// Multiset implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_multiset.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _MULTISET_H #define _MULTISET_H 1 #include _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD) // Forward declaration of operators < and ==, needed for friend declaration. template , class _Alloc = std::allocator<_Key> > class multiset; template inline bool operator==(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y); template inline bool operator<(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y); /** * @brief A standard container made up of elements, which can be retrieved * in logarithmic time. * * @ingroup Containers * @ingroup Assoc_containers * * Meets the requirements of a container, a * reversible container, and an * associative container (using equivalent * keys). For a @c multiset the key_type and value_type are Key. * * Multisets support bidirectional iterators. * * @if maint * The private tree data is declared exactly the same way for set and * multiset; the distinction is made entirely in how the tree functions are * called (*_unique versus *_equal, same as the standard). * @endif */ template class multiset { // concept requirements typedef typename _Alloc::value_type _Alloc_value_type; __glibcxx_class_requires(_Key, _SGIAssignableConcept) __glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept) __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) public: // typedefs: typedef _Key key_type; typedef _Key value_type; typedef _Compare key_compare; typedef _Compare value_compare; typedef _Alloc allocator_type; private: /// @if maint This turns a red-black tree into a [multi]set. @endif typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type; typedef _Rb_tree, key_compare, _Key_alloc_type> _Rep_type; /// @if maint The actual tree structure. @endif _Rep_type _M_t; public: typedef typename _Key_alloc_type::pointer pointer; typedef typename _Key_alloc_type::const_pointer const_pointer; typedef typename _Key_alloc_type::reference reference; typedef typename _Key_alloc_type::const_reference const_reference; // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 103. set::iterator is required to be modifiable, // but this allows modification of keys. typedef typename _Rep_type::const_iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::const_reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; // allocation/deallocation /** * @brief Default constructor creates no elements. */ multiset() : _M_t(_Compare(), allocator_type()) { } explicit multiset(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { } /** * @brief Builds a %multiset from a range. * @param first An input iterator. * @param last An input iterator. * * Create a %multiset consisting of copies of the elements from * [first,last). This is linear in N if the range is already sorted, * and NlogN otherwise (where N is distance(first,last)). */ template multiset(_InputIterator __first, _InputIterator __last) : _M_t(_Compare(), allocator_type()) { _M_t._M_insert_equal(__first, __last); } /** * @brief Builds a %multiset from a range. * @param first An input iterator. * @param last An input iterator. * @param comp A comparison functor. * @param a An allocator object. * * Create a %multiset consisting of copies of the elements from * [first,last). This is linear in N if the range is already sorted, * and NlogN otherwise (where N is distance(first,last)). */ template multiset(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t._M_insert_equal(__first, __last); } /** * @brief %Multiset copy constructor. * @param x A %multiset of identical element and allocator types. * * The newly-created %multiset uses a copy of the allocation object used * by @a x. */ multiset(const multiset<_Key,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { } /** * @brief %Multiset assignment operator. * @param x A %multiset of identical element and allocator types. * * All the elements of @a x are copied, but unlike the copy constructor, * the allocator object is not copied. */ multiset<_Key,_Compare,_Alloc>& operator=(const multiset<_Key,_Compare,_Alloc>& __x) { _M_t = __x._M_t; return *this; } // accessors: /// Returns the comparison object. key_compare key_comp() const { return _M_t.key_comp(); } /// Returns the comparison object. value_compare value_comp() const { return _M_t.key_comp(); } /// Returns the memory allocation object. allocator_type get_allocator() const { return _M_t.get_allocator(); } /** * Returns a read/write iterator that points to the first element in the * %multiset. Iteration is done in ascending order according to the * keys. */ iterator begin() const { return _M_t.begin(); } /** * Returns a read/write iterator that points one past the last element in * the %multiset. Iteration is done in ascending order according to the * keys. */ iterator end() const { return _M_t.end(); } /** * Returns a read/write reverse iterator that points to the last element * in the %multiset. Iteration is done in descending order according to * the keys. */ reverse_iterator rbegin() const { return _M_t.rbegin(); } /** * Returns a read/write reverse iterator that points to the last element * in the %multiset. Iteration is done in descending order according to * the keys. */ reverse_iterator rend() const { return _M_t.rend(); } /// Returns true if the %set is empty. bool empty() const { return _M_t.empty(); } /// Returns the size of the %set. size_type size() const { return _M_t.size(); } /// Returns the maximum size of the %set. size_type max_size() const { return _M_t.max_size(); } /** * @brief Swaps data with another %multiset. * @param x A %multiset of the same element and allocator types. * * This exchanges the elements between two multisets in constant time. * (It is only swapping a pointer, an integer, and an instance of the @c * Compare type (which itself is often stateless and empty), so it should * be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(s1,s2) will feed to this function. */ void swap(multiset<_Key, _Compare, _Alloc>& __x) { _M_t.swap(__x._M_t); } // insert/erase /** * @brief Inserts an element into the %multiset. * @param x Element to be inserted. * @return An iterator that points to the inserted element. * * This function inserts an element into the %multiset. Contrary * to a std::set the %multiset does not rely on unique keys and thus * multiple copies of the same element can be inserted. * * Insertion requires logarithmic time. */ iterator insert(const value_type& __x) { return _M_t._M_insert_equal(__x); } /** * @brief Inserts an element into the %multiset. * @param position An iterator that serves as a hint as to where the * element should be inserted. * @param x Element to be inserted. * @return An iterator that points to the inserted element. * * This function inserts an element into the %multiset. Contrary * to a std::set the %multiset does not rely on unique keys and thus * multiple copies of the same element can be inserted. * * Note that the first parameter is only a hint and can potentially * improve the performance of the insertion process. A bad hint would * cause no gains in efficiency. * * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 * for more on "hinting". * * Insertion requires logarithmic time (if the hint is not taken). */ iterator insert(iterator __position, const value_type& __x) { return _M_t._M_insert_equal(__position, __x); } /** * @brief A template function that attemps to insert a range of elements. * @param first Iterator pointing to the start of the range to be * inserted. * @param last Iterator pointing to the end of the range. * * Complexity similar to that of the range constructor. */ template void insert(_InputIterator __first, _InputIterator __last) { _M_t._M_insert_equal(__first, __last); } /** * @brief Erases an element from a %multiset. * @param position An iterator pointing to the element to be erased. * * This function erases an element, pointed to by the given iterator, * from a %multiset. Note that this function only erases the element, * and that if the element is itself a pointer, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibilty. */ void erase(iterator __position) { _M_t.erase(__position); } /** * @brief Erases elements according to the provided key. * @param x Key of element to be erased. * @return The number of elements erased. * * This function erases all elements located by the given key from a * %multiset. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibilty. */ size_type erase(const key_type& __x) { return _M_t.erase(__x); } /** * @brief Erases a [first,last) range of elements from a %multiset. * @param first Iterator pointing to the start of the range to be * erased. * @param last Iterator pointing to the end of the range to be erased. * * This function erases a sequence of elements from a %multiset. * Note that this function only erases the elements, and that if * the elements themselves are pointers, the pointed-to memory is not * touched in any way. Managing the pointer is the user's responsibilty. */ void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } /** * Erases all elements in a %multiset. Note that this function only * erases the elements, and that if the elements themselves are pointers, * the pointed-to memory is not touched in any way. Managing the pointer * is the user's responsibilty. */ void clear() { _M_t.clear(); } // multiset operations: /** * @brief Finds the number of elements with given key. * @param x Key of elements to be located. * @return Number of elements with specified key. */ size_type count(const key_type& __x) const { return _M_t.count(__x); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 214. set::find() missing const overload //@{ /** * @brief Tries to locate an element in a %set. * @param x Element to be located. * @return Iterator pointing to sought-after element, or end() if not * found. * * This function takes a key and tries to locate the element with which * the key matches. If successful the function returns an iterator * pointing to the sought after element. If unsuccessful it returns the * past-the-end ( @c end() ) iterator. */ iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } //@} //@{ /** * @brief Finds the beginning of a subsequence matching given key. * @param x Key to be located. * @return Iterator pointing to first element equal to or greater * than key, or end(). * * This function returns the first element of a subsequence of elements * that matches the given key. If unsuccessful it returns an iterator * pointing to the first element that has a greater value than given key * or end() if no such element exists. */ iterator lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } //@} //@{ /** * @brief Finds the end of a subsequence matching given key. * @param x Key to be located. * @return Iterator pointing to the first element * greater than key, or end(). */ iterator upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } //@} //@{ /** * @brief Finds a subsequence matching given key. * @param x Key to be located. * @return Pair of iterators that possibly points to the subsequence * matching given key. * * This function is equivalent to * @code * std::make_pair(c.lower_bound(val), * c.upper_bound(val)) * @endcode * (but is faster than making the calls separately). * * This function probably only makes sense for multisets. */ std::pair equal_range(const key_type& __x) { return _M_t.equal_range(__x); } std::pair equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } template friend bool operator== (const multiset<_K1, _C1, _A1>&, const multiset<_K1, _C1, _A1>&); template friend bool operator< (const multiset<_K1, _C1, _A1>&, const multiset<_K1, _C1, _A1>&); }; /** * @brief Multiset equality comparison. * @param x A %multiset. * @param y A %multiset of the same type as @a x. * @return True iff the size and elements of the multisets are equal. * * This is an equivalence relation. It is linear in the size of the * multisets. * Multisets are considered equivalent if their sizes are equal, and if * corresponding elements compare equal. */ template inline bool operator==(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return __x._M_t == __y._M_t; } /** * @brief Multiset ordering relation. * @param x A %multiset. * @param y A %multiset of the same type as @a x. * @return True iff @a x is lexicographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * maps. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template inline bool operator<(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return __x._M_t < __y._M_t; } /// Returns !(x == y). template inline bool operator!=(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return !(__x == __y); } /// Returns y < x. template inline bool operator>(const multiset<_Key,_Compare,_Alloc>& __x, const multiset<_Key,_Compare,_Alloc>& __y) { return __y < __x; } /// Returns !(y < x) template inline bool operator<=(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return !(__y < __x); } /// Returns !(x < y) template inline bool operator>=(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return !(__x < __y); } /// See std::multiset::swap(). template inline void swap(multiset<_Key, _Compare, _Alloc>& __x, multiset<_Key, _Compare, _Alloc>& __y) { __x.swap(__y); } _GLIBCXX_END_NESTED_NAMESPACE #endif /* _MULTISET_H */