/* Implementation of the FINDLOC intrinsic Copyright (C) 2018-2019 Free Software Foundation, Inc. Contributed by Thomas König This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #if defined (HAVE_GFC_REAL_10) extern void findloc0_r10 (gfc_array_index_type * const restrict retarray, gfc_array_r10 * const restrict array, GFC_REAL_10 value, GFC_LOGICAL_4); export_proto(findloc0_r10); void findloc0_r10 (gfc_array_index_type * const restrict retarray, gfc_array_r10 * const restrict array, GFC_REAL_10 value, GFC_LOGICAL_4 back) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride; const GFC_REAL_10 *base; index_type * restrict dest; index_type rank; index_type n; index_type sz; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); retarray->dtype.rank = 1; retarray->offset = 0; retarray->base_addr = xmallocarray (rank, sizeof (index_type)); } else { if (unlikely (compile_options.bounds_check)) bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "FINDLOC"); } dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; sz = 1; for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); sz *= extent[n]; if (extent[n] <= 0) return; } for (n = 0; n < rank; n++) count[n] = 0; if (back) { base = array->base_addr + (sz - 1) * 1; while (1) { do { if (unlikely(*base == value)) { for (n = 0; n < rank; n++) dest[n * dstride] = extent[n] - count[n]; return; } base -= sstride[0] * 1; } while(++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base += sstride[n] * extent[n] * 1; n++; if (n >= rank) return; else { count[n]++; base -= sstride[n] * 1; } } while (count[n] == extent[n]); } } else { base = array->base_addr; while (1) { do { if (unlikely(*base == value)) { for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; return; } base += sstride[0] * 1; } while(++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n] * 1; n++; if (n >= rank) return; else { count[n]++; base += sstride[n] * 1; } } while (count[n] == extent[n]); } } return; } extern void mfindloc0_r10 (gfc_array_index_type * const restrict retarray, gfc_array_r10 * const restrict array, GFC_REAL_10 value, gfc_array_l1 *const restrict, GFC_LOGICAL_4); export_proto(mfindloc0_r10); void mfindloc0_r10 (gfc_array_index_type * const restrict retarray, gfc_array_r10 * const restrict array, GFC_REAL_10 value, gfc_array_l1 *const restrict mask, GFC_LOGICAL_4 back) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; index_type dstride; const GFC_REAL_10 *base; index_type * restrict dest; GFC_LOGICAL_1 *mbase; index_type rank; index_type n; int mask_kind; index_type sz; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); retarray->dtype.rank = 1; retarray->offset = 0; retarray->base_addr = xmallocarray (rank, sizeof (index_type)); } else { if (unlikely (compile_options.bounds_check)) { bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "FINDLOC"); bounds_equal_extents ((array_t *) mask, (array_t *) array, "MASK argument", "FINDLOC"); } } mask_kind = GFC_DESCRIPTOR_SIZE (mask); mbase = mask->base_addr; if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else internal_error (NULL, "Funny sized logical array"); dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; sz = 1; for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); sz *= extent[n]; if (extent[n] <= 0) return; } for (n = 0; n < rank; n++) count[n] = 0; if (back) { base = array->base_addr + (sz - 1) * 1; mbase = mbase + (sz - 1) * mask_kind; while (1) { do { if (unlikely(*mbase && *base == value)) { for (n = 0; n < rank; n++) dest[n * dstride] = extent[n] - count[n]; return; } base -= sstride[0] * 1; mbase -= mstride[0]; } while(++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base += sstride[n] * extent[n] * 1; mbase -= mstride[n] * extent[n]; n++; if (n >= rank) return; else { count[n]++; base -= sstride[n] * 1; mbase += mstride[n]; } } while (count[n] == extent[n]); } } else { base = array->base_addr; while (1) { do { if (unlikely(*mbase && *base == value)) { for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; return; } base += sstride[0] * 1; mbase += mstride[0]; } while(++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n] * 1; mbase -= mstride[n] * extent[n]; n++; if (n >= rank) return; else { count[n]++; base += sstride[n]* 1; mbase += mstride[n]; } } while (count[n] == extent[n]); } } return; } extern void sfindloc0_r10 (gfc_array_index_type * const restrict retarray, gfc_array_r10 * const restrict array, GFC_REAL_10 value, GFC_LOGICAL_4 *, GFC_LOGICAL_4); export_proto(sfindloc0_r10); void sfindloc0_r10 (gfc_array_index_type * const restrict retarray, gfc_array_r10 * const restrict array, GFC_REAL_10 value, GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back) { index_type rank; index_type dstride; index_type * restrict dest; index_type n; if (mask == NULL || *mask) { findloc0_r10 (retarray, array, value, back); return; } rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) internal_error (NULL, "Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); retarray->dtype.rank = 1; retarray->offset = 0; retarray->base_addr = xmallocarray (rank, sizeof (index_type)); } else if (unlikely (compile_options.bounds_check)) { bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "FINDLOC"); } dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n