/* Complex exponential functions Copyright 2002, 2004 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfor). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with libgfor; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "libgfortran.h" /* z = a + ib */ /* Absolute value. */ GFC_REAL_8 cabs (GFC_COMPLEX_8 z) { return hypot (REALPART (z), IMAGPART (z)); } /* Complex argument. The angle made with the +ve real axis. Range -pi-pi. */ GFC_REAL_8 carg (GFC_COMPLEX_8 z) { GFC_REAL_8 arg; return atan2 (IMAGPART (z), REALPART (z)); } /* exp(z) = exp(a)*(cos(b) + isin(b)) */ GFC_COMPLEX_8 cexp (GFC_COMPLEX_8 z) { GFC_REAL_8 a; GFC_REAL_8 b; GFC_COMPLEX_8 v; a = REALPART (z); b = IMAGPART (z); COMPLEX_ASSIGN (v, cos (b), sin (b)); return exp (a) * v; } /* log(z) = log (cabs(z)) + i*carg(z) */ GFC_COMPLEX_8 clog (GFC_COMPLEX_8 z) { GFC_COMPLEX_8 v; COMPLEX_ASSIGN (v, log (cabs (z)), carg (z)); return v; } /* log10(z) = log10 (cabs(z)) + i*carg(z) */ GFC_COMPLEX_8 clog10 (GFC_COMPLEX_8 z) { GFC_COMPLEX_8 v; COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z)); return v; } /* pow(base, power) = cexp (power * clog (base)) */ GFC_COMPLEX_8 cpow (GFC_COMPLEX_8 base, GFC_COMPLEX_8 power) { return cexp (power * clog (base)); } /* sqrt(z). Algorithm pulled from glibc. */ GFC_COMPLEX_8 csqrt (GFC_COMPLEX_8 z) { GFC_REAL_8 re; GFC_REAL_8 im; GFC_COMPLEX_8 v; re = REALPART (z); im = IMAGPART (z); if (im == 0.0) { if (re < 0.0) { COMPLEX_ASSIGN (v, 0.0, copysign (sqrt (-re), im)); } else { COMPLEX_ASSIGN (v, fabs (sqrt (re)), copysign (0.0, im)); } } else if (re == 0.0) { GFC_REAL_8 r; r = sqrt (0.5 * fabs (im)); COMPLEX_ASSIGN (v, copysign (r, im), r); } else { GFC_REAL_8 d, r, s; d = hypot (re, im); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (re > 0) { r = sqrt (0.5 * d + 0.5 * re); s = (0.5 * im) / r; } else { s = sqrt (0.5 * d - 0.5 * re); r = fabs ((0.5 * im) / s); } COMPLEX_ASSIGN (v, r, copysign (s, im)); } return v; }