// random number generation (out of line) -*- C++ -*- // Copyright (C) 2006 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. #include namespace std { _GLIBCXX_BEGIN_NAMESPACE(tr1) /* * Implementation-space details. */ namespace _Private { // General case for x = (ax + c) mod m -- use Schrage's algorithm to avoid // integer overflow. // // Because a and c are compile-time integral constants the compiler kindly // elides any unreachable paths. // // Preconditions: a > 0, m > 0. // template struct _Mod { static _Tp __calc(_Tp __x) { if (__a == 1) __x %= __m; else { static const _Tp __q = __m / __a; static const _Tp __r = __m % __a; _Tp __t1 = __a * (__x % __q); _Tp __t2 = __r * (__x / __q); if (__t1 >= __t2) __x = __t1 - __t2; else __x = __m - __t2 + __t1; } if (__c != 0) { const _Tp __d = __m - __x; if (__d > __c) __x += __c; else __x = __c - __d; } return __x; } }; // Special case for m == 0 -- use unsigned integer overflow as modulo // operator. template struct _Mod<_Tp, __a, __c, __m, true> { static _Tp __calc(_Tp __x) { return __a * __x + __c; } }; // Dispatch based on modulus value to prevent divide-by-zero compile-time // errors when m == 0. template inline _Tp __mod(_Tp __x) { return _Mod<_Tp, __a, __c, __m, __m == 0>::__calc(__x); } // Like the above, for a == 1, c == 0, in terms of w. template struct _Mod_w { static _Tp __calc(_Tp __x) { return __x % (_Tp(1) << __w); } }; template struct _Mod_w<_Tp, __w, true> { static _Tp __calc(_Tp __x) { return __x; } }; template inline _Tp __mod_w(_Tp __x) { return _Mod_w<_Tp, __w, __w == std::numeric_limits<_Tp>::digits>::__calc(__x); } // Selector to return the maximum value possible that will fit in // @p __w bits of @p _Tp. template struct _Max_w { static _Tp __value() { return (_Tp(1) << __w) - 1; } }; template struct _Max_w<_Tp, __w, true> { static _Tp __value() { return std::numeric_limits<_Tp>::max(); } }; } // namespace _Private /** * Constructs the LCR engine with integral seed @p __x0. */ template linear_congruential<_UIntType, __a, __c, __m>:: linear_congruential(unsigned long __x0) { this->seed(__x0); } /** * Constructs the LCR engine with seed generated from @p __g. */ template template linear_congruential<_UIntType, __a, __c, __m>:: linear_congruential(_Gen& __g) { this->seed(__g); } /** * Seeds the LCR with integral value @p __x0, adjusted so that the * ring identity is never a member of the convergence set. */ template void linear_congruential<_UIntType, __a, __c, __m>:: seed(unsigned long __x0) { if ((_Private::__mod<_UIntType, 1, 0, __m>(__c) == 0) && (_Private::__mod<_UIntType, 1, 0, __m>(__x0) == 0)) _M_x = _Private::__mod<_UIntType, 1, 0, __m>(1); else _M_x = _Private::__mod<_UIntType, 1, 0, __m>(__x0); } /** * Seeds the LCR engine with a value generated by @p __g. */ template template void linear_congruential<_UIntType, __a, __c, __m>:: seed(_Gen& __g, false_type) { _UIntType __x0 = __g(); if ((_Private::__mod<_UIntType, 1, 0, __m>(__c) == 0) && (_Private::__mod<_UIntType, 1, 0, __m>(__x0) == 0)) _M_x = _Private::__mod<_UIntType, 1, 0, __m>(1); else _M_x = _Private::__mod<_UIntType, 1, 0, __m>(__x0); } /** * Returns a value that is less than or equal to all values potentially * returned by operator(). The return value of this function does not * change during the lifetime of the object.. * * The minumum depends on the @p __c parameter: if it is zero, the * minimum generated must be > 0, otherwise 0 is allowed. */ template typename linear_congruential<_UIntType, __a, __c, __m>::result_type linear_congruential<_UIntType, __a, __c, __m>:: min() const { return (_Private::__mod<_UIntType, 1, 0, __m>(__c) == 0) ? 1 : 0; } /** * Gets the maximum possible value of the generated range. * * For a linear congruential generator, the maximum is always @p __m - 1. */ template typename linear_congruential<_UIntType, __a, __c, __m>::result_type linear_congruential<_UIntType, __a, __c, __m>:: max() const { return (__m == 0) ? std::numeric_limits<_UIntType>::max() : (__m - 1); } /** * Gets the next generated value in sequence. */ template typename linear_congruential<_UIntType, __a, __c, __m>::result_type linear_congruential<_UIntType, __a, __c, __m>:: operator()() { _M_x = _Private::__mod<_UIntType, __a, __c, __m>(_M_x); return _M_x; } template void mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, __b, __t, __c, __l>:: seed(unsigned long __value) { _M_x[0] = _Private::__mod_w<_UIntType, __w>(__value); for (int __i = 1; __i < state_size; ++__i) { _UIntType __x = _M_x[__i - 1]; __x ^= __x >> (__w - 2); __x *= 1812433253ul; __x += __i; _M_x[__i] = _Private::__mod_w<_UIntType, __w>(__x); } _M_p = state_size; } template template void mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, __b, __t, __c, __l>:: seed(_Gen& __gen, false_type) { for (int __i = 0; __i < state_size; ++__i) _M_x[__i] = _Private::__mod_w<_UIntType, __w>(__gen()); _M_p = state_size; } template typename mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, __b, __t, __c, __l>::result_type mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, __b, __t, __c, __l>:: max() const { using _Private::_Max_w; using std::numeric_limits; return _Max_w<_UIntType, __w, __w == numeric_limits<_UIntType>::digits>::__value(); } template typename mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, __b, __t, __c, __l>::result_type mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, __b, __t, __c, __l>:: operator()() { // Reload the vector - cost is O(n) amortized over n calls. if (_M_p >= state_size) { const _UIntType __upper_mask = (~_UIntType()) << __r; const _UIntType __lower_mask = ~__upper_mask; for (int __k = 0; __k < (__n - __m); ++__k) { _UIntType __y = ((_M_x[__k] & __upper_mask) | (_M_x[__k + 1] & __lower_mask)); _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) ^ ((__y & 0x01) ? __a : 0)); } for (int __k = (__n - __m); __k < (__n - 1); ++__k) { _UIntType __y = ((_M_x[__k] & __upper_mask) | (_M_x[__k + 1] & __lower_mask)); _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) ^ ((__y & 0x01) ? __a : 0)); } _UIntType __y = ((_M_x[__n - 1] & __upper_mask) | (_M_x[0] & __lower_mask)); _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) ^ ((__y & 0x01) ? __a : 0)); _M_p = 0; } // Calculate o(x(i)). result_type __z = _M_x[_M_p++]; __z ^= (__z >> __u); __z ^= (__z << __s) & __b; __z ^= (__z << __t) & __c; __z ^= (__z >> __l); return __z; } template void subtract_with_carry<_IntType, __m, __s, __r>:: seed(unsigned long __value) { std::tr1::linear_congruential __lcg(__value); for (int __i = 0; __i < long_lag; ++__i) _M_x[__i] = _Private::__mod<_IntType, 1, 0, modulus>(__lcg()); _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; _M_p = 0; } // // This implementation differs from the tr1 spec because the tr1 spec refused // to make any sense to me: the exponent of the factor in the spec goes from // 1 to (n-1), but it would only make sense to me if it went from 0 to (n-1). // // This algorithm is still problematic because it can overflow left right and // center. // template template void subtract_with_carry<_IntType, __m, __s, __r>:: seed(_Gen& __gen, false_type) { const int __n = (std::numeric_limits<_IntType>::digits + 31) / 32; for (int __i = 0; __i < long_lag; ++__i) { _M_x[__i] = 0; unsigned long __factor = 1; for (int __j = 0; __j < __n; ++__j) { _M_x[__i] += __gen() * __factor; __factor *= 0x80000000; } _M_x[__i] = _Private::__mod<_IntType, 1, 0, modulus>(_M_x[__i]); } _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; _M_p = 0; } template typename subtract_with_carry<_IntType, __m, __s, __r>::result_type subtract_with_carry<_IntType, __m, __s, __r>:: operator()() { // Derive short lag index from current index. int __ps = _M_p - short_lag; if (__ps < 0) __ps += long_lag; // Calculate new x(i) without overflow or division. _IntType __xi; if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) { __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; _M_carry = 0; } else { __xi = modulus - _M_x[_M_p] - _M_carry + _M_x[__ps]; _M_carry = 1; } _M_x[_M_p++] = __xi; // Adjust current index to loop around in ring buffer. if (_M_p >= long_lag) _M_p = 0; return __xi; } template typename discard_block<_UniformRandomNumberGenerator, __p, __r>::result_type discard_block<_UniformRandomNumberGenerator, __p, __r>:: operator()() { if (_M_n >= used_block) { while (_M_n < block_size) { _M_b(); ++_M_n; } _M_n = 0; } ++_M_n; return _M_b(); } _GLIBCXX_END_NAMESPACE }