_cpu_el_after(cpu_first_el, cpu_el); } } } } print_stream_cpu_list("stream_destroy"); delete stream; } else { LIBOFFLOAD_ERROR(c_offload_no_stream, m_index); LIBOFFLOAD_ABORT; } } uint64_t Engine::get_thread_id(void) { Thread* thread = (Thread*) thread_getspecific(mic_thread_key); if (thread == 0) { thread = new Thread(&m_proc_number); thread_setspecific(mic_thread_key, thread); } return reinterpret_cast(thread); } AutoSet& Engine::get_auto_vars(void) { Thread* thread = (Thread*) thread_getspecific(mic_thread_key); if (thread == 0) { thread = new Thread(&m_proc_number); thread_setspecific(mic_thread_key, thread); } return thread->get_auto_vars(); } void Engine::destroy_thread_data(void *data) { delete static_cast(data); }